Supporting Virtual Organisations using BDI
Agents and Constraints

Stuart Chalmers, Peter M.D. Gray, and Alun Preece

University of Aberdeen;Kings College, Aberdeen, AB24 3UE

{schalmer,pgray,apreece}@csd.abdn.ac.uk

Abstract. Virtual organisations underpin many important activities in
distributed computing, including e-commerce and e-science. This paper
describes a new technique by which software agents can intelligently
form virtual organisations to meet some pre-specified requirements. Our
approach builds on work in BDI agents and constraint satisfaction tech-
niques. Using a realistic service-providing scenario, we show how an agent
can use constraint solving techniques to explore possible virtual organi-
sation alliances with other agents, based on its beliefs and desires. The
agent can choose the best among several possible virtual organisations to
form in order to meet a customer’s requirements. Our approach is to use
a deliberative process to construct possible worlds, each corresponding
to a potential virtual organisation, and each configured using constraint
satisfaction techniques. We also show how an agent can take account of
pre-existing virtual organisation relationships in its deliberations.

1 Introduction

Support for virtual organisations is emerging as one of the most significant
requirements in modern distributed computing, underpinning many activities
viewed as of enormous strategic importance to industry and government. These
activities include business-to-business e-commerce, where virtual organisations
enable electronic value chains [1], and e-science, where virtual organisations are
seen as the fundamental organising principle of the “grid” [9]. The key aspects
of virtual organisations that make them such an attractive paradigm are:

— they are composed of a number of autonomous entities (representing distinct
individuals, departments, organisations, etc) each of which has a range of
problem solving capabilities and resources at their disposal;

— the entities co-exist, collaborate, and sometimes compete with one another
in a ubiquitous virtual space (representing a marketplace, meeting room,
laboratory, etc);

— service-providing entities may advertise their capabilities to their peers, and
then enter into service agreements or contracts with service-requiring enti-
ties;

— where appropriate, groups of entities may form a coalition in order to provide
some amalgamated service, or carry out some overall activity cooperatively;

— all of the above aspects are highly dynamic: entities may come and go, ca-
pabilities may change over time, and coalitions may form, dissipate, and
reform.

In the KRAFT project! we developed an architecture that offered limited sup-
port for virtual organisations, through the following main features [18]:

— entities are represented by software agents, which interact with one another
in a virtual space defined by shared communication protocols;

— an individual entity (agent) may view the world in terms of a local ontology
(or data model), but to communicate with other entities it must align this
local ontology with a shared common ontology;

— coordinated activity is achieved by the exchange of quantified constraints
between entities, and the solving of sets of these constraints; these constraints
represent both requirements to be satisfied, and candidate solutions.

Although the KRAFT architecture has been successfully demonstrated in a re-
alistic business-to-business e-commerce scenario [7] it lacks a number of features
necessary for adequate support of virtual organisations:

— KRAFT supports very limited agent autonomy, as it assumes the entities
are basically cooperative — in particular, competition between agents is not
supported, because the agents do not have explicit agendas that may be in

conflict;
— KRAFT does not allow for negotiation between entities over requirements
and candidate solutions — there is no general mechanism for relaxing or

trading-off constraints in the constraint-solving process.

In this paper, we describe how we are extending the KRAFT architecture to
address these limitations, by incorporating recent work using constraint-solving
within a BDI (Beliefs, Desires, Intentions) agent framework [4]. By adding BDI
layers to the KRAFT agents, we aim to support both cooperative and compet-
itive behaviours, and allow agents to negotiate over points of conflict. We have
sought to integrate the BDI approach with our constraint-solving approach to
coordinated agent interaction, in order to combine the benefits of both. In the
context of supporting virtual organisations:

— beliefs are the state of the world, as modelled locally by an entity (agent) in
the virtual organisation;

— desires are the goals of an entity in the virtual organisation;

— intentions are the actions an entity plans to carry out.

