
1

Validation of Knowledge-Based Systems:
The State-of-the-Art in North America

Alun D Preece

1 Historical Perspective

Validation provides evidence upon which users decide whether or not a
knowledge-based system (KBS) is reliable. Thus, validation ultimately
determines the success or failure of a KBS project. Validation techniques
include two classes of test: verification tests yield boolean results (for
example, whether the knowledge base (KB) of the system is consistent,
according to some formal definition of consistency); evaluation tests do not
yield boolean results – their results are subject to interpretation (for example,
whether a system performs "acceptably", given that a certain percentage of
test cases were processed as expected by the system).1 The importance of
validation techniques has lead to a great deal of activity in the research and
development of these techniques.

Before 1982, the field of KBS validation focused upon pioneering expert
systems projects, including MYCIN and XCON [Gaschnig:83]. Typically,
validation involved running a set of test cases on a prototype system, and
evaluating the output of the system. The chief issues arising during this
period were: what standard should an expert system be validated against,
and what constitutes an adequate set of test cases? These issues are still being
investigated today; nevertheless, one conclusion quickly emerged: that
validation is a hard problem, and that software tools were required to assist
as much as possible in conducting verification and evaluation.

In 1982, the Stanford Heuristic Programming Project (HPP) developed what is
generally believed to be the first verification tool for KBS: the Rule Checking
Program (RCP) for the ONCOCIN expert system [Suwa:82]. The important
feature of the RCP was that it checked domain independent properties of a KB:
redundant, conflicting and missing rules. These properties are anomalies: they
do not necessarily signify faults in a particular system – they may be
intentional or harmless – but they are suspicious and require careful
examination. The RCP prompted the start of a great deal of work in the area

1These definitions are in accordance with those presented in [Laurent:92].

2

of KB verification by anomaly detection, leading to the development of the
following major North American verification tools:
• CHECK, ARC, and EVA, developed by Lockheed Corporation, 1985–1990

[Nguyen:85, Nguyen:87, Chang:90b].
• KB-Reducer (KBR) versions 1–3, developed by AT&T Bell Laboratories

and Boeing Corporation, 1987–1993 [Ginsberg:88, Ginsberg:93, Dahl:93].
• COVER, developed by Concordia University, Montréal, and Bell Canada,

1989–1992 [Preece:92c].

The above list is not intended to be complete. It is confined to those systems
which have either been used industrially, or had a significant impact on other
work. In particular, KBR and COVER tools have demonstrated themselves to
be capable of detecting faults in fielded industrial applications.

The anomaly-detection tools consider only the declarative semantics of the
knowledge; typically, the KB is modelled as a theory in an appropriate logic,
from which the desired properties such as the existence (or non-existence) of
conflicts, redundancy, circular dependency, and deficiency can be derived
formally. Recently, there has been recognition that many KBS are highly
procedural in nature. Partly, this can be attributed to the success of the OPS5-
like production rule languages, which support a procedural style of
programming, attractive for the development of task-oriented KBS
applications [Giarratano:89]. The declarative semantics of these systems are
too approximate for anomaly detection to be very effective.

In view of this, a number of approaches have recently been proposed for
verifying production rule-based systems, based upon their procedural
semantics. Success has been achieved using techniques adapted from other
types of software development, including:
• Washington State University's adaptation of SWARM, originally

developed for verifying concurrent software [Gamble:91].
• SRI's adaptation of their EHDM and SNARK theorem-provers for

verification of formal specifications [Rushby:89, Waldinger:91].
• Honeywell Inc's adaptation of Dijkstra's program verification techniques

[Wood:90].
• IBM's adaptation of their "Cleanroom" methodology [Highland:92].

It should be noted that, of the above, only the last demonstrates success on an
industrial-scale application – the others have been applied only to small "toy"
systems.

