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Abstract. When a sensor network is deployed in the field it is typically required
to support multiple simultaneous missions, which may start and finish at differ-
ent times. Schemes that match sensor resources to mission demands thus become
necessary. In this paper, we consider new sensor-assignment problems motivated
by frugality, i.e., the conservation of resources, for both static and dynamic set-
tings. In general, the problems we study are NP-hard even to approximate, and so
we focus on heuristic algorithms that perform well in practice. In the static set-
ting, we propose a greedy centralized solution and a more sophisticated solution
that uses the Generalized Assignment Problem model and can be implemented
in a distributed fashion. In the dynamic setting, we give heuristic algorithms in
which available sensors propose to nearby missions as they arrive. We find that
the overall performance can be significantly improved if available sensors some-
times refuse to offer utility to missions they could help based on the value of
the mission, the sensor’s remaining energy, and (if known) the remaining target
lifetime of the network. Finally, we evaluate our solutions through simulations.

1 Introduction

A sensor network deployed for monitoring applications may be tasked with achieving
multiple, possibly conflicting, missions. Although certain types of sensors, such as seis-
mic sensors, can receive data from their surroundings as a whole, other sensor types,
such as cameras, are directional. In these cases, the direction of each sensor, and thus
the mission it serves, must be chosen appropriately.

A given sensor may offer different missions varying amounts of information (be-
cause of geometry, obstructions, or utility requirements), or none at all. Missions, on
the other hand, may vary in importance (or profit), amount of resources they require (or
demand), and duration. In some but not all applications, it may be preferable to do one
thing well than to do many things badly, that is, to fully satisfy one mission rather than
give a small amount of utility to several. Given all currently available information, the
network should choose the “best” assignment of the available sensors to the missions.

In this paper, we examine new sensor-assignment problems motivated by frugal-
ity, i.e., the conservation of resources. We consider two broad classes of environments:
static and dynamic. The static setting is motivated by situations in which different users
are granted control over the sensor network at different times. During each time pe-
riod, the current user may have many simultaneous missions. While the current user
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will want to satisfy as many of these as possible, sensing resources may be limited
and expensive, both in terms of equipment and operational cost. In some environments,
replacing batteries may be difficult, expensive, or dangerous. Furthermore, a sensor op-
erating in active mode (i.e., assigned to a mission) may be more visible than a dormant
sensor, and so in greater danger of being destroyed. Therefore, we give each mission in
the static problem a budget so that no single user may overtax the network and deprive
future users of resources. This budget serves as a constraint in terms of the amount of
resources that can be allocated to a mission regardless of profit.

Our second environment is a dynamic setting in which missions may start at dif-
ferent times and have different durations. In these cases explicit budgets may be too
restrictive because we must react to new missions given our current operating environ-
ment, i.e. the condition of the sensors will change over time. Instead, we use battery
lifetime as a metric to capture network lifetime and evaluate a trade-off between cost in
terms of network lifetime versus mission profit before assigning sensors.

In the dynamic setting we consider two cases. First, we assume no advanced knowl-
edge of the target network lifetime, i.e. we do not know for how long the network will
be required to operate. We call this the general dynamic setting. Second, we consider
the case in which we have knowledge of the target network lifetime, i.e. the network
is needed for a finite duration. We call this the dynamic setting with a time horizon.
By using a trade-off of lifetime versus profit instead of a hard budget, we can use the
knowledge of remaining energy of the sensors and the target network lifetime, if known,
to adjust the aggressiveness with which sensors accept new missions.
Our contributions. We consider several sensor-assignment problems, in both budget-
constrained static settings and energy-constrained dynamic settings. In the static setting,
we give an an efficient greedy algorithm and a multi-round proposal algorithm whose
subroutine solves a Generalized Assignment Problem (GAP), as well as an optimal
algorithm for a simplified 1-d setting. In the dynamic setting, we develop distributed
schemes that adjust sensors’ eagerness to participate in new missions based on their
current operational status and the target network lifetime, if known. We find in the static
setting that in dense networks both algorithms perform well, with the GAP-based algo-
rithm slightly outperforming the greedy. In the dynamic setting, we find that knowledge
of energy level and network lifetime is an important advantage: the algorithm given both
of these significantly outperforms the algorithm using only the energy level and the al-
gorithm that uses neither. When both the energy and target lifetime are used we can
achieve profits 17% - 22% higher than if only energy is used.

The rest of this paper is organized as follows. Section 2 discusses some related
work. In Section 3 we review the sensor-mission assignment problem and summarize its
variations. In Sections 4 and 5 we propose schemes for the static and dynamic settings,
whose performance we evaluate in Section 6. Finally, Section 7 concludes the paper.

2 Related Work

Assignment problems have received sizable attention, in both experimental and theo-
retical communities. In wireless sensor networks, there has been some work in defining
frameworks for single and multiple mission assignment problems. For example, [2] de-
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fines a framework for modeling the assignment problem by using the notions of utility
and cost. The goal is to find a solution that maximizes the utility while staying under a
predefined budget. In [7], a market-based modeling approach is used, with sensors pro-
viding information or “goods”. The goal is to maximize the amount of goods delivered
without exceeding the sensor’s budget.

The authors of [6, 8, 11], for example, solve the coverage problem, which is related
to the assignment problem. They try to use the fewest number of sensors in order to
conserve energy. The techniques used range from dividing nodes5 in the network into
a number of sets and rotating through them, activating one set at a time [8], to using
Voronoi diagram properties to ensure that the area of a node’s region is as close to
its sensing area as possible [11]. Sensor selection schemes have also been proposed to
efficiently locate and track targets. For example, [13] uses the concept of information
gain to select the most informative sensor to track a target. In [4], the author attempts
target localization using acoustic sensors. The goal is to minimize the mean squared
error of the target location as perceived by the active nodes. A survey of the different
sensor selection and assignment schemes can be found in [9].

