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Abstract—Heterogeneous sensor networks are increasingly de-
ployed to support users in the field requiring many different
kinds of sensing tasks. There may be multiple alternative kinds
of sensors suitable for a given task. Sensing tasks might compete
for the exclusive usage of available sensors. Such an environment
is highly dynamic with users moving and generating tasks at
different rates. Users typically lack the time and expertise to
manually decide which are the best sensors for their tasks. We
need therefore to design a distributed system to automatically
allocate sensors to tasks. We formalize this problem as Multi-
Sensor Task Allocation (MSTA) and show that the heterogeneity
of sensors and tasks requires knowledge-based sensor-task match-
ing. We extend a pre-existent well known coalition formation
protocol to propose a novel layered distributed system which by
using qualitative and quantitative measures provides allocation
flexibility. We demonstrate that it is feasible to perform the
knowledge-based sensor-task matching on a user’s device by
presenting a proof-of-concept mobile app which allows a user
in the field to interact with the system. We run simulations
to demonstrate that our architecture is scalable and that the
allocation quality improves by allowing preemption of sensing
resources from ongoing tasks and a reallocation mechanism.

I. INTRODUCTION

Heterogeneous sensors are increasingly used to support
emergency responders in the field usually requiring many
different sensing tasks, like detecting people who may need
help and monitoring a collapsing building'. Upon deployment
in the field heterogeneous sensing devices will form an ad hoc
network using wireless links or cables to communicate. This
heterogenous sensor network is required to support multiple
sensing tasks of different types simultaneously. Sensing tasks
might share the usage of a sensing resource, but more often
they compete to exclusively control it - for example in the
case of directional sensors. A mobile user moving on the
field needing many different sensing tasks would not have
the time to manually decide what is the best set of sensors
to use for each task. In addition, a user might not have the
expertise to decide what type of sensors could best match
each task’s sensing requirements. Most importantly, if they
were to manually choose the sensors, they would probably

'“Global Hawk collects reconnaissance data during Haiti relief
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Unmanned Aircraft Search for Survivors in Katrina Wreckage”,
http://www.nsf.gov/news/news_summ.jsp?cntn_id=104453
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consider only a subset of the sensor and task parameters. We
need therefore to design a distributed system to automatically
allocate sensors to the tasks they best serve, considering the
task information requirements and the sensor capabilities. We
refer to this problem as Multi-Sensor Task Allocation (MSTA).

Such a problem can appear not only in emergency response
scenarios but it can be easily identified in many humanitarian
relief operations conducted by international coalitions. In
our problem settings tasks have different priorities and are
generated over time with different rates. Each task requires
one set out of any possible set of sensors to be accomplished,
we call these sets of sensors “sensor bundles”. To satisfy each
task’s requirements we want to allocate exactly one sensor
bundle. These bundles need to be dynamically generated by
the system considering the relevant sensors and computing
their joint utilities for each of the tasks.

Our main contribution is an extension of a pre-existent well
known protocol [11] to implement a distributed system solving
our MSTA problem instance. The novelty of our architecture
consists in a layered approach which by integrating a knowl-
edge base with the allocation protocol provides flexibility in
the choice of sensors to use in order to satisfy the users’
task requirements. Therefore we solve the allocation problem
taking into account both qualitative and quantitative measures.

The remainder of the paper is organized as follows. In
Section II we analyze which features we need to add to the
allocation protocol chosen as a skeleton for our architecture. In
Section III we provide an overview of our layered architecture
and we formally analyze our MSTA problem. In Section IV we
describe the Knowledge-based bundle generator component of
our system which supports the allocation protocol described
in Section V. In Section VI we show the performance of
our distributed system implemented in a discrete time event
simulator. We also include the benchmarks of a prototype
mobile app developed for iOS devices. Finally, Section VII
concludes the paper outlining future work.