Since 1982, the majority of activity in the KBS validation field has concerned
formal verification. Less work has been done in the areas of testing and
evaluation. Prior to 1987, the main body of work here involved the
development of statistical techniques for quantifying the performance of a
KBS [O'Keefe:93, O'Keefe:87, Reggia:85]. Testing techniques have received a

3

relatively small amount of attention until recently, when there has been a
number of attempts to apply testing techniques from software engineering to
KBS [Kiper:92, Preece:94, Rushby:90, Kirani:92]. Evaluation methodology,
concerning the design of principled validation experiments, has also been a
topic of concern among the empirical validation research community
[Adelman:91, O'Keefe:93].

In recent work in the validation area, two significant trends seem to be
emerging. Firstly, a number of efforts are being directed at evaluating the
validation techniques themselves. In a project funded by the U.S. Nuclear
Regulatory Commission (NRC) and the Electrical Power research Institute
(EPRI), SAIC Inc. has evaluated the applicability of 134 validation techniques
from conventional software to KBS [Miller:93a]. SAIC has also conducted an
experiment to compare the effectiveness of a number of different KBS
verification tools and techniques [Miller:93b]. Additional data on the relative
effectiveness of testing techniques for KBS has been obtained in experiments
conducted by the Universities of Minnesota and Penn State [Kirani:92,
Zualkernan:93]. Data upon the utility of verification by anomaly detection has
been obtained by Concordia University, Montréal [Preece:92a]. Given more
studies of this kind, it should be possible to build a clear picture of the
relative power of the various validation techniques that have been developed
to date.

The second trend in the North American validation field is emerging in direct
response to the evolving nature of KBS themselves: increasingly, KBS are
being constructed, not as stand-alone systems, but as part of hybrid,
heterogeneous software systems. Modern complex software applications
often mix a number of software technologies, including knowledge-based,
object-oriented, connectionist, case-based, database, and conventional
imperative (often legacy code) software. As an added complication, a
growing number of systems employ a distributed architecture. Consequently,
the North American community is beginning to investigate the validation
implications of mixing these technologies. Some example efforts in this
direction are as follows:
• Object-oriented and frame-based systems: SAIC Inc. (under investigation)

and [Lee:93].
• Distributed systems: [O'Leary:93].
• Heterogeneous software architectures: [Landauer:93].

2 KBS Verification

2.1 Theory of KB Verification

We define four types of anomaly which are likely to indicate actual errors in
knowledge bases. For the moment, we will consider knowledge bases that are

4

composed of rules and facts (rule bases). In the following definitions, an
environment is a set of input data supplied to the knowledge-based system; a
final hypothesis is a conclusion from the knowledge-based system; a set of data
or hypotheses is declared to be impermissible if the domain experts say that the
set represents a situation that cannot occur in the real world. In the examples,
rules are written in first order predicate calculus, x is a variable, and a is a
constant.

Redundancy An expression in a knowledge base is redundant iff for every
permissible environment, the final hypotheses inferred are the same,
regardless of the presence or absence of the expression. The most general case
of this is a redundant rule: to illustrate, for a knowledge base with n rules, I1

… In, rule Ij is redundant if it is a logical consequence of rules I1 … Ij–1, Ij+1 …
In. For example, the third rule is redundant below:

PROFESSOR(x) ∅ HAS_PHD_DEGREE(x)
HAS_PHD_DEGREE(x) ∅ GRADUATE(x)
PROFESSOR(x) ∅ GRADUATE(x)

Ambivalence A knowledge base is ambivalent iff for some permissible
environment, we can infer an impermissible set of hypotheses. For example,
assume a permissible environment is {TEACHING_ASSISTANT(a),
ENROLLED(a)} and we are given the impermissible set {STAFF(x),
STUDENT(x)}. Then the rules below would allow us to infer {STAFF(a),
STUDENT(a)}, which being an instance of an impermissible set is also
considered to be impermissible.

TEACHING_ASSISTANT(x) ∅ STAFF(x)
TEACHING_ASSISTANT(x) ENROLLED(x) ∅ STUDENT(x)

Circularity A knowledge base has circularity iff it contains some set of rules
such that a loop could occur when the rules are fired. A common example of
this problem would be a relation explicitly defined in both directions:

HAS_DEGREE(x) ∅ GRADUATE(x)
GRADUATE(x) ∅ HAS_DEGREE(x)

Deficiency A knowledge base is deficient iff there exists a permissible
environment for which a hypothesis that should be inferred is not inferred.
Deficiency is typically due to missing knowledge. For example, consider the
following knowledge base, in which R(a) is a final hypothesis, and where P(a)
and Q(a) are input data:

P(a) ∅ R(a)
 ¬P(a) Q(a) ∅ ¬R(a)

5

If either of {¬P(a), ¬Q(a)} or {¬Q(a)} are permissible environments, then we
cannot infer any hypotheses for these cases. Therefore, some knowledge is
missing.

