
QoS Assessment over Multiple Attributes

Hmood Al-Dossari, Jianhua Shao, Alun Preece

School of Computer Science and Informatics

Cardiff University

Cardiff CF24 3AA, UK

{H.Z.AL-Dossari,J.Shao,A.D.Preece}@cs.cardiff.ac.uk

Abstract
In an open service oriented computing environment,

multiple providers may offer functionally identical ser-

vices but with varying qualities. It is desirable there-

fore that we are able to assess the quality of a service

(QoS), so that service consumers can be given addi-

tional guidance in selecting their preferred services.

Various methods have been proposed to assess QoS us-

ing the data collected from monitoring tools, but they

do not deal with multiple QoS attributes adequately.

Typically these methods assume that the quality of a

service may be assessed by first assessing the quality

level delivered by each QoS attribute individually, and

then aggregating them in some way to give an overall

verdict for the service. In this paper, we show that this

may lead to incorrect assessment, and suggest how ex-

isting methods may be improved to deal with multiple

attributes more effectively.

1 Introduction
In an open service oriented computing environment,

multiple providers may exist to offer functionally iden-
tical services but with varying qualities. To help ser-
vice consumers select their preferred services, it is de-
sirable that we are able to assess the quality of a ser-
vice (QoS) accurately, so that consumers are given
additional guidance.

In this paper, we consider the problem of QoS as-
sessment, which may be broadly defined as attempting
to predict, using the historical service provision data,
the likely QoS level that a consumer may get from a
service provider. Various methods have been proposed
that use service performance data collected from mon-
itoring tools to assess QoS [6, 9, 13]. Typically these
methods assume that the quality of a service may be
assessed by first assessing the quality level delivered
by each QoS attribute individually, and then aggre-
gating them in some way to give an overall verdict for
the service. The following example illustrates this.

Suppose that we have a service S (e.g. a web host-
ing service) with two QoS attributes A1 (e.g. access
delay which is the round trip time between sending a
request and receiving a response) and A2 (e.g. failure
rate which is the number of failures occurring per unit
time). Suppose also that some historical data about
the performance of S w.r.t. A1 and A2 have been
collected as shown in Table 1. Each tuple in Table 1
represents a single service provision instance from S to
a specific consumer, identified by SID, and d(A1) and
d(A2) are the monitored quality levels delivered by A1

and A2, respectively, for that instance. For simplicity
we assume that d(A1) and d(A2) are normalised into
[0, 1] with 0 representing the minimum level of quality
and 1 the maximum.

Table 1: Monitored QoS Data for S

SID d(A1) d(A2)

si001 0.30 0.81
si002 0.27 0.72
si003 0.75 0.41
si004 0.37 0.80
si005 0.77 0.43
si006 0.32 0.78
si007 0.29 0.83
si008 0.71 0.38
si009 0.67 0.47
si010 0.25 0.87

To predict the likely QoS for S, we first calculate
the quality level for A1 and A2 individually by aver-
aging the observed data, i.e. Avg(d(A1)) = 0.47 and
Avg(d(A2)) = 0.65, and then the two averages are ag-
gregated to give QoS(S) = 0.5 × 0.47 + 0.5 × 0.65 =
0.56, assuming that the two attributes are equally im-
portant.

This type of calculation of QoS is meaningful if we
assume that every level of quality is deliverable by a

!777888---000---777666!555---444111000888---222///111000 $$$222666...000000 ©©© 222000111000 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///CCCIIITTT...222000111000...222666000

111444555666

!000111000 111000ttthhh IIIEEEEEEEEE IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn CCCooommmpppuuuttteeerrr aaannnddd IIInnnfffooorrrmmmaaatttiiiooonnn TTTeeeccchhhnnnooolllooogggyyy (((CCCIIITTT !000111000)))

!777888---000---777666!555---444111000888---222///111000 $$$222666...000000 ©©© 222000111000 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///CCCIIITTT...222000111000...222666000

111444555666

!000111000 111000ttthhh IIIEEEEEEEEE IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn CCCooommmpppuuuttteeerrr aaannnddd IIInnnfffooorrrmmmaaatttiiiooonnn TTTeeeccchhhnnnooolllooogggyyy (((CCCIIITTT !000111000)))

