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Abstract. Agents may choose to ignore contract violations if the costs of en-
forcing the contract exceed the compensation they would receive. In this paper
we provide an argumentation based framework for agents to both decide whether
to enforce a contract, and to undertake contract enforcement actions. The frame-
work centers around the agent reasoning about what arguments to put forth based
on a comparison between the utility it would gain for proving its case and the
utility it loses for probing environment state.

1 Introduction

Open environments may contain self–interested agents with different levels of trust-
worthiness. While self–interested, these agents may both cooperate and compete so as
to increase their own utility. Many mechanisms have been proposed to ensure correct
agent behaviour in such environments, and most make use of some form of implicit
or explicit contract between the agents[1, 17, 6]. The purpose of such a contract is to
lay out what is expected from each contracting party. Given norm-autonomous agents,
i.e. agents which are able to decide whether to fulfil their normative requirements, con-
tracts also allow for the imposition of penalties and compensation to the wronged party
if any deviations from the agreed upon behaviour occurs. Sanctioning of agents often
takes place through the use of a trust or reputation framework[11], or some monetary
mechanism.

In the real world, minor contract violations are often ignored, either due to the loss
in trust that would arise between the contracting parties, or due to the small compen-
sation the wronged party would receive when compared to the overhead of enforcing
the contract. Even major violations might not result in the wronged party being (fully)
compensated, or the guilty party being penalised as the cost of proving the violation
might exceed the compensation which would have been obtained by the victim, result-
ing in them not attempting to enforce the contract. While the former behaviour might
be useful to replicate within multi-agent systems (due to increased efficiency), at first
glance the latter behaviour seems undesirable. Such behaviour is however rational (and
thus desirable in many settings), as it maximises an agent’s gain. It could be argued that
loss making contract enforcement actions, which might increase the society’s welfare
as a whole, are the responsibility of some “pro-bono” third party agents, rather than
contract participants.

Contract enforcement costs are not constant in many scenarios. Referring again to
a typical real world example, if a contract case goes to court, extra costs are incurred



due not only to lawyer’s fees, but also due to the cost of gathering evidence. As the case
progresses, additional evidence might be needed, leading to further escalating costs.
Some legal systems avoid this by having the loser of a case pay its opponent’s fees.

The increasing complexity of artificial agent environments means that many of these
scenarios have analogies within the agent domain. Agents interacting with each other
on the web, virtual marketplace or a Grid do not trust each other and sign contracts
before providing and consuming services. If one agent believes another did not fulfil its
obligations, it may need to verify its belief by gathering large amounts of evidence. This
evidence gathering might cost it not only computational, but also monetary resources
as it might have to purchase information from other agents. In a similar manner, it
might cost the accused agent resources to defend itself. Allowing for such behaviour
can increase both the efficiency and robustness of agent environments.

In this paper we examine multiple issues related to this type of contract enforcement.
We provide an argumentation/dialogue game based framework which allows agents
to both decide and undertake contract enforcement actions. We also look at how as-
pects of this framework can tie into contracting languages. Our work forms part of the
CONOISE-G project [12]. CONOISE-G centers around the creation and implemen-
tation of technologies designed to improve the performance and robustness of virtual
organisations. Agents operating within the environment have their behaviour regulated
by contracts, and contract monitoring and enforcement thus form a major part of the
project focus.

When an agent believes that a contract it is participating in has been violated, it
calculates the amount of utility it would (lose) gain by (not) enforcing the contract.
While a net utility gain exists, the agent maintains its enforcement action, bringing up
evidence as required. The action of presenting evidence decreases the agent’s utility.
The accused agent follows a similar process, computing how much utility it would lose
by not defending itself, and paying for evidence it uses in its defence. This process ends
when one agent either capitulates or has no further evidence to present, after which a
decision regarding the status of the contract can be reached. While simple, we believe
that this approach can both be useful in a large number of scenarios as well as provide
the basis for more complicated techniques.

In the next section we formalise our framework, after which an small example is
presented. Section 4 looks at the features of our framework, and places it within the
context of related work. Finally, possible extensions to this work are discussed.