This paper reports on work-in-progress, specifically on the formation of a virtual
organisation using BDI agents and constraint satisfaction techniques. In a real-
istic service-providing scenario, we aim to show how an agent can use constraint
solving techniques to explore possible virtual organisation alliances with other
agents, based on its beliefs and desires. We also show how an agent can take

! http://www.csd.abdn.ac.uk/research /kraft

account of pre-existing virtual organisation relationships in its deliberations.
The paper is organised as follows. Section 2 describes our motivating scenario.
Section 3 describes the role of constraints in the BDI model, Section 4 describes
the design and implementation of the constraint based architecture and Section
5 describes ongoing work on constraint relaxation.

2 Motivating Scenario

Restaurant
Vendors

Il - |

L .
Lz

i
NCrastjet)
Uiy

Restaurant
Facilitator,

= =

Se———

Aberdeen
Service
Agent

Travel
Service
Vendors

<—> Communication
<--> Possible Agreement/VO
.

’ } Prior Agreement/
\, L Virtual Organisation

Fig. 1. Motivating Scenario. The Aberdeen Service Agent has to decide whether to enter
into a Virtual Organisation relationship with either Thomas Travel or Scot Travel.

A lecturer is visiting Aberdeen University for a research meeting. He wishes
to travel up from London on the train and arrive in time for his meeting at 2pm
on Thursday afternoon. He also wants to eat at a restaurant and travel home
that evening on the overnight sleeper train. He would also prefer the cheapest
deal, as his funds are extremely limited!

He gives this information to a user agent on his PDA, specifying the following
desires:

Arrive in Aberdeen by 2pm Thursday

— Return to London by 8am Friday

— Eat at a restaurant on Thursday evening
Get cheapest deal possible

— Travel by train preferable

In this scenario we have a number of vendors of different types, which can in-
teract and form virtual organisations to provide services and facilities. From the
diagram we can see the vendors grouped into service types (airline, rail, etc.) and
that some have prior agreements with other vendors (e.g. a relationship exists
between Scot Travel and Now!). In this situation the Aberdeen service agent,
from the information given by the user’s PDA, as well as from any relevant in-
formation available on other vendors, has to decide on the choice of vendor to
enter into a virtual organisation relationship with, that will satisfy as many of
the user specified desires as possible. This relationship is then in place for other
such requests, or can be renegotiated if any other requirements or services are
needed.

In Fig.1 the user agent contacts the Aberdeen service agent, which is able to
gather information from various resources on local Aberdeen restaurants, and
is able to communicate with various mediator service agents who can provide
possible travel solutions to and from Aberdeen, by consulting train and airline
agents for information. There also exists a restaurant facilitator which can rec-
ommend and book restaurants in the Aberdeen area.

The mediator service agents, Thomas Travel and Scot Travel are asked by the

Name Travel Type |Price| Arrive | Depart
Now! Air €70 | 3:00PM | 9:30PM
trainfind.com [Sleeper Train| €85 [10:00AM|11:30PM
Fastjet* Air €90 | 1:00PM | 9:30PM |

Table 1. Options from the travel mediator agents (* indicates 25% off Robins restau-
rants)

Aberdeen service agent to provide travel details for return journeys from London
to Aberdeen. It is their task to find a suitable deal for the service agent.

For Aberdeen/London flights, Thomas Travel are partners of a virtual organisa-
tion and have negotiated a deal with Fastjet, while Scot Travel have formed two
relationships, the first for Aberdeen return flight deals with Now! and the second
with trainfind.com and Virgil trains for sleeper services to Aberdeen. Solutions
returned from the three mediators are shown in Table 1. After initial contact
with restaurant facilitator about restaurant availability in Aberdeen, it receives
the options shown in Table 2. From this information the service agent builds

Name |Price|Bookable From:
China River| €40 | Fully Booked
Robins | €40 7:00PM
Ashdale | €45 8:30PM
Table 2. Options from the Restaurant Agent

Package Price Book From:
Virgil / Ashdale | €130 [Scot Travel/trainfind.com
Virgil / Robins | €125 | UK travel/trainfind.com