The Generalized Assignment Problem (GAP) [3] is a generalization of the Multiple
Knapsack Problem in which the weight and value of an item may vary depending on
the bin in which it is placed. There is a classical FPTAS [12] for the core knapsack
problem which performs a dynamic programming procedure on a discretization of the
problem input. If, for example, the knapsack budget value is not too large, then the DP
can find the optimal solution in polynomial time. A stricter version of the static sensor-
assignment problem was formalized as Semi-Matching with Demands (SMD) in [1, 10].
In that formulation, profits are awarded only if a certain utility threshold is met, but no
budgets are considered. The static problem we study here is a common generalization
of these two previous problems, incorporating both budgets and a profit threshold.

3 Sensor-Mission Assignment Problems

With multiple sensors and multiple missions, sensors should be assigned in the “best”
way. This goal is shared by all the problem settings we consider. There are a number
of attributes, however, that characterize the nature and difficulty of the problem. In
this section, we briefly enumerate the choices available in defining a particular sensor-
mission assignment problem. In all settings we assume that a sensor can be assigned to
one mission only, motivated e.g. by directional sensors such as cameras.

3.1 Static Setting

First consider the static setting. Given is a set of sensors S1, ..., Sn and a set of missions
M1, ...,Mm. Each mission is associated with a utility demand dj , indicating the amount
of sensing resources needed, and a profit pj , indicating the importance of the mission.
Each sensor-mission pair is associated with a utility value eij that mission j will receive
if sensor i is assigned to it. This can be a measure of the quality of information that a

5 We use the terms node and sensor interchangeably.
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max:
Pm

j=1 pj(yj)

s.t.:
Pn

i=1 xijeij ≥ djyj , for each Mj ,Pn
i=1 xijcij ≤ bj , for each Mj ,Pm
j=1 xij ≤ 1, for each Si,

xij ∈ {0, 1} ∀xij and
yj ∈ [0, 1] ∀yj

Table 1. MP P for static setting

max:
P

t

Pm
j=1 pj(yjt)

s.t.:
Pn

i=1 xijteij ≥ djyjt, for each Mj and t,Pm
j=1 xijt ≤ 1, for each Si and time t,P
t

Pm
j=1 xijt ≤ B, for each Si,

xijt ∈ {0, 1} ∀xijt and
yjt ∈ [0, 1] ∀yjt

Table 2. MP P’ for dynamic setting

sensor can provide to a particular mission. To simplify the problem we assume that the
utility amounts received by a mission (uj) are additive. While this may be realistic in
some settings, in others it is not; we make this simplifying assumption. Finally, a bud-
getary restriction is given in some form, either constraining the entire problem solution
or constraining individual missions as follows: each mission has a budget bj , and each
potential sensor assignment has cost cij . All the aforementioned values are positive
reals, except for costs and utility, which could be zero. The most general problem is
defined by the mathematical program (MP) P shown in Table 1.

A sensor can be assigned (xij = 1) at most once. Profits are received per mission,
based on its satisfaction level (yj). Note that yj corresponds to uj/dj within the range
[0,1] where uj =

∑n
i=1 xijeij . With strict profits, a mission receives exactly profit pj

iff uj ≥ dj . With fractional profits, a mission receives a fraction of pj proportional to its
satisfaction level yj and at most pj . More generally, profits can be awarded fractionally,
but only if a fractional satisfaction threshold T is met, i.e.:

pj(uj) =


pj , if uj ≥ dj

pj · uj/dj , if T ≤ uj/dj

0, otherwise

When T = 1, program P is an integer program; when T = 0, it is a mixed integer
program with the decision variables xij still integral. The edge values eij may be arbi-
trary non-negative values or may have additional structure. If sensors and missions lie
in a metric space, such as line or plain, then edge values may be based in some way
on the distance Dij between sensor i and mission j. In the binary sensing model, eij is
equal to 1 if distance Dij is at most the sensing range, r, and 0 otherwise. In another
geometric setting, eij may vary smoothly based on distance, such as 1/(1 + Dij).

Similarly, the cost values cij could be arbitrary or could exhibit some structure: the
cost could depend on the sensor involved, or could e.g. correlate directly with distance
Dij to represent the difficulty of moving a sensor to a certain position. It could also
be unit, in which case the budget would simply constrain the number of sensors. Even
if profits are unit, demands are integers, edge values are 0/1 (though not necessarily
depending on distance), and budgets are infinite, this problem is NP-hard and as hard
to approximate as Maximum Independent Set [1]. If we also add the restriction that
sensors and missions lie in the plane and that 0/1 edge utility depends on distance (i.e.,
the edges form a bipartite unit-disk graph), the problem remains NP-hard [1].

In certain one-dimensional settings, however, the problem can be solved optimally
in polynomial-time by dynamic programming. These settings may be motivated by e.g.
coastline or national border surveillance. See appendix for details.
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3.2 Dynamic Setting

In the dynamic setting we have options similar to the above except that now missions
do not have explicit budgets and sensor assignments do not have explicit costs. What
constraints the assignment problem is the limited energy that sensors have. We also have
an additional time dimension. In this setting, each sensor has a battery size B, which
means that it may only be used for at most B timeslots over the entire time horizon.
Also, missions may arrive at any point in time and may last for any duration.