2.2 KB Verification

In terms of their impact upon the literature and in practical use, the most
influential verification tools have been the ONCOCIN RCP, the Lockheed
tools (CHECK, ARC and EVA), KBR, and the COVER tool. We focus here
upon the more recent tools (EVA, KBR, and COVER), since these have
subsumed the capabilities of the older tools (RCP, CHECK and ARC).

2.2.1 EVA: The Expert System Validation Associate

Building upon earlier Lockheed efforts in the verification area [Nguyen:85,
Nguyen:87], the scope of the EVA project (1986–93) was ambitious: to build
an integrated set of tools to check the redundancy, consistency, completeness,
and correctness of any KBS written in any KBS language [Chang:90b]. To
achieve this objective, the EVA developers needed to accomplish the
following tasks:
• Develop a set of operational definitions for the concepts redundancy,

consistency, completeness, and correctness, such that these definitions
would apply to any KBS.

• Develop a canonical knowledge representation formalism, into which
target KBS applications could be converted, and upon which the various
verification checks could be performed.

• Implement efficient software tools to perform the desired checks on the
canonical knowledge representation.

Not surprisingly, the EVA project did not solve all these problems in general
(they are still unsolved). Nevertheless, it did achieve its goals in a limited
manner. First-order logic was chosen as the canonical knowledge
representation formalism, and Prolog was chosen as the implementation
platform for the toolset. An extensive set of definitions were drawn up for the
properties redundancy, consistency, completeness, and correctness, with
many special cases. In doing this, the EVA developers were probably the first
to acknowledge the role played by metaknowledge in the verification process.
Each of the logic checkers in EVA has two forms: basic and extended. The
basic form needs no metaknowledge but is severely restricted in power; for
example, the basic check for conflicting rules will detect that instances of the
terms MALE(x) and ¬MALE(x) can be asserted simultaneously from consistent
input data. The extended form uses metaknowledge to extend the checking
capabilities; for example, the extended check for conflict could use the

6

metaknowledge that MALE(x) and PREGNANT(x) are incompatible, and detect
potential simultaneous assertions of instances of these terms.

The definitions of KB anomalies used by EVA cover both rule-based
knowledge and the declarative aspects of frame-based knowledge.
Unfortunately, the definitions provided in the literature for the properties
detected by EVA have not been formalised completely in first-order logic.
This has lead to criticisms of the EVA approach as being ad hoc [Rushby:88].

A prototype Prolog implementation of EVA was developed, which uses the
Prolog theorem-proving mechanism to check for the defined properties. An
efficient, resource-constrained version of the checking algorithm was also
developed as part of the off-shoot DEVA project, with funding from the U.S.
DARPA agency. The EVA kernel was extended to allow it to check a number
of popular North American expert system languages, including ART, KEE
and CLIPS (an OPS5-like language) [Childress:91]. Only the declarative
features of these languages were captured by the EVA canonical form,
however. Currently, Lockheed is not developing EVA further, and it is not in
use within or outside the corporation. One of the main reasons for this is that
the Prolog platform lacked portability; the possibility of an external company
reimplementing the toolset in C is under consideration at present.

Redundancy Checking in EVA Redundancy is checked in EVA by theorem
proving. If K is a knowledge base, and R is a rule in K, then R is redundant if
it can be derived from K – {R}. EVA performs this check by removing R from
K, replacing variables in R by Skolem constants, asserting the Skolemized
literals from the antecedent of R as facts in K, and trying to prove the
Skolemized consequent of R . If the Skolemized consequent of R can be
derived from K and the Skolemized premises of R, even in the absence of rule
R , then R is clearly redundant.