Now! / Ashdale | €115 Scot Travel
Now! / Robins | €110 Scot Travel
Fastjet / Ashdale| €135 Thomas Travel
Fastjet / Robins |[€120* Thomas Travel

Table 3. Possible package Solutions (*%25 Robins/Fastjet discount offer)

a list of possible travel /restaurant combinations (Table 3). From the desires ex-
pressed by the user, the service agent decides that the solutions that use Now! are
not viable, as the flight would arrive in Aberdeen after the meeting start time.
The trainfind/ Robins solution meets the requirements, but the agent decides
to commit to the Fastjet/Robins package (Fig. 2), as the virtual organisation
relationship between Fastjet and Robins can be exploited within this new virtual
organisation to provide overall cheaper meal and travel, although the preference
of travel by train needs to be relaxed.

We view this decision making process as a constraint problem, where the avail-

Fig. 2. The VO formed by the Aberdeen Service Agent

able, choices of travel and restaurant form the set of possible solutions, while
the users desires and preferences, as well as information on services and their
relationships in wvirtual organisations form the constraints over the possible so-
lutions that influence the eventual decision. The relazation of these constraints
can also form the basis for negotation between the vendors in the VO, as in the
example relaxtion of the method of travel described here.

This architecture is also used as a basis for the vendor agents when negotiating
and forming virtual organisations. In particular, we describe how the auton-
omy provided by combining CLP with a BDI architecture provides an open and
adaptable method for operating in competitive environments.

3 Constraints as Knowledge in an E-Commerce Scenario

Recent work has seen constraints being used for knowledge representation in
a distributed agent-based environment [5,12]. Our research takes this idea and
focuses on using constraints to represent different sources of knowledge, but also
to exploit this representation and to use these constraints along with CLP (Con-
straint Logic Programming) to provide an agent with intelligent decision-making
capabilities that can be used in dynamic environments and situations where the
choice of solution provided depends on commitments which are transient and can
be changed or renegotiated at any time. In doing this, we endeavour to preserve
agent autonomy and local decision making.

In the example in Section 2 we are using constraints to represent user desires
specifying properties of the solution required, and also to represent specific in-
stances of relationships between companies (e.g. the discount package between
Fastjet airline and Robins restaurant). Both these aspects must be combined
and used when deciding on a solution.

3.1 Constraints and Agents

Constraints are used to model a description of part of a desired goal state which
the agent is free to achieve in any number of different ways. In doing so, the
agent can take account of other constraints it has undertaken to satisfy by com-
bining all the information into a CLP (Constraint Logic Programming) problem.
Therefore an agent in a virtual organisation can take account of commitments
with other agents when trying to provide a service or negotiate to join another
virtual organisation.

This representation means that the agent is not just responding to a sequence
of messages, but is able to deliberate on and plan its behaviour by taking into
account both the message and other constraints. Further, if the desired state is
impossible to achieve (over-constrained) because of too many different desires,
it has to relax some constraints, by delegating or exchanging tasks with other
agents (See Section 5), which is an important aspect of agent behaviour in multi-
agent systems. The constraints thus become mobile [10].

The constraints can refer to the configuration in space of a number of objects,
constrained by various relationships and inequalities described in predicate logic.
This has been successfully used in the KRAFT project [18], but there the agents
were ‘information seeking’, extracting the constraint information from databases
and returning them to a central planner. Here the agents are themselves capable
of planning and interacting with other agents and can use temporal as well as
spatial constraints[4].

We can transform constraints to use a local ontology or data model as a com-
mon basis [13]. Once in this form we can treat the constraints as a CLP and
thus provide a decision making process which can take into account many dis-
parate factors, which is vital when providing autonomy in a highly dynamic
environment,.

options := option generator (event_gqueue,B,D,I)

selected-options := deliberate(options,B,D,I)
update-intentions (selected-options, I)
execute (I)

get-new-external-events();
drop-succesful-attitudes(B,D, I)
until quit

Fig. 3. Main BDI loop

4 BDI Agents

To provide an architecture to contain this CLP mechanism we have constructed
a BDI agent, as its logical reasoning basis allows for easy integration with the
logic approach of the CLP mechanism.