If a sensor network is deployed with no predetermined target lifetime, then the goal
may be to maximize the profit achieved by each sensor during its own lifetime. How-
ever, if there is a finite target lifetime for the network, the goal becomes to earn the
maximum total profits over the entire time horizon. We assume that the profit for a mis-
sion that lasts for multiple timeslots is the sum of the profits earned over all timeslots
during the mission’s lifetime. The danger of any particular sensor assignment is then
that the sensor in question might somehow be better used at a later time. Therefore the
challenge is to find a solution that competes with an algorithm that knows the char-
acteristics of all future missions before they arrive. The general dynamic problem is
specified by the mathematical program (MP) P’ shown in Table 2.

If preemption is allowed, i.e. a new mission is allowed to preempt an ongoing mis-
sion and grab some of its sensors, then in each timeslot we are free to reassign currently
used sensors to other missions based on the arrival of new missions without reassign-
ment costs. In this case, a long mission can be thought of as a series of unit-time mis-
sions, and so the sensors and missions at each timeslot form an instance of the NP-hard
static (offline) problem. If preemption is forbidden, then the situation for the online
algorithm is in a way simplified. If we assume without loss of generality that no two
missions will arrive at exactly the same time, then the online algorithm can focus on
one mission at a time. Nonetheless, the dynamic problem remains as hard as the static
problem, since a reduction can be given in which the static missions are identified with
dynamic missions of unit length, each starting ε after the previous one. In fact, we can
give a stronger result, covering settings both with and without preemption.

Proposition 1. There is no constant-competitive algorithm for the online dynamic prob-
lem, even assuming that all missions are unit-length and non-overlapping.

Proof. First consider the problem with B = 1, i.e. sensors with a battery lifetime of one
timeslot. Suppose at time 1, there is M1 with p1 = ε requiring S1 (i.e. otherwise un-
satisfiable); we must choose the assignment because there may be no further missions,
yet at time 2 there may be a M2 with profit p2 = 1. This yields the negative result for
B = 1. Next suppose B = 2. Then consider the following example: at time 1, M1 with
p1 = ε requires S1, so we must assign because there may be no future missions; at time
2, M2 with p2 = exp(ε) requires S1, so we must assign for the same reason; at time 3,
M3 with p2 = exp(exp(ε)) requires S1, but it is now empty, and the algorithm fails.
This construction can be extended to arbitrary B. �

As a generalization of the static problem, the offline version of dynamic problem
is again NP-hard to solve optimally; moreover, the general online version cannot be
solved with a competitiveness guarantee.
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4 Static Setting

In this section we describe two algorithms to solve the static-assignment problem:
Greedy and Multi-round Generalized Assignment Problem (MRGAP). The former re-
quires global knowledge of all missions to run and hence is considered to be centralized
whereas the latter can be implemented in both centralized and distributed environments
which makes it more appealing to sensor networks.

4.1 Greedy

The first algorithm we consider (Algorithm 1 shown in Table 3) is a greedy algorithm
that repeatedly attempts the highest-potential-profit untried mission. Because fractional
profits are allowed only beyond the threshold percentage T , this need not be the mission
with maximum pj . For each such mission, sensors are assigned to it, as long the mission
budget is not yet violated, in decreasing order of cost-effectiveness, i.e. the ratio of
edge utility for that mission and the sensor cost. The running time of the algorithm
is O(mn(m + log n)). No approximation factor is given for this efficiency-motivated
algorithm since, even for the first mission selected, there is no guarantee that its feasible
solution will be found. This by itself is an NP-hard 0/1 knapsack problem, after all.

4.2 Multi-round GAP (MRGAP)

The idea of the second algorithm (Algorithm 2 shown in Table 4) is to treat the missions
as knapsacks that together form an instance of the Generalized Assignment Problem
(GAP). The strategy of this algorithm is to find a good solution for the problem instance
when treated as GAP, and then to do “postprocessing” to enforce the lower-bound con-
straint of the profit threshold, by removing missions whose satisfaction percentage is
too low. Releasing these sensors may make it possible to satisfy other missions, which
suggests a series of rounds. In effect, missions not making “good” progress towards
satisfying their demands are precluded from competing for sensors in later rounds.

Cohen et al. [3] give an approximation algorithm for GAP which takes a knapsack
algorithm as a parameter. If the knapsack subroutine has approximation guarantee α ≥
1, then the Cohen GAP algorithm offers an approximation guarantee of 1 + α. We
use the standard knapsack FPTAS [12], which yields a GAP approximation guarantee
of 2 + ε. Because GAP does not consider lower bounds on profits for the individual
knapsacks, which is an essential feature of our sensor-assignment problem, we enforce
it using the postprocessing step.

The algorithm works as follows. The threshold is initialized to a small value, e.g.
5%. Over a series of rounds, a GAP solution is found based on the current sensors and
missions. After each round, missions not meeting the threshold are removed, and their
sensors are released. Any sensors assigned to a mission that has greater than 100%
satisfaction, and which can be released without reducing the percentage below 100%,
are released. We call such sensors superfluous. Sensors assigned to missions meeting
the threshold remain assigned to those missions. These sensors will not be considered in
the next round, in which the new demands and budgets of each mission will become the
remaining demand and the remaining budget of each one of them. Finally, the threshold
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while true do
for each available Mj

uj ←
P

Si(unused) eij ;
j ← arg maxj pj(uj);
if pj(uj) = 0 break;
uj ← 0; cj ← 0
for each unused Si in decr. order of eij/cij

if uj ≥ dj or eij = 0
break;

if cj + cij ≤ bk

assign Si to Mj ;
uj ← uj + eij ;
cj ← cj + cij ;