The above redundancy check is performed in EVA by the structure checker
tool. In addition, the extended structure checker can use metaknowledge about
synonym and generalization relations (ISA-links) in checking for further
redundancies. For example, if the propositions p and s are declared to be
synonyms, EVA will detect redundancy in the following rules:

 p ∅ q
 q ∅ r
 s ∅ r

Ambivalence Checking in EVA In EVA one declares impermissible sets of
literals, L1 … Ln by means of a metapredicate declaration INCOMPATIBLE(L1
… Ln). For every declaration INCOMPATIBLE(L1 … Ln), the EVA theorem
prover tries to prove the goal L1 … Ln. This proof is conducted by
backward-chaining, and when the theorem prover encounters a primitive

7

input, it assumes that the input is given. A proof tree so constructed for the
goal is called a proof residue, and states what combination of inputs would
actually be required in order to prove the goal. If the theorem prover
succeeds in finding one or more residual proof trees for the goal, then there is
ambivalence in the knowledge base. Further details of this method are
provided in [McGuire:90]. Note that this method is similar to Ginsberg's
ATMS-inspired approach, except that Ginsberg's method detects all cases of
ambivalence in one pass through the knowledge base, in a manner similar to
forward-chaining, whereas the proof residue method detects each potential
case of ambivalence individually, by backward-chaining.

Circularity Checking in EVA For each predicate in a knowledge base
represented in the EVA canonical form, EVA computes a metapredicate
DERIVE which states each derivation path for the predicate. Each derivation
path is a list of rules, and if there are duplicates in a list, then there is a
circular inference path in the knowledge base. The circularity check in EVA is
performed by the structure checker.

Deficiency Checking in EVA As in the earlier CHECK system, the
deficiency check in EVA is restricted to detecting some of the symptoms of
deficiency, rather than missing rules in general. In the papers on EVA, only a
check for missing values is explicitly mentioned, although it is hinted that
other symptoms of deficiency are detected. The check for missing values is
performed by the EVA omission checker.

Other Pertinent Features of EVA EVA features a semantic checker, which is
used to prove that invariant conditions will never be violated by the
knowledge base. The specifications of the invariant conditions make use of a
range of metapredicates, including the INCOMPATIBLE declarations
mentioned earlier.

The EVA uncertainty checker uses semantic constraints (declared via
metapredicates) to check the validity of certainty factors in a limited manner.
For example, it is able to detect if combinations of uncertain evidence will
lead to 'fuzzy' contradictions (such as the inferring of conclusions like risk is
high (80%), risk is low (90%)).

Recent work on EVA considers the design of a checker for nonmonotonic
knowledge bases [Chang:90a].

2.2.2 KB-Reducer versions 1–3

The first version of KB-Reducer (KBR1) was developed by Allen Ginsberg at
AT&T Bell Labs in 1987. The tool was motivated by two requirements: to
provide automatic consistency and redundancy checking of knowledge bases

8

during maintenance in the field, and to provide an appropriate "compiled"
form for knowledge bases, as a basis for automatic KB refinement
[Ginsberg:90]. KBR1 was developed to check rule-based systems written in
propositional logic. The KBR algorithm is based upon the assumption-based
truth maintenance system (ATMS) developed by de Kleer [deKleer:86], which
finds the set of assumptions which must hold for each knowledge base
hypothesis to be true. These sets of assumptions are called labels for the
hypotheses, and are minimal disjunctive normal form expressions. Each
literal in these expressions is a finding, and each conjunction is an environment
for the hypothesis.

KBR1 is designed for rule languages based on propositional logic, featuring
conventional OAV triples for data representation. For KB-Reducer to produce
meaningful results, the inference engine needs to be monotonic, non-selective
(any rule whose antecedent is satisfied can immediately fire – no conflict
resolution strategy is used), and strongly data-driven (all available findings
are made available before any inferences are drawn). Even if these
assumptions are relaxed to some extent, however, KBR can still provide
useful analyses of knowledge bases.