Fig. 3 shows a pseudo-code version of a BDI agent algorithm [19]. We use this
as a basic mechanism for controlling the actions and decision making for each
individual agent. This algorithm controls the agents planning and its interaction
with others.

In a BDI loop, the agent has internal events from the desires (such as required
services) and external events (such as information on the nature and type of
services available) on the event_queue and uses these, along with its current
beliefs (B), desires (D) and intentions (I) to generate a set of possible next options,
represented as executable plans. It then selects one of these possible options
based on the status of its B, D and I values. This selection is represented by our
constraint mechanism, which takes the Beliefs and maps them to finite domains
in a constraint problem. It then uses the desires and intentions (represented as
constraints) in the constraint solving mechanism to choose and then execute the
best action from those available. Finally, any new external events (caused by the
execution of the chosen action or otherwise) are added to the event_queue and
the agent checks to see whether it can mark as completed any of its goals that
have been achieved, before carrying on.

The algorithm is adopted from the standard BDI loop [19]:

— Beliefs represent the views held about the current state of the world, as
perceived by the agent.

— Desires are the goals and aims you wish your agent to achieve.

— Intentions are the actual processes being executed so that desires may be
fulfilled (or sub-goals which are needed for the completion of a desire).

The process of choosing and executing a succession of actions gradually al-
ters the agent’s beliefs and provides newer and updated solutions. The agent
may receive new desires in the form of constraints as it progresses but must
take into account all existing commitment constraints until a solution has been
found, when they can then be dropped and marked as being succesful (the
drop-succesful-attitudes function in Fig.3).

4.1 Representing Beliefs, Desires and Intentions using CLP - A
functional Data Model Approach

Service
o Description|; Non_VO
Vendors |provides : ——provides| vendors
provides
in vo with A knows about
= = gent -
has a
_ Entity is currently
Single-Valued
Function Current travel
Multi-Valued Status plan
Function

Fig. 4. Agent’s Belief data model

We use an ER-like data model representation for the agent’s beliefs (Fig.
4). This holds information on the agents current capabilities, as well as infor-
mation on the capabilities of others and information on any relationships or
coalitions formed. The entities hold the actual data, while the functions repre-
sent relationships between the entities. Our data model representation of the
agent’s beliefs is constructed using P/FDM?, an object database constructed on
semantic data modelling principles from the functional Data Model [21]. This
database is constantly updated to reflect changes in the agent’s status and cur-
rent commitments as and when they happen. The advantage of this approach is
that the data model can be used to express the semantics of the agent’s beliefs
as well as the beliefs themselves, and can express complex relationships between
objects and data values in those beliefs.

The P/FDM constraint language, Colan [3] (based on Shipman’s Daplex lan-
guage), can be used to express desires in terms of beliefs. Initially Colan was
used for specifying database integrity constraints, but since it is based on a
range-restricted first order logic, it can be used to describe specifications or
mobile fragments of specifications. The following shows an example Colan con-
straint, based on the scenario described in Section 2. It specifies that if an agent
creates a travel plan for a journey, and the journey involves a sleeper train, then
the arrival time of the sleeper train must be before 8.30am (For the purposes of
simplifying the exposition we have left out contextual information such as date).

2 http://www.csd.abdn.ac.uk/~pfdm

Colan Constraint

Constrain all t in travel_plan such that
travel method(t) = train and....
travel_class(t) = sleeper_train

to have arrival_time(t) < 0830

First Order Logic Version

(Vt,a) travel_plan(t) &

travel method(train, t) &

travel_class(sleeper_train,t) & arrival_time(a,t)— a < 0830

This is an example of a constraint which, if given to a vendor, must be sat-
isfied, along with any commitments or restrictions the vendor might have. The
vendor agent would use the beliefs it has about its own status, and that of other
agents capabilities, together with any existing constraints (e.g. from current VO
relationships) to try to satisfy the given user constraint and provide a solution.
There has been extensive work carried out on integrating P/FDM data model
frameworks into finite domain CLP problems in the KRAFT project [13] and in
using First Order Logic to express and generate CLP code in terms of this data
model. Our techniques for transforming the information from the desires and
beliefs into a finite domain constraint problem are largely based on this work,
but in KRAFT constraints are used as problem specifications to find solutions
to complex distributed design problems.