!777888---000---777666!555---444111000888---222///111000 $$$222666...000000 ©©© 222000111000 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///CCCIIITTT...222000111000...222666000

111444555666

service. When this is not the case, then such meth-
ods can generate misleading verdicts. To see this, we
re-arrange the order of tuples (service provision in-
stances) in Table 1 to give us Table 2 below:

Table 2: Re-arranged QoS Data for S

SID d(A1) d(A2)

si001 0.30 0.81
si002 0.27 0.72
si004 0.37 0.80
si006 0.32 0.78
si007 0.29 0.83
si010 0.25 0.87

si003 0.75 0.41
si005 0.77 0.43
si008 0.71 0.38
si009 0.67 0.47

Now we can observe two groups of service provision
instances in the table: one group with A1 offered at
around 0.3 and A2 at around 0.8, and the other with
A1 delivered at around 0.7 and A2 at 0.4. Let us
assume that this grouping is not accidental, and S
is in fact offered by the provider with these as the
only two possible quality levels, perhaps as a result of
some resource management requirement [9], then our
calculation of QoS(A1) = 0.47 and QoS(A2) = 0.65
or QoS(S) = 0.56 is clearly misleading as it is not
possible to get in practice.

So in more complicated service provision scenar-
ios such as the one outlined above where some group-
ing of quality levels exist across multiple attributes,
calculating QoS data for each attribute individually
first can result in incorrect assessment. Current QoS
assessment methods do not deal with such scenarios
adequately. In this paper, we address this issue. We
show that a simple solution to this problem exists, but
it is unlikely to perform well in practice due to the way
QoS data is typically collected from monitoring tools,
and we discuss how it may be improved.

The remainder of the paper is organised as follows.
We first discuss the problem of QoS assessment in gen-
eral in Section 2. In Section 3 we explain the short-
coming of existing approaches in dealing with multiple
attributes. A simple extension to existing methods is
given, and we explain why such a simple solution is
unlikely to do well in practice and discuss how it may
be improved. We report some experimental results in
Section 4 to demonstrate the issues we discuss in this
paper. Finally in Section 5 we conclude the paper.

2 QoS Assessment Process
To discuss how effective QoS assessment methods

may be developed, it is useful to understand what
is involved in the process of QoS assessment in gen-
eral first. As outlined in Figure 1, we consider a QoS
assessment process involving four fundamental tasks:
data collection, data selection, data aggregation and
service ranking.

Figure 1: QoS Assessment Process

Data Collection

This is about what and how data relevant to the qual-
ity of a service should be obtained. Broadly, there are
two types of QoS data, user ratings and monitored
QoS data, that may be used for assessment. User rat-
ings are collected from service consumers. They reflect
users’ view of service quality and thus are subjective
in nature [2, 5, 11]. Monitored QoS data, on the other
hand, is collected using automated tools and hence is
more objective [6, 9, 13]. Existing approaches also dif-
fer in terms of what they assume about the collected
data. For example, some assume that the collected
data is trusted [2, 9], some assume that QoS attributes
are independent of each other and QoS data for mul-
tiple attributes may be collected synchronously w.r.t.
time [6, 13], and some assume that additional con-
textual information, such as user expectations, is also
collected [2, 8, 9]. These assumptions determine, to a
large extent, the power and applicability of a specific
assessment method.

In our work, we use monitored QoS data as we are
interested in automated processes. We do not assume
that QoS data for multiple attributes is synchronously
collected as it is unrealistic and unlikely that this will
be the case in practice [10]. We do not assume that
QoS data in different attributes is independent of each
other either, because it is quite possible that some
quality patterns or groupings will exist, as our example
in Introduction has shown.

111444555777111444555777111444555777

Data Selection

Not all collected QoS data may be relevant to a par-
ticular assessment request, for example, when quality
of a service is offered at different levels. Thus we must
determine which data should be selected for use in
assessment. Previous studies have proposed different
mechanisms. A simple one is to consider all data as
relevant [6, 13]. More advanced techniques use var-
ious heuristics. For example, Deora et al. [2] intro-
duced expectation-based selection, where consumers
are asked to state expected QoS levels as part of their
assessment request, and only the data that has simi-
lar expectation to those stated in the request will be
selected and used. This approach was also adopted in
[8, 9]. For rating based assessment, mechanisms for
detecting and removing unfair ratings have been con-
sidered [11] and collaborative filtering, a more seman-
tic heuristic, has also been used to determine the rele-
vance of collected data to assessment requests [12]. In
this paper, we concentrate on expectation-based data
selection.