2 The Formalism

In this section, we describe our approach in detail. We are primarily interested in only
one section of the contract enforcement stage, namely the point at which an agent at-
tempts to prove that another agent has (or has not) broken a contract. Informally, the
agent begins by determining how much utility it would gain by proving that it has been
wronged, as well as what the net utility gain would be for not being able to prove its
claims. A dialogue then begins between the accuser and the accused. In the course
of this dialogue, evidence is presented from outside sources. Presenting this evidence
costs, imposing an ordering on the best way to present the evidence, as well as possibly



causing an agent to give up on its claims. Once the agents have made all the utter-
ances they desire, an adjudication process can take place, determining whether an agent
has been able to prove its case. The work presented here is an extension of the work
described in [9, 8].

We begin by describing the logical layer in which interaction takes place, and the
way arguments interact with each other. We decided against using an abstract argumen-
tation framework (such as the one described by Dung [3]) or a legal based argumenta-
tion framework (such as Prakken and Sartor’s [15]) as our arguments are grounded and
do not make use of any default constructs. Making use of our own logical formalism
also helps simplify the framework.

After describing the logical level, we specify the dialogue game agents can use to
perform contract monitoring actions, examining strategies agents can use to play the
game, as well as looking at how to determine the winners and losers of an instance
of the game. It should be noted that we discuss very few of our design decisions in
this section, instead simply presenting the framework. An in depth examination of the
framework is left for Section 4. The section concludes by describing how to transform
a contract into a form usable by the framework.

2.1 The Argumentation Framework

Argumentation takes place over the language Σ, which contains propositional literals
and their negation.

Definition 1. Argument. An argument is a pair (P, c), where P ⊆ Σ∪{>} and c ∈ Σ
such that if x ∈ P then ¬x /∈ P . We define Args(Σ) to be the set of all possible
arguments derivable from our language.

P represents the premises of an argument (also referred to as an argument’s sup-
port), while c stands for an argument’s conclusion. Informally, we can read an argument
as stating “if the conjunction of its premises holds, the conclusion holds”. An argument
of the form (>, a) represents a conclusion requiring no premises (for reasons detailed
below, such an argument is not necessarily a fact).

Arguments interact by supporting and attacking each other. Informally, when an
argument attacks another, it renders the latter’s conclusions invalid.

An argument cannot be introduced into a conversation unless it is grounded. In other
words, the argument ({a, b}, c) cannot be used unless a and b are either known or can
be derived from arguments derivable from known literals. Care must be taken when
formally defining the concept of a grounded argument, and before doing so, we must
(informally) describe the proof theory used to determine which literals and arguments
are justified at any time.

To determine what arguments and literals hold at any one time, let us assume that
all arguments refer to beliefs. In this case, we begin by examining grounded beliefs and
determining what can be derived from them by following chains of argument. Whenever
a conflict occurs (i.e. we are able to derive literals of the form x and ¬x), we remove
these literals from our derived set. Care must then be taken to eliminate any arguments
derived from conflicting literals. To do this, we keep track of the conflicting literals in a



separate set, and whenever a new conflict arises, we begin the derivation process afresh,
never adding any arguments to the derived set if their conclusions are in the conflict set.

Differentiating between beliefs and facts makes this process slightly more compli-
cated. A literal now has a chance of being removed from the conflict set if it is in the
set of known facts.

More formally, an instance of the framework creates two sets J ⊆ Args(Σ) and
C ⊆ Σ, while making use of a set of facts F ⊂ Σ such that if l ∈ F then ¬l /∈ F and
if ¬l ∈ F then l /∈ F (i.e. F is a consistent set of literals). J and C represent justified
arguments and conflicts respectively.

Definition 2. Derivation. An argument A = (Pa, ca) is derivable from a set S given a
conflict set C (written S, C ` A) iff ca /∈ C and (∀p ∈ Pa(∃s ∈ S such that s = (Ps, p)
and p /∈ C) or Pa = {>}).