Table 3. Algorithm 1: Greedy

initialize set of missions M ← {M1 . . . Mm};
initialize global threshold T ← 0.05;
for t = 0 to T step 0.05

run the GAP algorithm of [3] on M and the
unassigned sensors;

in the resulting solution, release any
superfluous sensors;

if Mj’s satisfaction level is < t, for any j
release all sensors assigned to Mj ;
M ←M − {Mj};

if Mj is completely satisfied OR has no
remaining budget, for any j
M ←M − {Mj};

Table 4. Algorithm 2: Multi-Round GAP

is incremented, with rounds continuing until all sensors are used, all missions have
succeeded or been removed, or until the actual success threshold T is reached. The
GAP instance solved at each round is defined by the following linear program:

max:
P

j

P
i pijxij (with pij = pj · eij/d̂j)

s.t.:
P

Si(unused) xijcij ≤ b̂j , for each remaining Mj ,P
Mj(remaining) xij ≤ 1, for each unused Si, and xij ∈ {0, 1} ∀xij

Here d̂j is the remaining demand of Mj , that is, the demand minus utility received
from sensors assigned to it during previous rounds. Similarly, b̂j is the remaining budget
of Mj . The concepts of demand and profit are encoded in the gap model as pij =
pj · eij/d̂j . This parameter represents the fraction of demand satisfied by the sensor,
scaled by the priority of the mission. In each GAP computation, we seek an assignment
of sensors that maximizes the total benefit brought to the demands of the remaining
mission.

One advantage of MRGAP is that it can be implemented in a distributed fashion.
For each mission there can be a sensor, close to the location of the mission, that is re-
sponsible for running the assignment algorithm. Missions that do not contend for the
same sensors can run the knapsack algorithm simultaneously. If two or more missions
contend for the same sensors, i.e. they are within distance 2r of each other, then syn-
chronization of rounds is required to prevent them from running the knapsack algorithm
at the same time. To do this, one of the missions (e.g. the one with the lowest id) can be
responsible for broadcasting a synchronization message at the beginning of each new
round. However, since r is typically small compared to the size of the field, we can
expect many missions to be able to do their computations simultaneously.

The total running time of the algorithm depends on the threshold T and step value
chosen as well as the density of the problem instance, which will determine to what
extent the knapsack computations in each round can be parallelized.
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5 Dynamic Setting

We have shown in Section 3.2 that the dynamic problem is NP-hard to solve and that
without assuming any aditional constraints there are no competitive solutions that can
provide guaranteed performance. In this section, we therefore propose heuristic-based
schemes to solve the dynamic sensor-mission assignment problem. These schemes are
similar in their operation to the dynamic proposal scheme that we have proposed in [10]
but with a new focus. Rather than maximizing profit by trying to satisfy all available
missions, we focus here on maximizing the profit over network lifetime by allowing the
sensors to refuse the participation in missions they deem not worthwhile.

We deal with missions as they arrive. A mission leader, a node that is close to the
mission’s location, is selected for each mission. Finding the leader can be done using a
geographic-based routing techniques [5]. The mission leaders are informed about their
missions’ demands and profits by a base station. Then they run a local protocol to match
nearby sensors to their respective missions. Since the utility a sensor can provide to a
mission is limited by a sensing range, only nearby nodes are considered. The leader
advertises its mission information (demand and profit) to the nearby nodes (e.g. two-
hop neighbors). The number of hops the advertisement message is sent over depends
on the relation between the communication range and the sensing range of sensors.

When a nearby sensor hears such an advertisement message, it makes a decision
either to propose to the mission and become eligible for selection by the leader or to
ignore the advertisement. The decision is based on the current state of the sensor (and
the network if known) and on potential contribution to mission profit that the sensor
would be providing. We assume knowledge of the (independent) distributions of the
various mission properties (namely, demand, profit and lifetime), which can be learned
from historical data. To determine whether a mission is worthwhile, a sensor considers
a number of factors: (1) the mission’s profit, relative to the maximum profit, (2) the sen-
sor’s utility to the mission, relative to the mission’s demand, (3) the sensor’s remaining
battery level, (4) the remaining target network lifetime, if known.

After gathering proposals from nearby sensors, the leader selects sensors based on
their utility offers until it is fully satisfied or there are no more sensor offers. The mission
(partially) succeeds if it reaches the success threshold; if not, it releases all sensors.

Since we assume all distributions are known, the share of mission profit potentially
contributed by the sensor (i.e. if its proposal is accepted) can be compared to the expec-
tation of this value. Based on previous samples, we can estimate the expected mission
profit E[p] and demand E[d]. Also, knowing the relationship between sensor-mission
distance and edge utility, and assuming a uniform distribution on the locations of sen-
sors and missions, we can compute the expected utility contribution E[u] that a sensor
can make to a typical mission in its sensing range. We use the following expression to
characterize the expected partial profit a sensor provides to a typical mission:

E

[
u

d

]
× E[p]

P
(1)

We consider two scenarios. In the first, the target network lifetime is unknown, i.e.
we do not know for how long will the network be needed. In this case, sensors choose
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missions that provide higher profit than the expected value and hence try to last longer
in anticipation of future high profit missions. In the second, the target network lifetime
is known, i.e. we know the duration for which the network will be required. Sensors,
in this case, take the remaining target network lifetime into account along with their
expected lifetime when deciding whether to propose to a mission. In the following two
subsections we describe solutions to these two settings.