In addition to findings and hypotheses, KB-Reducer identifies certain literals
as default hypotheses. These are literals which only occur in rule antecedents,
and are negations of hypotheses (which are called the counter-hypotheses of
the default hypotheses). The label for a default hypothesis is computed by
finding the label of its counter-hypothesis, negating it, and transforming the
resulting expression to disjunctive normal form. For example, consider the
following knowledge base:

 a ∆ b ∅ p
 c ∅ q
 p q ∅ r
 ¬r d ∅ ¬p

Here, a, b, c, and, d are findings, p, q, r, and ¬p are hypotheses, and ¬r is a
default hypothesis. The label for p is a ∆ b, the label for r is (a c) ∆ (b c), and
the label for ¬r is (¬a ¬b) ∆ ¬c.

In applying this definition of default hypothesis, a closed world assumption
is made for findings – unless the negation of a finding is explicitly present in a
rule antecedent, it is assumed that it is true if the finding is not present (that
is, in the example, ¬a is assumed true if a is not given as an input to the
knowledge base).

The KB-Reduction algorithm requires that a knowledge base can be stratified
into levels, according to inference dependencies in the rules. A rule is at level 0
if its antecedent contains only findings; otherwise, it is at the level above the

9

level of the highest-level rule on which it depends. In the example, the first
two rules are at level 0, while the third rule is at level 1, since it depends on
the level 0 rules. The final rule is at level 2, since a rule containing a default
hypothesis must be at a level higher than the level of the counter-hypothesis.
This requirement means that KB-Reducer cannot be applied to rule bases
with circular inference chains, but the stratification algorithm will detect
circularity.

The KB-Reduction Algorithm The algorithm works by processing rules in
order of level, from level 0 up. The labels for hypotheses are built up until
they are complete – all will be complete only after all rules have been
processed. The working labels are called partial labels; the partial label for a
hypotheses is updated whenever a rule is processed with the hypothesis in its
consequent, and the label for a default hypothesis is computed when a rule is
processed which has the default hypothesis in its antecedent.

When KB-Reducer processes each rule, it first determines the rule label (the set
of minimal environments that satisfy the antecedent of the rule), by
minimizing the conjunction of the labels for the literals in the antecedent. The
partial label for the hypothesis in the consequent of the rule is then updated
by forming the disjunction of its current partial label and the rule label, and
minimizing this expression.

KB-Reducer applies checks for redundancy and ambivalence immediately
after computing each rule label. Note that, in order to report any anomalies to
the user, KB-Reducer needs to record the identities of rules used to create
labels, so that the user can inspect the problematical inference chains and
rules, and decide what action, if any, to take to remove the anomaly. The KB-
Reducer checks are defined as follows.

The Redundancy Check The KB-Reducer redundancy check is performed
in two phases. A check for unfirable rules is done immediately after
computing each rule label. If the label consists entirely of impermissible
environments, then the rule is unfirable. (Note that the user of KB-Reducer is
able to specify impermissible environments, called semantic constraints in
Ginsberg's paper [Ginsberg:88].)

Once all labels have been computed, KB-Reducer checks for redundant rules
by examining the labels for all hypotheses. The rules whose rule labels
contribute to each label are identified, and any rule which uniquely
determines some environment for some hypothesis is defined to be non-
redundant. After all non-redundant rules have been determined, any
remaining rules are considered redundant. For example, consider the rules
below:

 p ∅ q

10

 q ∅ r
 p ∅ r

The label for q is p (from the first rule), and for r is p (from either the second
or last rules). The first rule is non-redundant, because it uniquely determines
an environment in a label (for q). The second and last rules are considered
redundant by KB-Reducer. In this case, either of these rules (but not both)
may be removed from the knowledge base. In general, it is necessary for the
knowledge base designer to inspect the redundant sets of rules reported by
KB-Reducer to determine which can be removed safely.

Note that this procedure for detecting redundant rules is described in a later
paper of Ginsberg's [Ginsberg:93]. The original KB-Reducer redundancy
detection procedure, described in [Ginsberg:88] was incorrect, as it was
sensitive to the order in which rule labels were computed.