Clearly, we need to know what elements are in C. Given the consistent set of facts
F and a knowledge base of arguments κ ⊆ Args(Σ)1 , this can be done with the
following reasoning procedure:

J0 = {A|A ∈ κ such that {}, {} ` A}

C0 = {}

Then, for i > 0, j = 1 . . . i, we have:

C∗

i = Ci−1 ∪ {cA,¬cA|∃A = (PA, cA), B = (PB ,¬cA) ∈ Ji−1}

Ci = C∗

i \(C
∗

i ∩ F )

Xi0 = {A|A ∈ κ and {}, Ci ` A}

Xij = {A|A ∈ κ and Xi(j−1), Ci ` A}

Ji = Xii

The set X allows us to recompute all derivable arguments from scratch after every
increment of i2. Since i represents the length of a chain of arguments, when i = j
our set will be consistent to the depth of our reasoning, and we may assign all of these
arguments to J . Eventually, Ji = Ji−1 (and Ci = Ci−1) which means there are no
further arguments to find. We can thus define the conclusions reached by a knowledge
base κ as K = {c|A = (P, c) ∈ Ji}, for the smallest i such that Ji = Ji+1. We
will use the shorthand K(κ) and C(κ) to represent those literals which are respectively
derivable from, or in conflict with a knowledge base κ. C∗

i represents the conflict set
before facts are taken into account.

1 We assume that κ contains all our facts, i.e. ∀f ∈ F, f ∈ κ
2 This allows us to get rid of long invalid chains of arguments, as well as detect and eliminate

arbitrary loops.



2.2 The Dialogue Game

Agents make use of the argumentation framework described above in an attempt to
convince others of their point of view. An agent has an associated private knowledge
base (KB) containing its beliefs, as well as a table listing the costs involved in probing
the system for the value of literals (M ). An instance of the argumentation dialogue is
centred around agents trying to prove or disprove a set of goals G. Utility gains and
losses are associated with succeeding or failing to prove these goals. The environment
also contains a public knowledge base recording the utterances made by the agents.
This knowledge base performs a role similar to a global commitment store, and is thus
referred to as CS below.

Definition 3. Environment. An environment is a tuple (Agents, CS, F, S) where Agents
is the set of agents participating in the dialogue, CS ⊆ Args(Σ) is a public knowl-
edge base and F ⊂ Σ is a consistent set of literals known to be facts. S ⊆ Σ contains
literals representing the environment state.

Definition 4. Agent. An agent α ∈ Agents is composed of a tuple
(Name, KB, M, G, Uwin, Udraw, Ulose, T ) where KB ⊆ Args(Σ), G ⊆ Σ, M is a
function allowing us to compute the cost of probing the value of a literal. Uwin, Udraw,
Ulose ∈

�
are the utilities gained for winning, drawing or losing an argument. T ∈

�

keeps track of the total costs incurred by an agent during the course of the argument.

The monitoring cost function M expresses the cost incurred by an agent when it
must probe the environment for the value of a literal. It maps a set of literals to a real
number:

Definition 5. Monitoring costs. The monitoring cost function M is a domain depen-
dant function M : 2Σ →

�

Representing monitoring costs in this way allows us to discount multiple probing
actions, for example, it might be cheaper for an agent to simultaneously determine the
cost of two literals than to probe them individually in turn.

Agents take turns to put forward a line of argument and ascertain the value of a lit-
eral by probing the environment. For example {((>, a), (a, b)), b)} is a possible utter-
ance an agent could make, containing the line of argument {(>, a), (a, b)} and probing
the environment for whether b is indeed in the environment state. Alternatively, an agent
may pass by making an empty utterance {,}. The dialogue ends when CS has remained
unchanged for as many turns as there are players, i.e. after all players have had a chance
to make an utterance, but didn’t. Once this has happened, it is possible to compute the
literals derivable from CS, determine the status of an agent’s goal expression, and thus
compute who won the dialogue.

Definition 6. Utterances. The utterance function

utterance : Environment × Name → 2Args(Σ) × Σ

accepts an environment and an agent name, returns the utterance made by the agent.
The first part of this utterance lists the arguments advanced by the agents, while the
second lists the probed environment states.