5.1 Energy-aware Scheme

In this scheme, the target lifetime of the sensor network is unknown. For a particular
sensor and mission, the situation is characterized by the actual values of mission profit
(p) and demand (d) and by the utility offer (u), as well as the fraction of the sensor’s
remaining energy (f ). For the current mission, a sensor computes the following value:

u

d
× p

P
× f (2)

Each time a sensor becomes aware of a mission, it evaluates expression (2). It makes
an offer to the mission only if the value computed is greater than expression (1). By
weighting the actual profit of a sensor in (2) by the fraction of its remaining battery
value, the sensors start out eager to propose to missions but become increasingly selec-
tive and cautious over time, as their battery levels decrease. The lower a sensor’s battery
gets, the higher relative profit it will require before proposing to a mission. Since differ-
ent sensors’ batteries will fall at different rates, in a dense network we expect that most
feasible missions will still receive enough proposals to succeed.

5.2 Energy and Lifetime-aware Scheme

If the target lifetime of the network is known, then sensors can take it into account when
making their proposal decisions. To do this, a sensor needs to compute what we call the
expected occupancy time, denoted by tα, i.e. the amount of time a sensor expects to be
assigned to a mission during the remaining target network lifetime. To find this value
we need to determine how many missions a given sensor is expected to see. Using the
distribution of mission locations, we can compute the probability that a random mission
is within a given sensor’s range. If we combined this with the remaining target network
lifetime and arrival rate of missions we can find the expected number of missions to
which a given sensor will have the opportunity to propose. So, if the arrival rate and
the (independent) distributions of the various mission properties are known, we can
compute tα as follows:

tα = τ × λ× g × γ × E[l]

where:

– τ is the remaining target network lifetime, which is the initial target network life-
time minus current elapsed time.

– λ is the mission arrival rate.
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– g = πr2/A is the probability that a given mission is within sensing range (assumes
uniform distribution on missions). r is the sensing range and A is the area of the
field in which sensors are deployed.

– E[l] is the expected mission lifetime.
– γ is the probability that a sensor’s offer is accepted. Computing this value would

imply a circular dependency. It was chosen a priori to be 0.25.

For each possible mission, the sensor now evaluates an expression which is modified
from (2). The sensor considers the ratio between its remaining lifetime and its expected
occupancy time. So, if tb is the amount of time a sensor can be actively sensing, given
its current energy level, the expression becomes:

u

d
× p

P
× tb

tα
(3)

If the value of expression (4) is greater than that of expression (1), then the sensor
proposes to the mission. If the sensor’s remaining target lifetime is greater than its ex-
pected occupancy time, the sensor proposes to any mission since in this case it expects
to survive until the end of the target time. The effect on the sensor’s decision of weight-
ing the mission profit by the ration (tb/tα) is similar to the effect weighting the fraction
of remaining energy (f ) had in expression (2); less remaining energy, all things being
equal, make a sensor more reluctant to propose to a mission. As the network approaches
the end of its target lifetime, however, this ratio will actually increase, making a sensor
more willing to choose missions with profits less than what it “deserves” in expectation.
After all, there is no profit at all for energy conserved past the target lifetime.

6 Performance Evaluation

In this section we discuss the result of different experiments used to evaluate our schemes.
We implemented the schemes in Java and tested them on randomly generated problem
instances. We report the results of two sets of experiments. In the first set, we test the
static setting, in which all missions occur simultaneously. In the second set, we consider
the dynamic setting, in which missions arrive, without warning, over time and depart
after spending a certain amount of time being active.

6.1 Simulation Setup

Each mission has a demand, which is an abstract value of the amount of sensing re-
sources it requires, and a profit value, which measures its importance (the higher the
profit the more important). The profit obtained from a successful mission Mj is equal
to pj(uj) as defined in Section 3. Each sensor can only be assigned to a single mission.
Once assigned, the full utility of the sensor is allocated to support the mission. We con-
sider a mission to be successful if it receives at least 50% of its demanded utility from
allocated sensors (i.e. T = 0.5).

We assume that mission demands are exponentially distributed with an average of
2 and a minimum of 0.5. Profits for the different missions are also exponentially dis-
tributed with an average of 10 and a maximum of 100. This simulates realistic scenarios
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in which many missions demand few sensing resources and a smaller number demand
more resources. The same applies to profit. The simulator filters out any mission that
is not individually satisfiable, i.e. satisfiable in the absence of all other missions. For
a sufficiently dense network, however, we can expect there to be few such impossible
missions.

The utility of a sensor Si to a mission Mj is defined as a function of the distance,
Dij , between them. In order for sensors to evaluate their utilities to missions, we assume
that all sensors know their geographical locations. Formally the utility is:

eij =

{
1

1+D2
ij/c,

if Dij ≤ r

0, otherwise

where r is the global sensing range. This follows typical signal attenuation models in
which signal strength depends inversely on distance squared. In our experiments, we
set c = 60 and r = 30m.

Nodes are deployed in uniformly random locations in a 400m × 400m field. Mis-
sions are created in uniformly random locations in the field. The communication range
of sensors is set to 40m. When sensors are deployed we ensure that the network is con-
nected (that is any sensor can communicate with any other sensor possibly over multiple
hops). If a randomly created instance is not connected, it is ignored by the simulator.
We do not consider communication overhead other than noting the fact that distributed
schemes will typically have lower communication cost than centralized schemes and
hence are preferable in that sense. We have actually studied the communication over-
head of similar schemes in [10].

6.2 Static Setting

In this experiment, all missions occur simultaneously. We fix the number of sensors in
the field and vary the number of missions from 10 to 100. Each sensor has a uniformly
random cost in [0, 1], which is the same no matter to which mission it is assigned. The
associated cost can represent the actual cost in real money or a value that represents the
risk of the sensor being discovered in hostile environments if it is activated, etc. Each
mission has a budget, drawn from a uniform distribution with an average of 3 in the first
experiment and varies from 1 to 10 in the second. In the following results we show the
average of 20 runs.