II. BACKGROUND

There are many possible instances of the MSTA problem,
depending on a number of key parameters. We use the taxon-
omy of MSTA problems introduced in [7] (as an extension
of [3]) to identify the problem instance which is relevant



to our scenario. Given that military and emergency response
operations use heterogeneous sensing devices to coordinate
missions, we focus on heterogeneous sensor networks - identi-
fied by the label HE using the MSTA taxonomy; also given that
the dynamic environment does not provide enough information
to plan for future allocation we aim at Instantaneous Allocation
({IA). In the most general case each task usually requires a
group of sensors therefore we consider Multi-Sensor tasks
(MS) which often involves non-additive joint utility functions
to evaluate the performances of sensor bundles for a particular
task (i.e. functions in which the utility coming from each
sensor does not sum-up linearly). Finally we consider a
particular subset of sensors which can serve exclusively one
task at a time, like directional sensors - i.e. Single Task (ST)
sensors . For these reasons, our problem instance is identified
by ST-MS-IA-HE following the terminology of the MSTA
taxonomy in [7]. A version of the ST-MS-IA-HE is referred
to as disjoint coalition formation problem in the multi-agent
community as stated in [3] and it has been formally studied
in [10] and [11]. A well known efficient allocation protocol
has been proposed in [11]. This protocol was designed for
generic multi-agent systems, thus we need to adapt it to our
problem settings. In particular we extended the protocol for the
disjoint coalition formation problem adding four main features
which we found were necessary.

First, the original protocol assumed the presence of a central
“matchmaker” agent to which the other agents would have
asked if their capabilities were a fit for the task’s require-
ments — we instead take advantage of the user’s mobile
devices which can host such a “matchmaker” which we
call Knowledge-based bundle generator. We also completely
move the calculation of the joint utility values of sensor
bundles to the user devices, whereas in [11] it was carried
out distributedly on the sensors with a preliminary protocol
stage aimed at the calculation of the “coalitional value”.

The second feature which we introduce is the ability for
a task to request a different bundle of sensors in case the
resources requested the first time were not available - we
call this rebid mechanism. There are in fact multiple ways of
satisfying a task, as stated in [12] which considers alternative
coalitions for satisfying a rescue task if the first attempt to get
those resources fails. In general this extension is inspired by
the concept of substitute goods widely used in economics [1].

The third extension consists in making more explicit the
preemption mechanism which is mentioned in [11] when the
authors describe its implementation in the RETSINA dynamic
agent system. We allow preemption of sensors which are
already serving a task, whereas the original protocol allows
only preemption of sensors which have already committed to
a task but have not already started to serve it. Our approach
is similar to the multi-robot system architecture proposed in
[2] which assigns tasks to robots with first-price auctions, but
allow (in some circumstances) later reassignment.

Finally we need to deal with tasks characterized by an
expected duration and an expiration time or deadline before
which we need to decide if we can serve them. In fact

KB
Bundle
Generator

KB
Bundle
Generator

B Allocation
protocol

Sensor
Network

Fig. 1.
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providing support to the task too late might be useless for
a user. We therefore extend the protocol by including dead-
lines, although keeping our focus on maximizing the overall
user/task “happiness”, without trying to reduce the tasks’
waiting time. We achieve this by using the rebid mechanism
mentioned above, while there is still time to satisfy the task.

III. ARCHITECTURE OVERVIEW & MODEL

In this section we give an overview of our distributed
architecture highlighting the steps which are executed to
find an efficient solution to the MSTA problem instance, for
which we also provide a formal IP model. The architecture is
comprised of four main components as shown in Figure 1: a
mobile user in the field, a Knowledge-based bundle generator
(KB bundle generator), an allocation protocol, and the sensor
network. The mobile device represents the point of entry of
tasks into the system: i.e. the mobile user submits sensing tasks
through a mobile app interface, by specifying a local area-of-
interest (represented by coloured circular areas in the interface
in Fig. 1) and its information requirements. As an illustration-
of-concept, we prototyped the interface to the system on the
Apple iPod Touch? motivated mainly by its wide adoption and
the quality of the development tools provided. The Knowledge-
based bundle generator on the user device recommends bun-
dles of sensors that are known to be “fit-for-purpose” for that
particular type of task specified by the user. The user device
then communicates directly to the sensors (e.g. using WiFi or
Bluetooth) the best sensor bundle which would be needed to
satisfy its newly created task. Then, the sensors autonomously
negotiate through the allocation protocol which one is the best
task to serve as part of a bundle, thus finding a solution to
the MSTA problem instance. Note that a single sensor bundle
fully satisfies the sensing requirements of the task, therefore
we have a one-to-one relationship between sensor bundles and
tasks. Finally, the sensor network is configured accordingly
and begins serving tasks by delivering sensor data to users.

MSTA problem model

This MSTA problem can be modelled as a tripartite graph
whose vertices consist of a set of sensors S = {S1,...,S5,},
a set of bundles B = {By,...,B;} and a set of tasks T =
{T1,..., T} as represented in Fig. 2.