Given an agent with a monitoring cost function M , we may compute the cost to the
agent of making the utterance (Ar, Pr), where Ar is the line of argument advanced by
the agent and Pr is the set of literals the agents would like to probe, as M(Pr).

Definition 7. Turns. The function

turn : Environment × Name → Environment

takes an environment and an agent label, and returns a new environment containing the
effects of the agent’s utterance.

Given an environment Env = (Agents, CS, F, S) and an agent
α = (Name, KB, M, G, Uwin, Udraw, Ulose, T ) ∈ Agents, we define the turn func-
tion as follows

turn(Env, Name) = (NewAgents, CS ∪ Ar, F ∪ (Pr ∩ S), S) where Ar, Pr

are computed from the function utterance(Env, Name) = (Ar, Pr), and

NewAgents = Agents\α ∪ (Name, KB, M, G, Uwin, Udraw, Ulose, T + M(Pr))

We may assume that the agents are named Agent0, Agent1, . . . , Agentn−1 where
n is the number of agents participating in the dialogue. It should be noted that the in-
ner workings of the utterance function are dependant on agent strategy, and we will
describe one possible game playing strategy below. Before doing so however, we must
define the dialogue game itself. Each turn of the dialogue game results in a new envi-
ronment, which is used during later turns.

Definition 8. Dialogue game. The dialogue game can be defined in terms of the turn
function as follows:

turn0 = turn((Agents, CS0, F0, S), Agent0)

turni+1 = turn(turni, Agent
i mod n

)

The game ends when turni . . . turni−n+1 = turni−n.

CS0 and F0 contain the initial arguments and facts, and are usually empty. Note
that the agent may make a null utterance {, } during its move to (eventually) bring the
game to an end.

To conclude the dialogue game definition, we need to determine how much utility
an agent gains at the end of a dialogue instance. An agent wins the game if it is able
to prove all its goals. A draw occurs when the status of an agent’s goals are unknown
(either due to being indeterminable or in the conflict set).

Definition 9. Agent utility. Given an environment = (Agents, CS, F, S), and ab-
breviating an agent definition (Name, KB, M, G, Uwin, Udraw, Ulose, T ) as α, the
winning set of agents is defined as

Agentwin = {α|α ∈ Agents such that G ⊆ K(CS)}



The set of drawing agents is then defined as

Agentdraw = {α|α ∈ Agents such that

∀g ∈ G, (g ∈ C(CS) or {g,¬g} ∩ K(CS) = {})}

All other agents are in the losing set: Agentlose = Agents\(Agentwin∪Agentdraw).
An agent α may calculate its utility in such an environment by computing

U(α) =







Uwin − T if α ∈ Agentwin

Udraw − T if α ∈ Agentdraw

Ulose − T if α ∈ Agentlose

Note that drawing (or even losing) a dialogue game may provide an agent with more
utility than winning the game. At the end of the game, K(CS) contains all literals which
are agreed to be in force by the agents, while C(CS) contains all conflicting literals.

2.3 The Heuristic

We are now in a position to define one possible technique for taking part in the dialogue
game. We assume that our agent is rational and will thus attempt to maximise its util-
ity. By using the reasoning procedure described in Section 2.1 over the environment’s
knowledge base CS, its knowledge base KB and the set of known facts F , an agent
can both determine what literals are currently in force and in conflict, as well as deter-
mine the effects of its arguments. Given all possible arguments to advance PA ∈ 2KB,
we can define the resultant commitment store by computing RCS = PA ∪ CS. If we
call PF the set of possible facts which the agent an probe, we can compute the set of
possible utterances as PU = RCS × PF . By then performing the move for each PU
and computing the agent’s utility as if the game had ended, an ordering based on utility
of the elements of PU can be generated. The agent then returns the element of PU
which maximises its utility.