Data Aggregation

Selected QoS data must then be aggregated to give
a QoS level that the service provider is likely to de-
liver. Various methods may be used, depending on the
type of QoS data involved. For example, beta prob-
ability density functions may be used to aggregate
binary data representing satisfied/unsatisfied service
provisions [5, 11], simple or weighted averages can be
used to summarise numerical QoS data into a single
verdict [2, 6, 12], and forgetting or damping factors
can be employed to help discount past performances
[5]. For multiple attributes, however, existing works
largely assume that the data in each attribute may be
aggregated individually, which can lead to incorrect
assessment [8]. In this paper we discuss how this may
be improved.

Service Ranking

If the goal of QoS assessment is to help a consumer to
choose a preferred one among those functionally iden-
tical but quality-wise varying services, then it is es-
sential that we are able to rank a set of services some-
how at the end of assessment. One obvious approach
is to attempt to deliver a single numeric verdict for
each service under assessment, and then rank the ser-
vices under assessment based on their numerical order
[6, 13]. Unfortunately, it is not always desirable or pos-
sible to derive a single verdict, for example, when the

quality of each attribute must be considered and com-
pared separately. In such cases, more sophisticated
solutions based on multiple criteria decision making
principles [3] must be considered. The issue of how
services may be ranked is however beyond the scope
of this paper.

3 Assessment of Multiple Attributes
In this section, we discuss the limitations of current

approaches when used to assess QoS involving multiple
attributes, and we suggest how such limitations may
be overcome. We will first define what we mean by
quality, and then explain the relevant issues through
two representative methods.

3.1 A QoS Model
A number of definitions of quality are possible and

in our study we adopt a conformance view of quality
[2]. Let S(A1, A2, . . . , Am) be a service where each
Ai, 1 ≤ i ≤ m, is a QoS attribute. Suppose that the
service provider is required to deliver S to a consumer
with {e(A1) = α1, e(A2) = α2, . . . , e(Am) = αm},
where e(Ai) = αi ∈ [0, 1] represents the quality ex-
pected by the consumer, possibly as part of a ser-
vice level agreement. Now we suppose that dur-
ing the service delivery we monitored the following
{d(A1) = β1, d(A2) = β2, . . . , d(Am) = βm}, where
each d(Ai) = βi is the actual quality level delivered
to the consumer. We define quality for a single at-
tribute to be the difference between the expected and
delivered values:

QoS(Ai) = |d(Ai)− e(Ai)|

where both d(Ai) and e(Ai) are normalised values in
[0, 1]1. The smaller the difference, the higher the qual-
ity.

Now we assume that a set of past service provi-
sion performance data has been collected, and each
instance in the dataset is recorded as �sk, e(Ai), d(Ai)�
in a QoS database, where sk is a service instance iden-
tifier, e(Ai) the expected quality of Ai and d(Ai) the
delivered. The problem of QoS assessment can then
be described as follows: given the content of a QoS
database and assuming that sk is functionally ade-
quate, determine how likely sk will meet or conform to
a consumer quality requirement γ using the observed
past performances.

1We note that in practice, questions of how QoS data may be
monitored and normalised may not be straightforward to answer
[10]. In this study, however, we do not consider such issues, but
simply assume that the data has already been monitored and
normalised.

111444555888111444555888111444555888

3.2 Averaging All
To calculate QoS for S, the simplest method is to

average all the delivered quality values observed for
each attribute of S first, and then average the aggre-
gated values across attributes [6, 13]. This method
was already introduced in Section 1, but is described
here again for completion and ease of references. That
is, we calculate QoS as follows:

QoS(S) =

�m
j=1(wj ×

�n
i=1

βij

n) if n > 0

default n = 0

where m is the number of attributes, n the number
observed instances of S in the database, βij the ob-
served delivered quality value for Aj in the i-th in-
stance, and wj a weight indicating the significant of
each attribute in aggregation. The closer the calcu-
lated QoS(S) is to the γ requested by a consumer, the
higher the quality of S is considered to be for that
consumer when no previous provisioning instance has
been observed, a default value will be returned. For
example, if we apply this method to Table 1 given in
Section 1 and assuming that A1 and A2 are equally
important, we have QoS(S) = 0.56. If this is close
to what a consumer expects (e.g. γ = 0.5), then this
service is considered to offer good quality.