Zhttp://www.apple.com/ipodtouch/



Each task j is associated with p;, representing the priority
and/or importance of the task. For each task, we are given a
set of sensor bundles, each of which would at least minimally
satisfy the task’s utility demand d;. Each possible assignment
of a bundle % to a task j is associated with a joint utility value
er;, which is an estimate of how good a bundle of sensors
could be to satisfy the sensing requirements of a task. We make
no assumptions on the utility function: it could be for instance
subadditive, superadditive or linear. Note that we assume that
each of the bundle utilities would at least minimally satisfy
the task’s utility demand, i.e. ex; > d;. Instead if bundle %
has a joint utility smaller than the task’s demand or it cannot
serve task j at all, we set ej; = —1.

Our main interest lies in a dynamic scenario in which tasks
arrive overtime and have different durations, therefore we
adopt a discrete model of time in which we have timeslots.
Tasks might arrive at the start of any timeslot and may last for
any discrete duration. We assume that the profit for a task that
lasts for multiple timeslots is the sum of the profits earned
over all timeslots during the task’s lifetime; we define the
profit as the utility ey; of a sensor bundle allocated to the
task scaled by the priority p;. In such a dynamic scenario
where tasks might arrive over time while other tasks have
already been allocated bundle of sensors, we consider the
possibility of preempting sensors already serving other tasks
in the case these might be more useful for satisfying the newly
arrived (maybe more critical) task. Of course we want to avoid
preempting sensors too often from ongoing tasks otherwise
the allocation strategy could interrupt the support of a task
too frequently, quite literally making sensors undecided as
to which task they should contribute. We express this by
including in the objective function a cost ¢ subtracted from
the profits for each individual preemption event, i.e., a sensor
assigned to an ongoing task j at time ¢ — 1 which at time ¢ is
reassigned to a different task j’. Thus the goal in this problem
is to maximize the profits of the tasks and minimize the cost
of the sensor-task allocation over all the timesteps.

Maximize: 32, (325 Pi€kiYrit — € D550 Ziji't)
Such that: Y, yrje < 1, for all j,t
kj Likyrje < 1, for all 4,
Ykjt < Cjt, for all k7j,t
Zijj't 2 Y/t + Ykgi—-1 — 1,
forall 4, > 1,5 # 5/, k, k'
such that I, = Iik’ = Cj,t—l = Cjt =1
Ykt Zijj'e € {07 1} for all j7j,7 k.t

We now explain the IP. The decision variables yy;; indicate
whether bundle % is assigned to task j at time ¢. The first
set of constraints prevents more than one bundle from being
assigned to any one task at each timestep. The second set
of constraints prevents any sensor from being used more
than once, in multiple chosen bundles. Matrix I specifies the
membership relationship between sensors and bundles. The
third set of constraints prevents a bundle to be assigned to
an inactive task; for this we define a matrix C' as Cj; = 1
if task j is active at time ¢ and O otherwise. Additionally,
we use a decision variable z;;;;; which is 1 if sensor ¢ was

p = task priority
d = utility demand
e = joint utility

Fig. 2. MSTA problem instance (ST-MS-IA-HE) as a tripartite graph.

assigned (within some bundle k) to one ongoing task j at
time ¢ — 1 but is then reassigned (within some bundle %)
to another task j' at time ¢. The fourth set of constraints
forces z;;;r¢ to be 1 if both y,/ ;/; and y;, ; ;1 are equal to
1. These constraints apply only if sensor 7 appears in bundles
k and k' (i.e. I, = I;;» = 1), and task j is active at both
times ¢t — 1 and ¢ (ie. Cj;—1 = Cj; = 1). Note that no
reassignment cost is charged when a sensor switches from a
task that is ending. For small instances, optimal solutions can
be obtained by solving this IP, although as a generalization of
Semi-Matching with Demands (SMD) [5] the problem is NP-
hard, even to approximate. Larger problem instances require
therefore to be solved with heuristics, which in our case are
implemented by the entire distributed system architecture.