Given a set of possible utterances with equal utility, we use a secondary heuristic
(as described in [9]) to choose between them: the agent will make the utterance which
reveals as little new information to the opponent as possible. More formally,

Definition 10. Making utterances. For an environment Env and an agent
α = (Name, KB, M, G, Uwin, Udraw, Ulose, T ), let PA ∈ 2KB , RCS = PA ∪ CS.
We compute a set of possible facts accessible by the agent (PF ) as3

PF = {f,¬f |f ∈ (K(RCS) ∪ C(RCS))\F} and {f,¬f} ∩ S 6= {}

The set of all possible utterances is thus PU = RCS × PF . Let Envnew(Utt) =
turn(Env, Name) where Utt is the utterance function used within the turn function.
We can compute the utility of Utt as Uutterance(Utt) = U(α, Envnew).

Then the agent will make the utterance Utt = (Ar, Pr) ∈ PU such that
maxUtt∈PU (Uutterance(Utt)). If multiple such possible utterances exist, we will choose
one such that K(Ar ∪ CS) − K(CS) + C(Ar ∪ CS) − C(CS) is minimised.

3 The second part of the condition allows us a way of limiting the probing to only those facts
which are in fact accessible, without having to know their value



Assuming that every probing action has an associated utility cost, such an agent
would begin by attempting to argue from its beliefs, probing the environment only as a
last resort. This behaviour is reminiscent of the idea put forward by Gordon’s pleadings
game [4], where agents argue until certain irreconcilable differences arise, after which
they approach an arbitrator to settle the matter.

It should also be noted that our framework allows for different probing costs to be
associated with probing for a value or its negation. This makes sense in a contracting
environment, as different sensors might be used to perform these two types of probing
actions.

2.4 Contracts

To utilise such a framework in the context of contracting requires a number of additional
features:

1. S, the set of facts which can be probed, must be defined.
2. T the agent’s cost for performing the probing must also be determined.
3. G the set of agent goals must be computed.
4. The agent’s winning, drawing and losing utilities must be set appropriately.
5. The agent’s knowledge bases KB must be created to reflect the content of the

contract, as well as any initial beliefs held by the agents regarding the environment
state.

6. F0, the set of known facts must be generated.

While all of these are contract specific, some guidelines can be provided due to
the features of the framework. Given a two party contract, we can assign our agents
plaintiff and defendant roles. Usually, they will have opposite goals, initially determined
by a combination of the contract clauses and the the plaintiff’s beliefs regarding the
environment state. The set S, as well as the cost of performing the probing is determined
by the contract, and the contract clauses, together with an agent’s beliefs about the state
of the world are used to determine an agent’s KB. F0 (and thus CS0) will not be empty
if certain facts about the environment state are already known.

Item 4 is interesting. Most legal systems operate under the requirement that a plain-
tiff prove their case either on the balance of probabilities, or beyond reasonable doubt.
Given the binary nature of our framework, both reduce to the same level. This means
that the winning and drawing utilities for the defendant will be the same, while the
drawing and losing utilities of the plaintiff will be identical. For many contracts, The
winning utility of the plaintiff will be the same as the losing utility of the defendant
(reflecting the fact that the defendant will have to pay the plaintiff in the case of a loss).

To simplify matters, we assume that a contract is enforced in its entirety, i.e. all
issues must be settled in favour of the plaintiff for them to win. We thus define a contract
as follows:

Definition 11. Contract. A contract consists of the tuple
(Plaintiff ,Defendant , Clauses, Monitors, Issues, Penalty) where Plaintiff and
Defendant are labels, Clauses ∈ Args(Σ), Monitors : {Plaintiff ,Defendant} ×
2σ →

�
, Issues ⊆ Σ, and Penalty ∈

�
.



Given such a contract, as well as a set of states S, we can instantiate our framework
as follows:

Environment = ((Agents0, Agents1), , , S)

Agents0 = (Plaintiff , Clauses, MPlaintiff , Issues, Penalty, 0, 0, 0)

Agents1 = (Defendant , Clauses, MDefendant , Issues, 0, P enalty, Penalty, 0)

Where MPlaintiff and MDefendant are computed by partially parameterising the Monitors
function with the appropriate label. Note that the defendant’s goals are the same as the
plaintiff’s goals, but that it gains utility for “losing” or drawing the game, as this would
mean it had successfully defended it’s stance.