The first series of results shows the fraction of the maximum mission profits achieved
by the different schemes. The maximum profit is the sum of all missions profits. We
show the profits for the greedy algorithm, Multi-Round GAP (MRGAP), and an es-
timate of the optimal value, running on two classes of sensor networks, sparse (250
nodes), and dense (500 nodes) (Figures 1 and 2, respectively). The estimate on the opti-
mal bound is obtained by solving the LP relaxation of program P, in which all decision
variables are allowed to take on fractional values in the range [0, 1], and the profit is
simply fractional based on satisfaction fraction, i.e. pjyy for mission Mj with no atten-
tion paid to the threshold T . The MRGAP scheme, which recall can be implemented in
a distributed fashion, achieves higher profits in all cases than does the greedy scheme
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Fig. 1. % of max. profit achieved (250 nodes)
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10 20 30 40 50 60 70 80 90 100
Number of Misisons

0.2

0.25

0.3

0.35

0.4

Fr
ac

tio
n 

of
 b

ud
ge

t s
pe

nt

MRGAP
Greedy

Fig. 3. Fraction of spent budget (250 nodes)
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Fig. 4. Varying the average budget (250 nodes)

which is strictly centralized (because missions have to be ordered in terms of profit).
The difference, however, is not very large.

Figure 3 shows the fraction of the total budget each scheme spent to acquire the
sensing resources it did in a network with 250 nodes. The MRGAP scheme achieves
more profits than the greedy algorithm and spends a modest amount of additional re-
sources. The fraction of remaining budget is significant (more than 60% in all cases),
which suggests that either successful missions had higher budgets than they could spend
on available sensors or that unsuccessful missions had lower budgets than necessary and
hence they were not able to reach the success threshold and their budgets were not spent.
When the number of missions is large this can be attributed to the fact that there simply
were not enough sensors due to high competition between missions. We performed an-
other set of experiments, in which the number of missions was fixed at 50 and average
budget given to missions was varied between 1 and 10. Figure 4 shows the results for a
network with 250 nodes. We see that the achieved profit increases rapidly in the begin-
ning with the budget but slows down as the issue then becomes not the limited budget
but rather the competition between missions.

6.3 Dynamic Setting

In the dynamic problem, missions arrive without warning over time and the sensors
used to satisfy them have limited battery lives. The goal is to maximize the total profit
achieved by missions over the entire duration of the network. In this section, we test the
dynamic heuristic algorithms on randomly generated sensor network histories in order
to gauge the algorithms’ real-world performance.
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In addition to the assumptions made in Section 6.1, here we also assume the follow-
ing. Missions arrive according to a Poisson distribution with an average arrival rate of 4
missions/hour or 8 missions/hour depending on the experiment. Each sensor starts with
a battery that will last for 2 hours of continuous sensing (i.e., B = 7200 in seconds).
We assume that this battery is used solely for sensing purposes and is different than
the the sensor’s main battery which it uses for communication and maintaining its own
operation. Mission lifetimes are exponentially distributed with an average of 1 hour. We
limit the minimum lifetime to 5 minutes and the maximum to 4 hours. The number of
nodes used in the following experiments is set to 500 nodes.

We test the performance of the dynamic schemes described in Section 5. We com-
pare the energy-aware (E-aware) and the energy and lifetime-aware (E/L-aware) schemes
with a basic scheme that does not take energy or network lifetime into account when
making the decision on to which mission to propose (i.e. sensors propose to any mission
in their range). For comparison purposes, we also show the performance of the network
if we assume that sensors have infinite energy (i.e. B ≥ simulation time).

Of course, finding the true optimal performance value is NP-hard, so we cannot do
an exact comparison. Even the LP relaxation of program P’ above may be infeasible
because of the number of decision variables. To provide some basis of comparison,
therefore, we define a further relaxation which is feasible to solve and provides an
upper-bound of the optimal. This formulation condenses the entire history into a single
timeslot. The profits and demands are multiplied by the duration of the mission. Since
time is elided, the sensor constraint now asserts only that a sensor be used (fractionally)
for at most B timeslots, over the entire history, where B is the battery lifetime. Note
that the solution value provided is the total profits over the entire history, not a time-
series. We indicate its value in the results by a straight line drawn at the average profit
corresponding to this total.

In both the E-aware and the E/L-aware schemes, we need to compute the expected
profit of a mission (Expression 1 above), to determine whether the sensor should pro-
pose to the mission. Because we cap the distributions – limit the minimum demand and
profit for missions and cap them by the available resources in the first case and by 100
in the second – the actual averages are not equal to the a priori averages of the distribu-
tions. We found an empirical average demand of d′ = 1.2 and an average profit of p′ =
10.9. The empirical average duration, which is used to evaluate expression (3) above,
was found to be 3827.8 seconds (roughly an hour).

Figure 5 shows the achieved profit (as a fraction of maximum possible) per-timeslot.
We assume the network is considered to be of use as long as this value stays above 50%
(shown with a fine horizontal line). The target network lifetime is 3 days (shown as
a fine vertical line) and the simulations are run for one week of time. Knowledge of
the target network lifetime is used by the E/L-aware and in the LP. The other schemes
assume that network will potentially have infinite duration.