IV. KNOWLEDGE-BASED BUNDLE GENERATOR

Task allocation in heterogeneous sensor networks requires
knowledge of which sensor types are applicable to which
kinds of task. We separate two issues: whether a type (or
combination of types) of sensor can potentially satisfy a task,
and how well might particular sensor instances perform on a
given task. We encode this knowledge in a knowledge base
(KB). The KB stores, for each kind of task, each type (or
combination of types) of sensor that can theoretically achieve
that task, and a joint utility model that allows us to compute
the utility of particular sensor instances for that task. We refer
to the types of applicable sensors as bundle types (because
they determine the types of sensors that form our allocated
bundles). These types may be defined using a sensor ontology,
such as the one described in [4].

Figure 3 shows the reasoning process enabled by the KB
in more detail. For each newly created task 7T at time step ¢
the KB recommends a Joint Utility Model (JUM) to compute
the sensor bundle utility and a Bundle Type (BT) to select the
sensor types compatible with the task. The identification of
Bundle Types was originally implemented as described in [4],
by dynamically matching the sensing capabilities provided by
each single sensor and the capabilities required by each task
type. Sensor and task features were defined using ontologies
expressed with the Web Ontology Language (OWL); the
matching process was implemented using the Pellet open
source OWL reasoner®. The output of this step is a set of
Bundle Types, where each of the entry is composed by a set
of sensor types which altogether would satisfy the information
requirements of the sensing task. The BTs recommended at

3http://pellet.owldl.com/
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bundle generator.

this stage are just sets of sensor types, and they do not contain
any kind of information regarding the number of instances to
choose for each sensor type in the BT.

To determine the number of instances of each sensor type
assigned to a task we use a Joint Utility Model. Such model
consists of a suggested maximum, minimum or exact number
of sensor instances for each of the sensor types forming a
BT. Moreover it includes a utility function which is used to
compute the estimated value ey; for a group of sensor in-
stances implementing the recommended BT. The KB indicates
which JUMs are appropriate for each task type. Each JUM is
only compatible with certain sensors, so the final step in the
reasoning procedure is to match applicable JUMs with BTs.

To illustrate the above, consider two fask types: “event
detection” and “target localization”. As result of the first
reasoning stage the reasoner suggests to use BT} =
{Videocamera, AcousticArray} for “event detection”, i.e.
we can use both videocameras and acoustic sensors; instead
BTy = {AcousticArray} for “target localization”. Later on
it associates one or more JUMs to each recommended BT
by searching the knowledge base. In this case (and also in
Section VI) we assume that in the knowledge base there are
just two utility models compatible with either of the two BTs.
Based on the models proposed in [9] we associate to the
event detection task a variant of the Cumulative Detection
Probability model (which we call CDP) and to the rarget
localization a 2D-localization function (referred to as 2D-Loc)
based on the distance and angle from the target. Therefore
for the event detection task the reasoner will recommend
({Videocamera, AcousticArray}, CDP); instead for target
localization it will output ({ AcousticArray}, 2D-Loc). Note
that this potentially allows us to be very flexible in terms of
allocation as the same task could be satisfied using different
combinations of BTs and JUMs, and therefore would increase
the chances of satisfying that task.

Following we list the JUMs mentioned above which will be
also used in Section VI. Note that these functions have been
chosen as examples and are extensively discussed in [9]:

CDP Given a set of candidates of size [ for a task, this model
chooses the & sensors maximizing (1 — [[g 7 (1 — ei5)),
where e;; is the probability that a single sensor SZZ detects an
event for T;. Here the joint utility is monotonically increasing
as sensors are assigned but nonlinear. (Note that in Section VI
for our simulations we will choose k = 10.)

2D-Loc Given a set of candidates of size [ for a single task,

this model chooses the best pair of sensors which maximize
1/U; i, where U represents the uncertainty of the target
localization provided by the pair (S;, S;/). The uncertainty is

given by U; i = ﬁm; where d; and 0, are the distance
and bearing, respectively, from the task location to the i-th
sensor. This function is maximized when the angle separating
the sensors is 90° and the distances are minimal. Also in this
case the joint utility is non-linear.

Note that we cannot compare directly utilities computed
with the first and with the second JUM because the objective
function values have different meanings: CDP computes the
cumulative detection probability, and 2D-Loc the opposite of
the uncertainty of the target localization. Therefore we need
to normalize those values (e.g. between O and 1) to obtain the
percentage of satisfaction of the task with a particular utility
value generated with one of the two models. This normalized
value is exactly the ey; parameter mentioned in Section III.