This method works fine if we assume that any level
of quality may be offered by each of the attributes.
When this is not the case, for example, when A1 is ac-
tually offered at two distinct levels at around 0.3 and
0.7 , then QoS(A1) = 0.47 is unrealistic to get and
the overall prediction of QoS(S) = 0.56 is unlikely to
materialise in practice2.

3.3 Using Expectations
In [9] a multiple quality-space mapping (MQSM)

approach is proposed to provide a more accurate as-
sessment when a service provides multiple levels of
quality. This approach attempts to classify service
provision instances into clusters before aggregating de-
livered values, and it works as follows. First, service
instances whose delivered values satisfy |βij − γj | ≤ δ
are selected from the database, where γj is the con-
sumer’s expectation on Aj and δ denotes a bound in-
tended to capture similar values. Then for the selected
instances we find minimum and maximum expecta-
tion values, αmin and αmax, and we visit the database

2We note that using average as a prediction is rather in-
complete, as it is unlikely that a future provision of the service
will have a quality at the indicated average level exactly. For a
more complete prediction, confidence interval surrounding the
predicted (average) value can be calculated.

again to retrieve a new set of instances whose expec-
tation values satisfy αmin ≤ αij ≤ αmax, where αij

denotes the expectation value for Aj in the i-th in-
stance. Finally, we average the corresponding βij val-
ues in this set of instances to obtain a prediction for
Ai.

To illustrate how this method works, we expand Ta-
ble 1 with expectation values and new data is shown
in Table 3. Suppose that a consumer has the follow-
ing expectation: γ1 = 0.8 and γ2 = 0.9 and we are
asked to assess how likely S will meet this expecta-
tion. Assuming δ = 0.1, MQSM first selects instances
from Table 3 for A1 based on |d(A1)−0.8| ≤ 0.1 which
gives us {si003, si005, si008}. From this set, we have
αmin = 0.65 and αmax = 0.85. We then retrieve a
new set of instances based on 0.65 ≤ e(Ai) ≤ 0.85
which gives us {si003, si005, si008, si009}. Finally,
we aggregate the delivered values in this set to find
QoS(A1) = 0.73. Quality for A2 is similarly assessed
and we have QoS(A2) = 0.81. Assuming the two at-
tributes are equally important, the overall prediction
for S is computed to be QoS(S) = 0.77.

Table 3: Historical QoS Data with Expectations

SID �e(A1), d(A1)� �e(A2), d(A2)�
si001 �0.27, 0.30� �0.92, 0.81�
si002 �0.31, 0.27� �0.85, 0.72�
si003 �0.80, 0.75� �0.35, 0.41�
si004 �0.40, 0.37� �0.85, 0.80�
si005 �0.85, 0.77� �0.40, 0.43�
si006 �0.36, 0.32� �0.75, 0.78�
si007 �0.25, 0.29� �0.80, 0.83�
si008 �0.65, 0.71� �0.21, 0.38�
si009 �0.77, 0.67� �0.28, 0.47�
si010 �0.19, 0.25� �0.87, 0.87�

If we consider the accuracy of the assessment of
a single attribute, MQSM performs better than the
Averaging-All approach as both QoS(A1) = 0.73 and
QoS(A2) = 0.81 are clearly meaningful. However, if
we assume that quality is offered with some “pack-
aging” across multiple attributes, e.g. one package
offers around 0.3 for A1 and around 0.8 for A2, and
another offers around 0.7 for A1 and around 0.4 for A2,
then the predicted combination QoS(A1) = 0.73 and
QoS(A2) = 0.81 is clearly unattainable and QoS(S) =
0.77 is misleading.

4

111444555!111444555!111444555!