At this stage, contract enforcement is possible using the framework. We will now
provide a short example to illustrate the framework in operation.

3 Example

We will look at a very simple scenario (taken from the service provision scenario de-
scribed in [12]) where a provider agent has agreed to provide a movie service to a
consumer agent, subject to restrictions on the movie framerate.

Given the following contract clauses

fr25 → payPerson

¬fr25 → giveWarning1

wrongMovie → giveWarning2

giveWarning1 ∧ giveWarning2 → penalty

We assume that monitors exist for fr25, giveWarning1 and giveWarning2 at
a cost of 5,10 and 20 respectively. Finally, let the penalty for contract violation be 30
units of currency.

Now let us assume that the consumer believes that it has been given the incorrect
movie, and when the movie finally arrived, its framerate was below 25 frames per sec-
ond (i.e. the literal ¬fr25 evaluates to true). Furthermore, the provider disputes all of
this, believing that it provided the right movie at an appropriate framerate. After cre-
ating the agents using the method described in Section 2.4, the following conversation
might take place (omitting brackets for the sake of readability where necessary):

(P1) ({(¬fr25, giveWarning1), (wrongMovie, giveWarning2),
({giveWarning1, giveWarning2}, penalty)}, {})

(D2) ((>, fr25), {})
(P3) ({}, {¬fr25, fr25})
(D4) ((>,¬wrongMovie)
(P5) ({}, {¬giveWarning2, giveWarning2})
(D6) ()
(P7) ()



The plaintiff first puts forward its case, based on its beliefs. Since the agent attempts
to reveal as little as possible, the defendant utters just enough to counter the plaintiff’s
argument. The plaintiff responds by giving proof for its argument, as that is all it can
do. Note that the state of fr25 rather than giveWarning1 was probed due to its lower
utility cost. This process repeats itself for wrongMovie, but since this literal is not
directly observable, the agent must probe its conclusion instead. Finally, no more argu-
ments are put forward, and the case is decided in favour of the plaintiff, who earns a net
utility of 5.

Had the defendant attempted to argue for its beliefs regarding the state of fr25 in an
earlier contract enforcement episode, then this round of argument may have begun with
¬fr25 already being an established fact (i.e. part of F0). As can be seen it is difficult
to provide an all encompassing domain independent set of rules to convert a contract,
agents, and environment into a form suitable for a contract enforcement action.

4 Discussion

While we have focused on using our framework for contract enforcement, it can also
be used in other settings. For example, given a non-adversarial setting where probing
sensors still has some associated cost (for example, of network resources or time), an
agent can reason with the framework (by generating an argument leading to its goals)
to minimise these sensing costs.

The contract enforcement stage is only part of the greater contracting life-cycle.
With some adaptation, our framework can also be used in the contract monitoring stage:
by constantly modifying its beliefs based on inputs from the environment, an agent
could continuously attempt to prove that a contract has failed; once this occurs contract
enforcement would begin.

Contract enforcement and monitoring has been examined by a number of other re-
searchers. Given a fully observable environment in which state determination is not
associated with a utility cost, the problem reduces to data mining. Research such as
[19] operates in such an environment, but focus more on the problem of predicting
imminent contract failure. Daskalopulu et al. [2] have suggested a subjective logic [5]
based approach for contract enforcement in partially observable environments. Here,
a contract is represented as a finite state machine, with an agent’s actions leading to
state transitions. A central monitor assigns different agents different levels of trust, and
combines reports from them to determine the most likely state of the system. While
some weaknesses exist with this approach, most techniques for contract enforcement
are similar in nature, making use of some uncertainty framework to determine what the
most likely system state is, then translating this state into a contract state, finally de-
termining whether a violation occurred. An argumentation based approach potentially
has both computational as well as representational advantages over existing methods.
In earlier work[10], we described a contracting language for service level agreements
based on semantic web standards (called SWCL). One interesting feature of that work
is the appearance of an explicit monitoring clause describing where to gather informa-
tion regarding specific environment states. Most other contracting languages lack such
a feature, and the addition of a monitoring cost would allow SWCL to be used as part



of our framework. A related feature of our framework which, in a contracting context
would require a language with appropriate capabilities, is the ability to assign differ-
ent monitoring costs for determining whether a literal or its negation holds. In an open
world environment, such a feature is highly desirable.