Lightweight KB Bundle Generator

The original implementation of the reasoning process is
computationally expensive [4] due to the exponential-time
complexity of the classification algorithm used by the Pellet
reasoner. However, because the task types and sensor types
are relatively stable (it is rare for new kinds of sensor or task
to become available during an operation) it is feasible to pre-
compute the results of the reasoner and store these in a look up
table; such an implementation is more suitable for deployment
on a mobile device, to avoid wasting battery life on expensive
computation. The only assumption that this approach makes is
that the device will have a sufficiently large storage capacity,
which is reasonable for modern mobile devices. The structure
of the look up table is represented in Figure 4. Note that
each row of the table is a tuple composed by a Task Type
(represented as an ID), a Bundle Type and a JUM.

V. ALLOCATION PROTOCOL

In this section we describe how we have extended the
disjoint coalition formation protocol in [11] to solve the MSTA
problem instance. The protocol runs on the two main entities
composing our distributed system: sensors and user devices.
When the user creates a task (e.g. using the iPhone interface
illustrated in Figure 1), the user device computes feasible
sensor bundles and their joint utilities using the Knowledge-
based bundle generator; we call these pairs bids. These are
then sent to the sensors which choose greedily the task to
serve based on the average utility per sensor until there are no
more bids.

The protocol consists of two main stages: in the preliminary
stage - which we call initial negotiation - the user devices com-
pute and distribute the bids to the sensors by first discovering
which sensors are good candidates for each task; in the main
stage — called bundle formation — the sensors decide upon
which bundle to join in order to serve a particular sensing task.
The initial negotiation works as follows:

1) At time ¢ the users create tasks on their devices, charac-
terized by a task type, a priority, an expected duration, a



deadline to be satisfied and a geographical area of interest
— representing the entire geographical area on which
the sensing task will take place. E.g. “event detection” at
(laty,long;) within a circular area of radius 100 meter.
2) The user devices query the sensors in the geographical
area of interest, asking for their location, sensor type and
current status (unallocated or already allocated to another

task).

3) The user devices then generate bids of the type bid, =
(Ua : (Tj, Br,va,)), where U, is a user, T is a task
generated by U,, and B}, is the bundle of sensors with
highest value v,,; computed as:

Pjekj — Ckje if ex; > dj,
Va,t (T, Br) = Lx =1VS; € By,
0 otherwise

Where ey; is calculated by the Knowledge-based bundle
generator using the recommended Joint Utility Model
and considering only the sensor instances of the types
specified in the Bundle Type which is implemented by
Bjy.. Also note that we subtract from the profit the cost
Cckj¢ proportional to the number of sensors that are
already tasked and that we would need to preempt from
other tasks at time ¢, as discussed in Section III.

4) Finally the user devices send to all the sensors included
in the bundle By the bid bid,,.

In the protocol we do not specify any particular discovery
mechanism. In the simulations instead we use a very simple
device discovery policy based on the communication range of
sensors and users. We do not consider the overhead generated
by the discovery process, i.e. step (2) of the initial negotiation.
This will depend highly on the discovery mechanism which
will be implemented on the nodes, e.g. [6], therefore we leave
this choice to the reader.

The main stage of the protocol is represented by the bundle
formation part which mainly resides on the sensors:

1) Each sensor node keeps a list of bids in which it is
involved sorted by decreasing average value w;;; =
Va,t/|Bk| . where |By| is the cardinality of bundle .

2) If the sensor is currently not serving any task, it chooses
the bid to which it can contribute the most, i.e. with the
highest wu;;;. It then sends an ACCEPT message to the
sensors that are present in this bid (i.e. to all S; € By).

3) The sensor clears this bid (i.e. it officially commit to that
task) only when it receives an ACCEPT message from all
the sensors involved in the bid. This ensures that a bid is
cleared if and only if all the sensors in the bid agree to
clear it.

4) When a sensor node clears a bid, it sends a CLEARED
to all its neighbors — the set of sensors with which it
shares some bids and the users who generated those —
notifying them that it has cleared (i.e. it was allocated
to task 7}) and all bids including that sensor should be
dropped from consideration.

5) The sensors that receive a CLEARED message from
another sensor, delete from their bid list all the bids in

which the sender sensor is included. The sensors stop the
execution when they clear a bid, when their list of bids is
empty or when an ACCEPT timeout for receiving all the
ACCEPTs from the sensors in By, is expired. If a sensor
remains unallocated, it sleeps until it receives the next
bid starting again from step 1.