All components and agents are FIPA compliant, and we have RDF definitions
for the COLAN constraint language, as well as for the Daplex database query
language [11]. This is possible because of the entity-relationship model shared
by both RDF and P/FDM.

4.2 Constructing possible worlds

The beliefs are a reflection of how the agent views the current state of the world
so they naturally form the basis for the agent’s deliberation process. Since we
are using a data model approach to hold the agent’s beliefs, and to provide the
semantics to describe the domain, we formulate agent desires in terms of the
entities, attributes and relationships contained in the data model and use these
desires as specifications of the required tasks.

The advantage of using this data model approach is that each entity class in the
data model can be easily viewed as a finite domain, with the object instances
themselves as the elements in that domain. The object attributes and functions
can then be used to form the basis for variables in the constraints.

The agent deliberation process must take into account current commitments and
its current actions (intentions) when looking at any new collaborations. Given
that the current environment is constantly changing, and that agents can nego-
tiate and renegotiate commitments with each other at any time, we are unable
to plan out and predict the agent’s actions. what we can do is plan to a specified

depth of lookahead and then refine and replan as we encounter changes.
Although the current situation may change, the agent still maintains long term,
high level desires which will remain unaffected (e.g. a vendor must be found that
can provide travel requirements, but the specific choice of vendor is not stated).
What will be affected by the changes is the way in which these high level desires
are carried out. Thus we are using the CLP process to allow the agent to exercise
a degree of autonomy in carrying out the high level desires. We provide it with
the various implementations of each high level solution and give the agent an
intelligent method for choosing the most appropriate implementation.

When the agent begins its deliberation process it first constructs a possible
worlds model [19] which contains all possible solutions and the interim states
needed to provide those solutions in a connected possible worlds tree like struc-
ture. To populate the tree with candidate solutions, we find all the actions pos-
sible from the current state, then apply these actions and add these as new
branches to the tree. Therefore if the agent is currently at time ¢, that node of
the tree will lead to z; possible states the agents beliefs could have at time t+1
if a specific action towards the completion of a plan was carried out.

We then take these z; states and find the actions available from each of them.
We can then apply these, and add the resulting new states to the tree (z» solu-
tions at time ¢+2). This process can be continued to a given depth (i.e. how far
we want the agent to plan ahead). This also means that we can limit the tree
size to avoid a combinatorial explosion with the number of nodes.

The resulting populated structure contains all the possible states of the agents
beliefs for the next n specified steps (what states the agent’s belief data model
would take were it to choose a specific way of carrying out all possible ways of
doing these n steps towards completing the high level solution). We therefore
have a possible worlds tree-like structure which preserves the information about
the hierarchical position of each belief state in relation to the others, with each
state containing the agent’s beliefs, as they would be if the actions leading to
the desired goal state were carried out.

Essentially this can be viewed as a belief-accessible world [19], where we can
derive the desire-accessible and intention-accessible worlds, given the assump-
tion that the agent will not desire or intend what it doesn’t believe to be true.
This can be achieved by constraining the belief-accessible world by applying the
desires or intentions (represented as constraints).

4.3 From Possible Worlds to CLP

To construct the deliberation process as a CLP, we transform this structure into
finite domains in ECLiPSe 2. The constraints are then posted against these finite
domains and any invalid states are eliminated. Fig. 5 shows an example of the
constraints that can be posted in the CLP. The constraints come from various
sources, but can all be combined to influence the agent’s reasoning process.

Each node in the possible worlds structure holds a populated data model (Fig.