3.4 Dealing with Multiple Attributes
To deal with multiple attributes correctly, we can

apply a simple “adjustment” to the approaches dis-
cussed above. Instead of selecting and aggregating
d(A1) and d(A2) separately first in Table 3 and then
combining QoS(A1) and QoS(A2) into a single ver-
dict, we can select individual instances based on both
γ1 and γ2 first, and then aggregate the qualified d(A1)
and d(A2) into a single prediction for S. That is, we
perform

QoS(S) =

�k
i=1(

�m
j=1 wj × β�

ij)/k if k > 0

default k = 0

where k is the number of instances that satisfy |β�
i1 −

γ1| ≤ δ, |β�
i2 − γ2| ≤ δ, . . . , |β�

im − γm| ≤ δ simultane-
ously. Applying this to our running example, it is easy
to verify that no instances satisfy |d(A1) − 0.8| ≤ 0.1
and |d(A2) − 0.9| ≤ 0.1 simultaneously, hence a de-
fault result will be reported. This verdict is clearly
more accurate.

The problem with this simple adjustment is that it
implicitly assumes that QoS data for the multiple at-
tributes involved are synchronously collected, as we re-
quire |β�

i1−γ1| ≤ δ, |β�
i2−γ2| ≤ δ, . . . , |β�

im−γm| ≤ δ to
be simultaneously satisfied. This is a rather restrictive
assumption which is unlikely to be held in practice,
because multiple QoS attributes are more likely to be
monitored independently at different time points and
at different rates [10]. If we allow QoS data to be col-
lected asynchronously, then we can anticipate that the
number of instances in the database that satisfy our
required condition will be significantly reduced, par-
ticularly when we have a large number of attributes.
This in turn can seriously reduce the confidence of as-
sessment [7].

4 Experiments
We have carried out some simulation to examine

the performance of the methods discussed in Section 3
for assessing QoS over multiple attributes. Our test
data was generated to simulate a single service S con-
sisting of two attributes, A1 and A2, and offering
two quality packages, P1 with d(A1) ∈ [0.2, 0.4] and
d(A2) ∈ [0.7, 0.9], and P2 with d(A1) ∈ [0.6, 0.8] and
d(A2) ∈ [0.3, 0.5]. P1 is offered to consumers with ex-
pectation e(A1) ≤ 0.5 and e(A2) ≥ 0.6, and P2 for
consumers with e(A1) > 0.5 and e(A2) < 0.6.

First, we considered prediction accuracy of the
three methods (Averaging-All, MQSM, and our Sim-
ple Extension) we discussed in the previous sec-
tion for assessing QoS over multiple attributes.

We randomly generated 500 tuples in the form of
�e(A1), d(A1), e(A2), d(A2)� in our experiments, each
representing a past service instance and satisfying the
conditions given above, and the values were normally
distributed within each quality package. We then as-
sumed that S was to be assessed for a specific con-
sumer request: e(A1) = 0.8 and e(A2) = 0.9, i.e. how
likely S will meet this requirement.

To observe the effect of different data sizes on as-
sessment, we repeated our quality calculation for every
addition of 25 service instances using the three meth-
ods. The result is shown in Figure 2, where d(A1)
(d(A2)) marks the actual quality delivered by S for
A1 (A2), pa(A1) (pa(A2)) marks the quality predicted
by Averaging-All, pb(A1) (pb(A2)) marks the quality
predicted by MQSM, and pc(A1) (pc(A2)) marks the
quality predicted by our Simple Extension, respec-
tively. As can be seen, the Averaging-All approach

(a) Prediction vs Quality Package P1

(b) Prediction vs Quality Package P2

Figure 2: Assessment for e(A1) = 0.8 and e(A2) = 0.9

predicted qualities for A1 and A2 which are far from
their real behaviours, i.e. the predicted values (pa(A1)
and pa(A2)) do not overlap with the delivered values
(d(A1) and d(A2)) at all in both packages. This error

111444666000111444666000111444666000

was caused by the fact that there existed two levels
of QoS for each attribute in our scenario and each
level was only available to consumer requests in cer-
tain ranges, but the method wrongly aggregated them
together in assessment.