6) The users that receive a CLEARED message from a sensor
assigned to another user’s task, delete the sensor from the
set of neighbor sensors and recompute a new bid with
the remaining sensors through the KB bundle generator.
The users stop execution when they obtain a CLEARED
message from a sensor assigned to one of his tasks or
when a convergence timeout for satisfying the created
task is expired since the beginning of the negotiation.

Note that if a task is not satisfied, the user device generates
a new bid asking for an alternative sensor bundle to the KB
bundle generator until a convergence timeout to satisfy the
task expires (Step 6). This extends the original protocol in
[11] with a rebid mechanism including an expiration time for
the task, as discussed in Section II. We also introduced an
ACCEPT timeout which expires if sensors have waited too
long for an ACCEPT, allowing the user to rebid before the
task’s convergence timeout expires. In fact a sensor might be
stuck in the “waiting for accepts” state if at least one sensor
involved in the bid had previously committed to another task
(sending a CLEARED before the arrival of the new task).
This previously allocated sensor might not be freed by its
current task before the expiration of the newly generated
task’s convergence timeout. Therefore the other sensors which
accepted the new task would be stuck in a waiting for accepts
state. The ACCEPT timeout allows the sensors waiting for an
ACCEPT to drop the bid in case of a long wait and start from
Step 1; allowing the user device to generate a new bid for the
task thus improving the chances to satisfy the task thanks to
a smart use of the rebid mechanism.

Preemption mechanism

The bid valuation function v, + already considers the cost
of reassigning sensors from an ongoing task to a newly arrived
one. Preempting sensors is important to increase the likelihood
of satisfying higher priority tasks appearing overtime as dis-
cussed in Sec. II. Following we describe the preemption steps
that we add after Step (2) of the bundle formation stage:

2.a When a sensor receives a bid, and is currently allocated,
it will only be preempted from the current task j —
and therefore it will send an ACCEPT — if the average
contribution to the new task j’ is strictly greater than the
previous one, i.e. ;s ¢ > Uij¢.

2.b When a sensor is preempted, it sends a PREEMPTED
message to all the sensors participating in the current
bundle and to the user device owning the task. The sensors
receiving this message will stop serving the current task,
and the user device will drop it.

2.c If instead a sensor is not preempted (i.e. w;j/ ¢ < Ujj¢.)
it will keep serving the task for all its duration, after



which all the sensing resources assigned to the task will
be released.

The procedure for each sensor implementing the protocol
has a computational complexity of order O(n* - |T|) to arrive
at a decision (as proved in [11]), where n is the number of
sensors in the network, & is the maximum size allowed for a
sensor bundle and |T'| is the number of current tasks.

VI. IMPLEMENTATION AND PERFORMANCE

In this section we describe the implementation and perfor-
mance of our fully distributed system. We include benchmarks
of the KB bundle generator which we implemented on an
Apple iPod Touch. We also show the performance of the
proposed allocation protocol implemented in the REPAST
Symphony Java simulation environment.

A. Mobile device

As mentioned in previous sections, we implemented a
prototype app on an Apple iPod Touch 2nd Generation device.
In particular we tested if it was feasible to implement the
Lightweight KB bundle generator on a modern mobile device,
given that the lookup table size could be very large and
therefore computationally expensive to use. We implement
the table showed in Figure 4 as a combination of 4 tables
using the standard ER concept of foreign keys. We implement
this ER schema using SQLite which is the integrated db
engine in i0S (the OS installed in the Apple iPod Touch), and
as a consequence the measured performance will be related
to the chosen db engine. We run experiments first using a
Synthetic KB filling the tables with synthetically generated
data. Then we use a Prototype KB containing real knowledge
from the literature regarding sensor/task types and the sensing
capabilities required and provided by both. We then measure
the size of the full KB stored on the iPod Touch flash memory
(summing up the sizes of the 4 tables), and the time to retrieve
all the (BT, JU M) entries associated with a single task type.

To generate a Synthetic KB we randomly generate 1000 task
types, each consisting of an integer ID and a string of random
characters of length 50 representing the task type description
(e.g. “event detection”). We then generate a constant number
of BTs descriptions with a length of 100 characters and we
do the same with the JUM table generating random utility
functions represented by strings of source code. We then fill
the relationship table associating every task type with all the
possible combinations of (BT, JUM). Keeping constant the
number of randomly generated task types — 1000 task types
— we increase the number of (BT, JUM) per task type and
we measure the memory usage and the time to retrieve all
the (BT, JUM) entries related to a particular task type. As
shown in Figure 5 and 6 we run the experiments generating
first 10, then 50 and finally 100 (BT, JUM) per task type.
This leads to an increase in the size of the relationship table
respectively containing 10000, 50000 and 100000 entries.