From Figure 5 we see that the profits of all schemes stay above the 50% threshold for
the target lifetime. The basic scheme achieves most of its profits in the beginning and
then profits go down (almost linearly) as time progresses. The E-aware scheme tries
to conserve its resources for high profit missions. Because it ignores the fact that we
care more about the first 3 days than anytime after that it, becomes overly conservative
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Fig. 6. Fraction of alive nodes (arrival rate = 4)

and ignores many missions. Such a scheme is better suited to the case when there is
no known target lifetime for the network and we want the network to last as long as
possible. We see that the profit for E-aware does not fall below the 50% threshold until
the end of the sixth day.

In the E/L-aware scheme, nodes will initially be aggressive in accepting missions
that might not provide their expected value but become more cautious as their energy is
used. However, unlike E-aware, as their remaining expected occupancy time approaches
their remaining lifetime, sensors will again accept missions with lower and lower prof-
its. The curves for E-aware and E/L-aware cross by the middle of the fourth day, at
which point the E-aware becomes better. When compared to the average LP solution,
we see that E/L-aware is very close with a difference (on the average) of few percent-
age points. We also found that in terms of the sum of all profits during the target net-
work lifetime (i.e. the area under the curve for the first 3 days), the E/L-aware achieves
about 84% of the profits compared to 72% for the E-aware. This means that E/L-aware
achieves close to 17% higher profits. If the sensors battery lifetime is increased from 2
to 3 hours the percentage increase becomes about 22%.

The fraction of remaining alive sensors over time is shown in Figure 6. Because in
the basic scheme sensors propose to any mission within its range no matter how low the
profit is, nodes start dying rapidly. By the the end of the third day, only half the nodes
can be used for sensing and by the end of the seventh day this falls below 15%. In E-
aware, nodes become very cautious as their batteries run low, which helps the network
to last for longer without significant sacrifice of achieved profits per timeslot. By the
end of the 7 days, about 72% of the nodes remain living. For E/L-aware, sensors accept
more missions, and hence are used at a higher rate, as the target lifetime of the network
approaches. In the figure, we can see this happening by the second day, when the curve
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of E/L-aware diverges from that of E-aware. By the end of the seventh day, it has used
nearly as much energy as the basic scheme.

One thing to note is that we assume E/L-aware acts like the basic scheme once the
target lifetime of the network has passed, i.e. sensors propose to all nearby missions.
If this behavior were changed to emulate the E-aware, we expect the energy usage to
slow down which would conserve a larger fraction of alive nodes. A similar effect is
expected to happen to profit. As the fraction of alive nodes will be higher, the decrease
in profit after target network lifetime will slow down.

We omit figures showing the fraction of achieved profit and fraction of alive nodes
over time, with twice the previous arrival rate (8 missions/hour). Due to the increased
number of missions, sensors are used more rapidly and hence both the profit and frac-
tion of alive nodes decrease quickly. The basic scheme passes the 50% profit line by
the middle of the second day and both E-aware and E/L-aware pass that point in the
beginning of the fourth day. But by that point, E/L-aware achieves significantly higher
profits than E-aware. Similar effects are seen on the fraction of alive nodes.

7 Conclusion and Research Directions

In this paper, we defined new sensor-assignment problems motivated by frugality and
conservation of resources, in both static and dynamic settings. We proposed schemes to
match sensing resources to missions in both settings and evaluated our these schemes
through simulations. In the static case, we found that the multi-round GAP scheme,
which can be implemented in a distributed fashion, outperformed a centralized greedy
solution. In the dynamic setting, we found that overall performance can be significantly
improved if sensors are allowed to sometimes refuse to offer utility to “weak” missions.
Performance improves when sensors make this decision based both on their remaining
energy level and the remaining target network lifetime.

More sophisticated utility models, taking into consideration not just physical at-
tributes such as distance but also some sort of semantics, could be developed. Above,
we based the potential utility of a sensor-missing pairing on their separating distance.
However, in the case of video sensors, for example, the closest sensor to an event might
not be the best candidate for selection because its view of the field is obstructed or it
cannot provide sufficient frame rate. Also, regarding the value of utility from multiple
sensors, we make the simplifying assumption of additive utilities, which is realistic in
some but clearly not all scenarios. In 3-d reconstruction, for example, the benefit of hav-
ing two viewing angles separated by 45 degrees may be much greater than two views
from essentially the same location. In ongoing work, we are investigating models that
allow for such non-additive joint utility.

Acknowledgements. This research was sponsored by US Army Research laboratory and the
UK Ministry of Defence and was accomplished under Agreement Number W911NF-06-3-0001.
The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the US Army
Research Laboratory, the US Government, the UK Ministry of Defence, or the UK Government.
The US and UK Governments are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.



16 Johnson, Rowaihy, Pizzocaro, Bar-Noy, Chalmers, La Porta, Preece

References

1. A. Bar-Noy, T. Brown, M. Johnson, T. La Porta, O. Liu, and H. Rowaihy. Assigning sensors
to missions with demands. In ALGOSENSORS 2007.

2. J. Byers and G. Nasser. Utility-based decision-making in wireless sensor networks. In
Proceedings of MOBIHOC 2000.

3. R. Cohen, L. Katzir, and D. Raz. An efficient approximation for the generalized assignment
problem. Inf. Process. Lett., 100(4):162–166, 2006.

4. L. Kaplan. Global node selection for localization in a distributed sensor network. IEEE
Transactions on Aerospace and Electronic Systems, 42(1):113–135, January 2006.

5. B. Karp and H. Kung. Greedy perimeter stateless routing for wireless networks. In Proceed-
ings of MobiCom ’00, pages 243–254, Boston, MA, August 2000.

6. J. Lu, L. Bao, and T. Suda. Coverage-aware sensor engagement in dense sensor networks.
In Proceedings of the International Confernece on Embedded and Ubiquitous Computing -
EUC 2005, Dec. 2005.