The Ambivalence Check The ambivalence check is applied immediately
following the redundancy check, and after the partial label for the consequent
hypothesis is updated. KB-Reducer inspects the partial labels for each
hypothesis which conflicts with the consequent hypothesis of the current rule
(this includes complementary literals, and hypotheses which are specified by
the user as conflicting, by means of semantic constraints). If there is an
environment in the partial label of one hypothesis which is either a subset or
a superset of an environment in the partial label of the conflicting hypothesis,
then KB-Reducer reports a contradiction. If there is an environment in each of
the two partial labels (which are not subsets/supersets) for which their union
is not impermissible, then KB-Reducer reports a potential contradiction. This
means that, unless there is some additional semantic constraint that rules out
the simultaneous satisfaction of both partial labels, then both conflicting
hypotheses will be inferred.

Performance Considerations for KB-Reducer KB-Reducer is implemented
in LISP, and takes 10 cpu hours to fully check a 570 rule knowledge base
(running on a LISP workstation), generating 35, 000 environments to do so.
This is acceptable, since the users need not be present while the system runs.
Also, once a knowledge base has been reduced, when new knowledge is
added it should not be necessary to re-run the entire reduction again, only
those parts of the reduction affected by the changes.

The performance complexity of KB-Reducer is proportional to the number of
environments that it must generate in order to check a knowledge base. The
worst case is when, for each finding f, environments must be generated which
contain either f, ¬f or neither. This means that 3n environments need to be
generated, for n findings. The worst case only occurs when every
combination of findings is included in the label for a hypothesis. Since a label
contains minimal (non-subsumable) environments, this would require a

11

knowledge base designer to write rules which make distinctions between 3n
data combinations, for n data items. For a small system with 25 data items, for
instance, this would require a knowledge base larger than any hand-crafted
system built to date. Therefore, Ginsberg concludes that this worst case will
rarely occur. A similar argument is presented by de Kleer in support of the
ATMS, and by Preece [Preece:93] in support of the COVER deficiency
checking method.

Subsequent Development of KB-Reducer KBR2 was developed in 1990,
in collaboration with Boeing, extending KBR1 to check knowledge bases
written in a subset of first-order logic [Ginsberg:93]. In 1992, KBR3 was
developed at Boeing to check knowledge bases containing equations
[Dahl:93]. In addition to the technical results of the KBR project, a number of
practical results have been obtained. KBR3 is in use at Boeing, and seven of
their KBS have been analysed using the tool to date. (Perhaps ironically, KBR
was never used operationally at AT&T, where its initial development took
place). A variety of faults were detected in these systems, illustrating the
utility and practicality of this type of verification tool. Two specific
observations are worth noting here: first, despite the fact that, in theory, the
KBR algorithm is intractable [Ginsberg:88], none of the Boeing applications
verified so far have exhibited the worst-case complexity [Dahl:93]; second,
despite the first observation, the tool is very expensive to run, and the
developers note that an incremental approach to verification would render
the tool more practical. One techniques for incremental verification is offered
by the COVER tool, described below.

2.2.3 COVER: COmprehensive VERifier

The first version of COVER was developed in the U.K., and used to check a
medical KBS application [Preece:90]. Subsequent development was carried
out at Concordia University, Montréal, in the context of a research contract
with Bell Canada Inc. Like EVA, COVER is Prolog-based, and performs
verification using a goal-directed theorem-proving strategy. Knowledge bases
are first converted semi-automatically into the Prolog-based knowledge
representation used by COVER; converters have been developed for four
representation languages to date, but the COVER representation is capable of
capturing only declarative aspects of the KB.

One of the goal's of Bell Canada's expert systems evaluation project was to
define formally a comprehensive set of KB anomalies. These formal definitions
were used as a basis for the checks performed by COVER [Preece:92c], and as
a basis of comparing several of the North American verification tools
[Preece:92b].

12

An important part of the development of COVER has been to apply it to a
diverse collection of KBS applications. The tool has been used to find faults in
KBS developed by Bell Canada, NASA, 3M Corporation, and the U.K. health
services [Preece:92a], to solve a variety of tasks including diagnosis and
planning. Study of these verification efforts has yielded data on the relative
utility of the various verification checks. In addition to confirming the value
of this approach to verification, these results suggest that the most effective
checks are the simplest: the integrity checks were found to detect the highest
percentage of faults in the systems surveyed.