We also carry out benchmarks on a KB filled with realistic
data from the literature; we refer to this as Prototype KB. To
generate these realistic task types and sensor types we use

openly available information about sensor devices/platforms
and military sensing tasks mainly using the Missions and
Means Framework as described in [4]. We feed this realistic
data to a reasoning process like the one described in Section
IV implemented on a laptop computer, and we then generate
all the possible outputs given all the possible inputs. We
store these results on the iPod Touch using the previously
mentioned ER schema. We provide 4424 task types as an
input to the user. Below we give 2 examples of realis-
tic task type descriptions: Detect_NonMilitaryVessel, Iden-
tify_RefuelingEquipment. On average the reasoning process
generates 5 different (BT, JUM) per task. Note that all the
benchmarks conducted in this section are repeated for 20 times
and then averaged to get significant values also with randomly
generated entries/queries.

We summarize the experiments in Figure 5 and Figure 6,
which show 3 main results. First, the storage space occupied
by the KB grows linearly with the number of entries in the
relationship table. Second, the query time increases logarith-
mically with the size of the relationship table. This is mainly
due to the db engine used. More precisely, SQLite uses an
R*-Tree which is a refinement of the R-Tree*. The search
time complexity in an R*-Tree is basically the same as a B-
Tree: O(log(n)) as it performs a binary search. Finally, the last
and most important result is that with a realistic knowledge
base the memory requirements and lookup performance on the
mobile device are acceptable. In fact, our realistic knowledge
base with 21378 entries occupies 12 megabytes of the flash
memory of the iPod Touch — with its size growing linearly
with the number of entries in the table. Most importantly,
the time required to retrieve an entry from this lookup table
is around 20 milliseconds, which increases logarithmically
with the number of entries. The Apple iPod Touch which
we used as an example of mobile device has the following
technical specifications’: iOS 4.1, CPU ARMI11 620 MHz
(underclocked to 533 MHz), 128 MB DRAM, and 8GB of
storage on flash memory.

B. Distributed protocol

We implement the distributed protocol in Java using
REPAST Simphony — an open source agent-based discrete
time simulation environment® — as a platform to simulate
a sensor network composed of static wireless sensors of
different types and mobile users on the field. We tested the dis-
tributed architecture on randomly generated problem instances
in which tasks arrive over time without warning, and depart
after spending a certain amount of time being active. In our
simulation setup we deploy 250 sensor nodes with a uniform
random distribution on a 2D grid of 500mx500m, generating
randomly 2 sensor types: acoustic and video. Each sensor node
has a Sensing Range (SR) and a Communication Range (CR),

“http://www.sqlite.org/rtree.html — checked on 24th of January 2011

Shttp://daringfireball.net/linked/2008/11/25/new-touch-cpu — checked on
24th of January 2011. Apple does not officially publish full tech specs of
its devices, these where obtained using a tool based on Unix sysctl() call.

Shttp://repast.sourceforge.net/ - checked 24th January 2011.
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Fig. 11.

which in our simulation are SR = 30m and CR = 60m. We
randomly deploy 50 user nodes on the field, each moving with
a random-waypoint model and having a CR = 60m. Every 3
timesteps, 5 randomly selected users create a new sensing task
in their surroundings with a uniform distribution (i.e. arrival
rate = 5/3 tasks per timestep), with a maximum distance of the
task from the user node equal to CR. Each task is owned by a
single user and is characterized by a location (X,y) on the 2D
grid, a task type and a duration (randomly chosen between 10
and 20 timesteps). Each task’s priority and utility demand are
generated with a uniform random distribution between 0 and
1. We discard a-priori tasks for which there are not enough
sensors to be satisfied. Finally each task’s expiration time is
equal to half of its duration. In the simulation we use the
two task types described in Section IV: “event detection” and
“target localization”. The type is chosen on task’s creation
with a uniform random distribution among these two types.
We implement CDP and 2D-Loc with a brute force approach
enumerating and evaluating all the possible subsets of the
candidates, which in the worst case is 2 (where [ is the
number of sensor candidates). A brute force approach to be

=1 M Cost-dri

Avg Messages (5/3 tasks per ts).

Preempt.