7. T. Mullen, V. Avasarala, and D. L. Hall. Customer-driven sensor management. IEEE Intelli-
gent Systems, 21(2):41–49, Mar/April 2006.

8. M. Perillo and W. Heinzelman. Optimal sensor management under energy and reliability
constraints. In WCNC ’03.

9. H. Rowaihy, S. Eswaran, M. Johnson, D. Verma, A. Bar-Noy, T. Brown, and T. La Porta.
A survey of sensor selection schemes in wireless sensor networks. In SPIE Defense and
Security Symposium, 2007.

10. H. Rowaihy, M. Johnson, T. Brown, A. Bar-Noy, and T. La Porta. Assigning Sensors to Com-
peting Missions. Technical Report NAS-TR-0080-2007, Network and Security Research
Center, Department of Computer Science and Engineering, Pennsylvania State University,
University Park, PA, USA, October 2007.

11. K. Shih, Y. Chen, C. Chiang, and B. Liu. A distributed active sensor selection scheme
for wireless sensor networks. In Proceedings of the IEEE Symposium on Computers and
Communications, June 2006.

12. V. V. Vazirani. Approximation Algorithms. Springer, 2001.
13. F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collaboration. IEEE Signal

Processing Magazine, 19(2):61–72, March 2002.

Appendix: 1-d Static Setting

In 1-d settings such as border surveillance, sensors and missions lie on the line, and edge weights
eij depend in some way on the distance between Si and Mj . If eij = 1/(1 + Dij), for example,
then the 1-d problem is strongly NP-hard, even with no budget constraint, since the known 3-
Partition reduction [10] also works in 1-d. To adapt the reduction to 1-d, place all missions at
one point on the line, and choose the sensor locations so that the resulting edge weights equal
the corresponding 3-Partition element values. If we adopt a binary sensor model, however, then
the budget-constrained 1-d SMD problem is in P. We give a polynomial-time algorithm for a 1-
dimensional, budget-constrained version of SMD in which edge-weights are 0/1 based on sensing
range and the budget limits the total number of sensors that may be used. In this setting, eij = 1
if Dij ≤ r and 0 otherwise. We may therefore assume without loss of generality that the demands
dj are integral, but profits pj may be arbitrary positive values. Assignments and profits are both
non-fractional. For now, assume budgets are infinite.

We first observe that if r is large enough so that eij = 1 for all i, j then this is an instance of
the 0/1 knapsack problem, solvable in polynomial time (in terms of our problem’s input size, not
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knapsack’s). In this case, sensors are simply the units in which knapsack weights are expressed,
with the knapsack budget equal to n, so the knapsack DP runs in time O(mn). In general, though,
we will have eij = 0 for some i, j. We can solve the problem by a modification of the standard
0/1 knapsack DP [12]. We construct an m × n table of optimal solution values, where v(j, i) is
the optimal value of a sub-instance comprising the first j missions and the first i sensors. Row 1
and Column 1 are initialized to all zeros (optimal profits with the zero-length prefix of missions,
and the zero-length prefix of sensors, respectively). We fill in the entries row-by-row, using a
value d′

j defined below:

v(j, i) =

(
v(j − 1, i), if Mj is not satisfiable with S1, ..., Si

max(v(j − 1, i), pj + v(j − 1, i− d′
j)), o.w.

The two entries of the max correspond to satisfying Mj or not. The first option is clear. If
we do satisfy Mj in a solution with only sensors 1, ..., i available, the important observation is
that we may as well use for Mj the rightmost dj sensors possible, since in this sub-instance Mj

is the rightmost mission. (The DP will consider satisfying Mj when solving sub-instances with
fewer sensors.) Note that we might be unable to assign the rightmost dj sensors, since some of
these may be too far to the right for Mj to be within their sensing range. Let d′

j equal dj plus the
number of sensors among S1, ..., Si too far to the right to apply to Mj . Any sensor too far to the
right to reach Mj is also too far to the right to reach Mk for k < j. What remains among this
sub-instance will therefore be missions 1, ..., j − 1 and sensors 1, ..., i− d′

j . This completes the
recursion definition.

Proposition 2. With unbounded budgets, the 1-d problem can be solved optimally in time O(mn).

Proof. Optimality is by induction. The running time results from the table size.

v(0, j, i)← 0 for 0 ≤ j ≤ m, 0 ≤ i ≤ n
for b = 1 to B do

v(b, 0, i)← 0 for 0 ≤ i ≤ n
for j = 1 to m do

for i = 0 to n do
if Mj is not satisfiable with b sensors among 1..i then

v(b, j, i)← v(b, j − 1, i)
else

v(b, j, i)← max(v(b, j − 1, i), pj + v(b− dj , j − 1, i− d′
j))

Table 5. Algorithm 3: 1-d 0/1 dynamic program

In the formulation of the infinite-r setting above, the number of sensors n becomes the knap-
sack budget, whereas in the general setting the sensors must be assigned to missions in range. We
now introduce an explicit budget into the problem. Let the model be the same as above, except
now also given is an integral budget B ≤ n, which is the total number of sensors that may be
used. First delete any missions with dj > B. Then the budgeted version is solved by creating a
3-d DP table, whose third coordinate is budget. We initialize this table by filling in all nm entries
for budget 0 with value 0. Then for layer b, we again fill in the entries row-by-row.

Notice that the remaining budget to be spent on the “prefix” instance is b − dj , not b − d′
j ,

since only dj sensors are actually assigned to mission Mj . Thus we conclude:

Proposition 3. Algorithm 3 is optimal and runs in time O(mn2).