The COVER verification operations are divided into three groups, related by
the methods used to implement them: integrity checking operations, rule
checking operations, and rule-chain checking operations. The reason for this
separation is purely pragmatic: the computational cost of performing the
three categories of checks is very different in each case; moreover, integrity
anomalies which represent actual errors will usually result in rule and chain
anomalies, while rule anomalies will certainly result in rule chain anomalies.
Separating each category affords more flexibility to the user of COVER, and
can make the root cause of anomalies much clearer. For example, if there are
two duplicate rules in a system, and COVER is asked to check first for rule
chain anomalies, then there will be redundancy in every inference chain
which uses the consequent of the duplicated rule, as the following example
shows:

 p ∅ q (1)
 q ∅ r (2)
 q ∅ r (3)

Here, the duplicate rules (2 and 3) result in the reporting of the redundant
inference chains {1, 2} and {1, 3}. In a real system, there could be many
anomalous inference chains reported because of a few rule pair problems; by
running the rule checker before the rule chain checker, the user will be able to
detect and correct problems with pairs of rules before running the expensive
inference chain checking procedure.

Implementation of COVER The COVER program first performs syntax
checking on the rule base, as it is read in. Each rule in the COVER rule
language is written in disjunctive normal form, and COVER normalizes the
rules by splitting each conjunction into a separate rule with the same
consequent, so that each rule is in clausal form. Also, the conditions in the
conjunctions are ordered at this stage, to make subsequent checks more
efficient. The original rule identifiers are preserved in this transformation, so
that anomalies can be reported to the user when found.

The integrity checker builds a number of important cache tables, including a
table which references all data items against the values they can legally take

13

(either by firing a rule or by asking the user). Building this table is linked with
the check for unobtainable data items, unused askable declarations, and
useless rules. Once complete, the table is used in the check for unsatisfiable
conditions, dead-end rules and missing values. The performance of the
integrity check is O(n), where n is the number of rules in the rule base.

The rule checker compares each pair of rule antecedents and consequents.
This is efficiently implemented because all antecedents are conjunctions and
their conditions were ordered during syntax checking. This performance of
this check is O(n2).

The implementation of the rule chain checker is divided into three sub-
procedures: creating goal environments, checking goal environments for
redundancy and ambivalence, and checking goal environments for
deficiency. The user must first select which goal, or set of goals, are to be
checked. This could be the top-level goal of the entire knowledge base, or a
lower-level goal, depending on the modularity of the system, and the extent
to which the user wishes to apply the checking at that particular time. This
feature is included to give the user additional control over the checking
process, and is purely a pragmatic consideration. After the goal or goal set
has been selected by the user, COVER uses a meta-interpreter similar to a
backward-chaining inference engine to establish the set of all environments
which lead to the establishing of some value for the goal. Each such
environment is called a goal environment in COVER. The number of goal
environments e for a particular goal g is dependent on the number of rules s
which have a particular data item as their subject, and the length of inference
chains in the knowledge base c. e is proportional to sc. Performance of the
procedure used to establish goal environments is O(e).

Note that the procedure used to establish goal environments by COVER is
similar to that used to establish rule labels by KB-Reducer, except that
COVER uses a goal-directed strategy (because the goal set is pre-selected by
the user) and KB-Reducer uses a data-driven procedure (more specifically, it
is finding-driven). Goal environments in COVER are equivalent to rule labels
in KB-Reducer for rules which have a goal in the selected goal set as their
subject. Note also that, during the procedure for finding goal environments,
COVER automatically discovers any cyclic inference chains. These need to be
removed for goal environments to be created properly – in this requirement,
COVER is equivalent to KB-Reducer.

Having established the goal environments, COVER checks them for
redundancy and ambivalence, using the same comparison procedures as
those used for the rule antecedents in the rule check. This works because each
goal environment can be considered to be a conjunction of literals, similar to
rule antecedents in their normalized form. The performance of this check is
O(e2).