% http://www.icparc.ic.ac.uk/eclipse/

User Info Current VO relationships
"Flight services provided by Easyjet"

"If you travel by sleeper train,

then you must arrive before 8.30am" Constrain all t in travel plan
Constrain all t in travel plan such that travel method(t) = air
such that travel method(t) = train to have travel firm(t) = fastjet
and travel class(t) = sleeper_ train

to have arrival time(t) < 0830

Environment Info

"All flights from Heathrow are cancelled"

constrain all s in service_description
such that name(s) = Heathrow
to have travel info(s) = cancelled

Fig. 5. The Agent’s Deliberation Process as a CLP

4), representing the agent’s beliefs for that particular state. The code fragment
below shows part of the P/FDM data representation for a small part of one of
these states. The entities and their values in the data model are represented
using the object/3 construct, and the functions and their relationships to other
objects are shown by the fnval/3 construct. The representation of the objects
and the object functions as term structures gives us a uniform representation
of the agent’s beliefs, and allows for easy modification given any additions or
changes to the data model representation.

object(travel_plan,agent;) .

fnval (travel_method,agent; ,train).

fnval (travel_class,agent;,sleeper_train).
fnval (arrival_time,agent;,0758).

fnval (vendor_used,agent; ,vendor;s) .

object (vendor,vendoriz) .
fnval (vendor_name,vendor;» ,fastjet) .

object(vendor,vendorio) .
fnval (vendor_name,vendorip,Scot Travel).

4.4 Solving the CLP using the ECLiPSe Propia Library

The ECLiPSe Propia library supports generalised constraint propagation. Using
the infers most operator we can specify the finite domains for the CLP prob-
lem using the following ECLiPSe goals:

object(travel_plan,AGENT_NAME) infers most.
fnval (travel _method, AGENT_NAME,METHOD) infers most.

fnval (travel_class,AGENT_NAME,CLASS) infers most.
fnval (arrival_time, AGENT_NAME,TIME) infers most.
fnval (vendor_used, AGENT_NAME,VENDOR_ID) infers most.

object(vendor,VENDOR_ID) infers most.
fnval (vendor_name, VENDOR_ID,VENDOR_NAME) infers most.

This makes the possible values of each attribute of each object (as well as the
variables representing the objects themselves) into a finite domain CLP variable.
For example, the above code fragment would create finite domains for each ob-
ject and for each fnval construct (so VENDORNAME from the above fnval would
represent the finite domain containing all vendor names from every state in every
node in the tree that contains similar constructs). We can now post constraints
from our various sources over these domains. Any elements which are eliminated
from the solution space by the constraints will propagate through the rest of
the domains, eliminating all belief states which do not satisfy the required con-
straints. The remaining belief states are the valid options available to the agent
in the possible worlds model. What is left therefore is a pruned version of the
possible worlds tree structure containing the remaining valid states given the
constraints imposed.

From the remaining tree structure a valid chain of actions can be found that,
when executed, will lead the agent to the desired state, and therefore the solution
to the given task. This can then be returned by the deliberation process as the
chosen plan to execute in the main BDI loop. If the problem is over-constrained
there is the possibility that no solution is available for this plan, in which case
the agent will try to relax the constraints.

5 Constraint Relaxation

While the constraint mechanisms described provide a way of providing auton-
omy in the decision making process, the agent needs to be flexible so that it can
remove or relax possible constraints when the problem is over-constrained and
a solution cannot be found.

An agent can find situations where the constraints imposed mean that no valid
solution can be found to provide any alternatives for the decision making pro-
cess. What the agent must do then is relaz or re-negotiate the constraints it
has. In the example shown in section 4.1, the agent has a constraint that if
travel_class is sleeper_train for a journey, then arrival_time must be less
than 0830.

Suppose this constraint was applied, and no solution can be found. The agent
tries relaxing the constraint, and tries again using separately the following ver-
sions:

Constrain all t in travel_plan such that
travel method(t) = train

and travel method(t) = sleeper_train
to have arrival_time(t) < 0930

Constrain all t in travel_plan such that
travel _method(t) = train
to have arrival_time(t) < 0830

The first alternative relaxes a constant, so that the person only needs to ar-
rive before 9:30am; the second alternative removes a restrictive term, so that the
person could take a train which was not a sleeper.