Fig. 12. Avg Messages varying task arrival rate.

implemented on a user device is computationally efficient by
assuming that in an emergency response scenario the number
l of sensors surrounding the user is on the order of tens.

We run simulations for the full version of our protocol
which includes both the rebid and preemption mechanisms (re-
ferred to as Cost-driven Preemption approach in the graphs),
and we compare this with 3 other versions of our protocol
to analyze the traffic overhead and the benefit of using the
preemption and rebid mechanisms. We consider a version
without rebid and preemption (No Rebid), a version which
uses our rebid mechanism but no preemption (No Preemption)
and a variant in which we use both rebid and preemption but
we directly limit a sensor to be consecutively preempted only
once (Preemption = 1). We repeat each simulation 10 times
for 10000 timesteps and we average all the measurements.
To compare the quality of the allocation achieved by each
version of the protocol we consider the profit calculated at each
timestep using the objective function in Section III. In Figure 7
our experiments show that the Cost-driven preemption protocol
offers higher profit at each timestep, achieving on average 60%
of the total profit. Note that the total profit is obtained by



summing at each timestep the profit of all the tasks being
served by a sensor bundle (satisfied tasks), all the tasks which
were not allocated a sensor bundle (unsatisfied tasks) and all
the tasks which were previously preempted (preempted tasks).
We keep the unsatisfied tasks and preempted tasks in the field
for their remaining duration, so that the total profit represents
the total potential task allocation quality. The Preemption =
1 version has performance very similar to the Cost-driven
preemption, while the No Preemption and No Rebid reach
less than 50% of the total profit on average. In Figure 8 we
show the fraction of waiting task priorities over the total task
priorities — calculated as the sum of the priorities of the
satisfied, unsatisfied, preempted and waiting tasks — for each
timestep. This graph shows that the Cost-driven preemption
version keeps only 26% on average of the most important
tasks waiting for a decision. The worst waiting task rate is
offered by the No Preemption (36%), while No Rebid (32%)
performs a bit better because it sets the tasks to unsatisfied or
satisfied just after the first bid.

Figure 10 shows the network traffic generated by the Cost-
driven preemption protocol described in Section V. Our ver-
sion exchanges the highest number of messages compared with
the other 3 versions as highlighted in Figure 11. Nonetheless
the maximum number of messages exchanged every timestep
is around 220 messages with a much lower average of 96
messages per timestep, and with an acceptable variance around
450 messages. Figure 11 confirms that the other 3 variants of
the protocol provide similar network traffic levels and that
the least overhead is provided by the No Rebid variant. The
number of messages exchanged on average at each time step
is highly dependent on the maximum size k allowed for
each bundle, which is stored in the KB bundle generator. We
limited this number to 10 sensors for CDP, while instead
2D-Loc is already limited to exactly 2 sensors. Finally, in
Figure 9 we vary the task arrival rate showing the total profit
achieved overtime by the Cost-driven preemption version. We
run simulations with 1/3, 3/3, 5/3 and 7/3 tasks per timestep
and the results show that the performance of our allocation
protocol decreases sub-linearly by increasing linearly the task
arrival rate. Figure 12 shows how the traffic load generated by
the protocol increases linearly arriving at a maximum of 120
messages per timestep on average which is much less than the
total number of nodes (i.e. 300). This shows that the allocation
protocol is scalable and resilient to high task arrival rates.

VII. CONCLUSIONS AND FUTURE RESEARCH

We formalized the Multi-Sensor Task Allocation problem
in an emergency response scenario. We proposed a distributed
architecture containing as the main novelty the use of both
qualitative and quantitative metrics to allocate sensors to tasks.
We extended a well-known pre-existent allocation protocol
to deal with our highly dynamic problem settings. We also
developed a prototype mobile app as an interface to our sensor
allocation system, showing it is feasible to implement the
Knowledge-based bundle generator on the device and that
its performance is acceptable. We implemented the allocation

protocol in a discrete time simulation, proving it is scalable
and that preemption and rebid mechanisms provide a higher
total profit. In future work we plan to compare this architecture
with a fully centralized and a “hybrid” architecture; also
addressing different MSTA problem instances. Further, we
plan to use scheduling to handle deadlines similar to [8].
However in their work they consider a static scenario for which
they propose a centralized solution. We are currently working
on how to integrate data delivery/dissemination mechanisms
in our architecture, to “close the loop” between requested and
delivered information.
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