Argumentation researchers have long known that a dialogue should remain relevant
to the topic under discussion [7]. This trait allows dialogue based systems to rapidly
reach a solution. The approach presented here enforces this requirement due to the na-
ture of the heuristic; any extraneous utterances will lead to a reduction in an agent’s
final utility. One disadvantage of our approach is that, as presented, the computational
complexity of deciding what utterance to make is exponential in nature. Simple opti-
misations can be implemented to reduce the average case complexity, but in the worst
case, all possible arguments must still be considered. Mitigating this is the fact that
the number of clauses involved in a contract enforcement action is normally relatively
small, making its use practical in the contracting domain.

Many different argumentation frameworks have been proposed in the literature ([16]
provides an excellent overview of the field). We decided to design our own framework
rather than use an existing approach for a number of reasons. First, many frameworks
are abstract in nature, requiring the embedding of a logic, and then making use of some
form of attacking relation to compute which arguments are, or are not in force. Less
abstract frameworks focus on the non–monotonic nature of argument, often requiring a
default logic be used. The manner in which agents reason using our heuristic, as well as
the grounded nature of the subject of arguments in our domain makes the argumentation
framework presented here more suitable than others for this type of work. However,
we intend to show the relationship between our framework and sceptical semantics in
existing argumentation frameworks in future work.

Legal argumentation systems often grapple with the concept of burden of proof
(e.g. [13, 14, 18]). We attempt to circumnavigate the problem of assigning responsibil-
ity for proving the state of a literal to a specific agent by having agents probe for the
value themselves as needed. This approach will not work in more complicated scenarios
with conflicting sensors, and extending the framework to operate in such environments
should prove interesting.

One quirk of our framework is that we do not do belief revision when agents are
presented with facts. While adapting the method in which NewAgents are created in
Definition 7 is possible by setting the new agent’s KB to be KB ∪ (>, f)∀f ∈ F , and
even remove any “obviously conflicting” beliefs, we are still unable to remove beliefs
that arise from the application of chains of arguments. We would thus claim that an
agent’s beliefs are actually a combination of its private knowledge base KB, the public
knowledge base CS and the set of presented facts F , rather than being solely a product
of KB. Overriding beliefs with facts means our framework assigns a higher priority to
fact based argument than belief based argument. This is reminiscent of many existing
priority based argumentation frameworks such as [15].

Another possible area of future work involves reasoning about contracts with mul-
tiple weakly related clauses. Currently, an agent wins or loses an argument based on
whether it can prove all its goals. This (unrealistic) assumption simplifies the prob-
lem greatly. By enriching the framework with a more complicated reward function, an



agent would be able to gain (or lose) utility by proving only some of its goals. Such
work would probably need other enhancements such as opponent modelling and the
integration of a planner to allow the agents to plan arguments further than just its next
utterance.

Finally, the procedure used to transform a contract into an environment and agents
for argumentation is very simple. Enhancing this procedure to make use of the full
power of the argumentation framework requires further examination. This enhance-
ment will allow for both the representation of, and dialogue regarding, more complex
contracts, further increasing the utility of the framework. Another area of future work
involves n–party contracts. While our framework provides support for such dialogue,
agents, we have not examined what such contracts would look like, and this might be
an interesting research direction to pursue.

5 Conclusions

Explicit or implicit contracts are the dominant method for specifying desired agent be-
haviour within complex multi-agent systems. Contract enforcement is necessary when
agents are able to renege on their obligations.

In this paper we have presented an argumentation based framework for contract
enforcement within partially observable environments for which querying sensors has
an associated cost. This work can prove useful in a variety of settings, including un-
trusted (and trusted) distributed computing environments such as the Grid. While many
interesting research questions remain, we believe that our framework provides a good
starting point to model, and reason about such environments.
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