6 Current and Related Work

In this paper, we have shown how an agent can choose the best among several
possible virtual organisations to form in order to meet some customer require-
ment. OQur approach is to use a deliberative process to construct possible worlds,
each corresponding to a potential virtual organisation, and each configured us-
ing constraint satisfaction techniques. We are also investigating the scalability
of such an approach, given the complexity of constraint satisfaction problems,
in a realistic virtual organisation scenario.

Research and development work on technologies to support virtual organisations
is not new [16], although it is currently receiving greater attention in the context
of Grid computing [9]. In terms of explicit modelling of organisational proper-
ties (partner cabailities, service agreements, life cycle stages) the work that has
been done using intelligent software agents [8] is well ahead of the mainstream
distributed computing work that currently underpins Grid computing. Recent
research in the agents area relevant to virtual organisations includes work on
coalition formation [2] and formal specification of the rules constituting “elec-
tronic institutions” [6]. All of this work is complementary to ours.

As stated earlier, our current work builds on the results of the KRAFT project [18]
which in turn was heavily influenced by early multi-agent projects such as
SHADE [15], and ADEPT [14]. The novelty in our approach lies in the use
of constraints to give a formal yet flexible business knowledge, enabling both the
formation and operation of virtual organisations [17].

The Smart Clients project [22] is related to KRAFT in the way they conduct
problem-solving on a CSP dynamically specified by the customer, using data ex-
tracted from remote databases. Their approach differs from ours in that only data
is extracted from the remote databases, no constraints are therefore transmitted
across the network; conversely, it is the constraint solver that is transmitted to
the client’s computer, to work with the constraints specified locally by the cus-
tomer.

Finally, the Business Rule Markup Language is similar in concept to KRAFT’s
use of constraints [20]. The difference is that this work uses a rule-based formal-
ism to specify business rules. Logic programming techniques are then used to
reason with the rules.

Our current research draws in part on work being done in the context of the
Advanced Knowledge Technologies project (AKT) — a multi-site collaboration
focussing on the knowledge management life-cycle*. AKT shares some basic
CLP mechanisms with our current work, as described in 4.1, and is develop-
ing RDF definitions for the P/FDM schema language and the Colan constraint
language [11].

Our further work in this area will be done as part of the CONOISE project?,
a joint collaboration between Aberdeen, Cardiff and Southampton universities,
and BTexact Technologies. CONOISE will look at agent interaction and deploy-
ment in open systems, and in particular the interplay between constraint-solving
and negotiation processes in the formation and operation of virtual organisations.
Initially, we are exploring how Southampton’s work in online auctions can be ef-
fectively combined with our CSP approach in virtual organisation formation, and
how Cardiff’s work on service descriptions can enrich the information available
to agents during the formation process.

Acknowledgements

The basis of this work is from research supported by an EPSRC grant under the
supervision of Prof. P.M.D. Gray and on work previously completed during the
KRAFT project, in particular the work of Kit-Ying Hui and Alun Preece. The
KRAFT project was funded by grants from BT and EPSRC. The CONOISE
project is funded by BTexact Technologies.

References

1. H. Akkermans. Intelligent e-business: From technology to value. In IEEE Intelli-
gent Systems July/August, volume 16, pages 8-10, 2001.

2. P. Anthony, W. Hall, V. Dung Dang, and N. R. Jennings. Autonomous agents for
participating in multiple online auctions. In IJCAIO1 Workshop on E-Business &
the Intelligent Web, pages 54—64, 2001.

3. N. Bassiliades and P.M.D. Gray. Colan: a functional constraint language and its
implementation. In Data and Knowledge Engineering 14, pages 203—249, 1994.

4. S. Chalmers and P.M.D. Gray. Bdi agents and constraint logic. In AISB Journal,
Special Issue on Agent Technology, volume 1, pages 21-40, 2001.