The MQSM approach worked better and correctly
predicted the quality for A2 (pb(A2)) in P1 and for
A1 (pb(A1)) in P2. However, it failed to predict the
quality for the other attribute correctly in the respec-
tive package. This is because MQSM assessed two
attributes individually, and then mistakenly paired
pb(A2) in P1 with pb(A1) in P2 suggesting that the re-
quested e(A1) = 0.8 and e(A2) = 0.9 could be served
by S at around pb(A1) = 0.7 and pb(A2) = 0.8, despite
the fact that this combination would not be offered by
S. Our Simple Extension, on the other hand, correctly
identified the fact that the required quality level is un-
likely to be met by S, and correctly returned a default
value of -0.1 in all assessment, suggesting that no ver-
dict could be reached.

5 Conclusions
In this paper, we analysed the problems associated

with QoS assessment over multiple attributes. We ex-
plained the shortcomings of existing QoS assessment
approaches and have shown that a simple extension
can be made, but it works well only when data is as-
sumed to be synchronously collected.

There are a number of possible directions for future
research to address this issue. One possible approach
is to relax the definition of synchronisation. That is,
instead of using the most strict form of synchronisa-
tion where one seeks exact matching of time stamps,
we may allow monitored QoS data to be synchronised
within a “time window”. This method is commonly
used in data stream applications [1]. Another ap-
proach is to treat asynchronous values as missing val-
ues and we attempt to predict such missing values as
commonly exercised in data mining [4]. We plan to
investigate these methods in our future work.

Acknowledgments
The first author is sponsored by King Saud Univer-

sity, Kingdom of Saudi Arabia.

References
[1] B. Babcock, S. Babu, M. Datar, R. Motwani and

J. Widom. Models and Issues in Data Stream Sys-
tems. In 21st ACM Symposium on Principles of

Database Systems, pp 1-16, 2002.

[2] V. Deora, J. Shao, W. A. Gray and N. J. Fid-
dian. A Quality of Service Management Frame-

work Based on User Expectations. In 1st Interna-

tional Conference on Service Oriented Comput-

ing, pp 104-114, 2003.

[3] J. Figueira, S. Greco and M. Ehrgott. Multiple
Criteria Decision Analysis: State of the Art Sur-
veys. Springer Verlag, 2005.

[4] J. W. Grzymala-Busse and M. Hu. A Comparison
of Several Approaches to Missing Attribute Val-
ues in Data Mining. In Rough Sets and Current

Trends in Computing, pp 378-385, 2001.

[5] A. Jøsang and R. Ismail. The Beta Reputation
System. In 15th Bled eCommerce Conference, pp
324-337, 2002.

[6] Y. Liu, A. H. H. Ng and L. Zeng. QoS Compu-
tation and Policing in Dynamic Web Service Se-
lection. In 13th International World Wide Web

Conference, pp 66-73, 2004.

[7] J.S. Milton and J. C. Arnold. Introduction to
Probability and Statistics: Principles and Appli-
cations for Engineering and Computing Sciences.
McGraw-Hill Higher Education, 2002.

[8] W. Sherchan, S. Krishnaswamy and S. W. Loke.
Relevant Past Performance for Selecting Web Ser-
vices. In 5th International Conference on Quality

Software, pp 439-445, 2005.

[9] G. Shercliff, J. Shao, W. A. Gray and N. J.
Fiddian. A Multiple Quality-Space Mapping Ap-
proach to QoS Assessment. In 6th International

Conference on Computer and Information Tech-

nology, pp 26-31, 2006.

[10] P. Stockreisser, J. Shao, W. A. Gray and N.
J. Fiddian. Supporting QoS Monitoring in Vir-
tual Organisations. In 4th International Confer-

ence on Service Oriented Computing, pp 447-452,
2006.

[11] J. Zhang and R. Cohen. A Personalized Approach
to Address Unfair Ratings in Multiagent Reputa-
tion Systems. In 5th Workshop on Trust in Agent

Societies , pp 89-98, 2006.

[12] Z. Zheng, H. Ma, M. R. Lyu and I. King. WS-
Rec: A Collaborative Filtering Based Web Ser-
vice Recommender System. In 7th International

Conference on Web Services, pp 437-444, 2009.

[13] C. Zhou, L. T. Chia, B. Silverajan and B. S. Lee.
UX- An Architecture Providing QoS-Aware and
Federated Support for UDDI. In 1st International

Conference on Web Services, pp 171-176, 2003.

111444666111111444666111111444666111