5. P. Eaton, E. Freuder, and R. Wallace. Constraints and agents: Confronting igno-
rance. In Al Magazine 19(2):50-65, 1998.

6. M. Esteva, J.A. Rodriguez, C. Sierra, P. Garcia, and J.L. Arcos. On the formal
specification of electronic institutions. pages 126-147. Springer-Verlag, 2001.

7. N.J. Fiddian, P. Marti, J-C. Pazzaglia, K. Hui, A. Preece, D.M. Jones, and Z. Cui.
Application of KRAFT in data service network design. In BT Technology Journal,
volume 17. Chapman and Hall, 1999.

* http://www.aktors.org
5 http://www.conoise.org

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

K. Fischer, J. Muller, I. Heirnig, and A-W. Scheer. Intelligent agents in virtual
enterprises. In Proc 1st International Conference on Practical Applications of In-
telligent Agents, London, 1996.

I. Foster, C. Kesselman, J. M. Nick, and S. Teucke. The physiology of the
grid: An open grid services architecture for distributed systems integration. In
http://www.globus.org/research/papers/ogsa.pdf, 2002.

P.M.D. Gray, S. M. Embury, and G. J. L. Kemp. The evolving role of constraints
in the functional data model. In Journal of Intelligent Information Systems, vol-
ume 12, pages 113-117. Kluwer Academic Press, 1999.

P.M.D. Gray, K. Hui, and A. Preece. An expressive constraint language for seman-
tic web applications. In IJCAIO1 Workshop on E-Business € the Intelligent Web,
pages 46-53, 2001.

P.M.D. Gray, K. Hui, and A. D. Preece. Finding and moving constraints in cy-
berspace. In Proc. AAAI Spring Symposium on Intelligent Agents in Cyberspace
(55-99-03), pages 121-127, 1999.

K. Hui and P.M.D. Gray. Developing finite domain constraints — a data model
approach. In Proceedings of the 1st International Conference on Computational
Logic, pages 448-462. Springer-Verlag, 2000.

N. Jennings, P. Faratin, M. Johnson, T. Norman, P. O’Brien, and M. Wiegand.
Agent-based business process management. International Journal of Cooperative
Information Systems, 5:105-130, 1996.

D. R. Kuokka, J. G. McGuire, J. C. Weber, J. M. Tenenbaum, T. R. Gruber, and
G. R. Olsen. SHADE: Technology for knowledge-based collaborative engineering.
Journal of Concurrent Engineering: Applications and Research, 1(2), 1993.

D. E. O’Leary, D. Kuokka, and R. Plant. Artificial intelligence and virtual organ-
isations. Communications of the ACM, 40:52-59, 1997.

A. Preece, P.M.D. Gray, and K. Hui. Supporting virtual organisations through
knowledge fusion. In Artificial Intelligence for Electronic Commerce: Papers from
the AAAI-99 Workshop, Menlo Park, CA, 1999. AAAT Press.

A. Preece, K. Hui, A. Gray, P. Marti, T. Bench-Capon, Z. Cui, and D. Jones.
KRAFT: An agent architecture for knowledge fusion. In International Journal on
Intelligent Cooperative Information Systems (IJCIS), 2000.

A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In Proceedings
of the First International Conference on Multi-Agent Systems, 1995.

D. Reeves, B. Grosof, M. Wellman, and H. Chan. Toward a declarative language
for negotiating executable contracts. In Artificial Intelligence for Electronic Com-
merce: Papers from the AAAI-99 Workshop, Menlo Park, CA, 1999. AAAT Press.
D. W. Shipman. The functional data model and the data language DAPLEX. In
ACM Transactions on Database Systems 6(1), pages 140-173, 1981.

M. Torrens and B. Faltings. Smart clients: constraint satisfaction as a paradigm for
scaleable intelligent information systems. In Artificial Intelligence for Electronic
Commerce: Papers from the AAAI-99 Workshop, Menlo Park, CA; 1999. AAAI
Press.