14

To check deficiency in the set of goal environments, COVER uses a novel
method to control the combinatorial explosion which would otherwise render
the problem intractable [Preece:93]. Instead of generating and testing every
combination of data items and values present in the set of goal environments,
COVER uses the information in the existing rules to determine which data
items are relevant to one another, and restricts its generation of environments
to only these 'plausible' cases. Also, COVER generates environments in order
of size, and if it finds small missing cases, it need not generate environments
which subsume these.

The limitations of the COVER deficiency checking procedure lie in the
assumptions made by the two heuristics. The first, that of only considering
relevant combinations of data items, relies on the assumption that all such
combinations will be determinable from inspection of the existing rules. If the
knowledge engineer fails to relate two data items in the rule, then COVER
may not detect missing rules which use a combination of these items.
However, this is really a fundamental limitation of all anomaly checking
programs: they can only work by syntactic inspection of the existing
knowledge base; they have no access to semantic knowledge about the real
world. The philosophy behind the first heuristic used by COVER is that it is
more reasonable to use information about the relationships between data
items as indicated in the existing knowledge base than to make the
assumption that any set of data items may be relevant to one another, which
can lead to the reporting of an unnecessarily large number of semantically-
meaningless rules.

The second heuristic used by COVER is that of testing smaller environments
first, and not checking any larger environments that are subsumed by the
smaller ones. While this guarantees that all logically-deficient combinations of
data items and values will be found by COVER, it also results in minimal
deficient cases being reported, unlike the methods of RCP and ESC, which
report missing cases including a value for every data item (parameter)
present in the table. It is possible to criticise COVER on the grounds that the
minimal combinations may omit relevant item/value pairs, however, it is
equally possible to criticise the other approaches on the grounds that they
often include unnecessary item/value pairs. The question here is whether it is
more reasonable to present minimal cases to the knowledge engineer and
expert(s), who can then decide whether additional constraints are required on
any rules which may be added to fill the gaps, or whether the users should be
expected to prune unnecessary conditions.

Concluding Note The data obtained from use of declarative verification
tools such as COVER and KBR reveal a subtle relationship between anomalies
and faults in a KBS. Anomalies are merely symptoms of probable faults:
when an anomaly is detected, some effort is usually required decide if it

15

indicates a fault and, if so, what that fault is. Not every anomaly indicates a
fault. The main reason for this phenomenon is that few realistic KBS
applications have a pure declarative semantics; many of these systems have
some procedural aspect, which interferes with the declarative semantics
[Preece:92a]. The following approaches address this problem by treating a
KBS as a procedural system.

2.3 Procedural Verification

Many KBS operate in a procedural manner, performing tasks defined
imperatively. This is especially true of systems using production rules, which
use a global data structure, working memory, to represent the current state of
problem-solving. The state of working memory at any given time determines
which rules are able to fire at that time; when a rule fires, its "actions" are
reflected by a change in the state of working memory. Procedural verification
techniques exploit the procedural semantics of this type of KBS in order to
prove properties concerning the reachability or non-reachability of certain
working memory states from valid initial states. For example, it is possible to
prove that no state can be reached which will violate pre-defined invariants,
such as the MALE(x) and PREGNANT(x) semantic constraint described above.

In this spirit, a number of successful attempts have been made to verify KBS
applications [Gamble:91, Rushby:89, Wood:90]. However, all of the systems
verified in these attempts have been simple, "toy" problems (such as "tic-tac-
toe" [Rushby:89] and the supermarket "bagger" example [Gamble:91,
Rushby:88]). To establish the efficacy of this approach to verification, more
complex examples must be explored. This is especially necessary since, even
with software support, a great deal of effort was required to prove properties
of the simple systems.

Experience to date has shown that obtaining formal requirements
specifications against which to verify KBS is a serious difficulty in applying
the above techniques [Gamble:93]. Unlike the declarative approach,
procedural verification cannot be performed without such specifications. (The
declarative approach can still find inconsistencies and redundancies in the
absence of any formal specifications, since these properties are generic to any
logic-based KB.)

In spite of the above limitations, this approach provides a promising means of
verifying KBS which operate in a largely procedural manner. Moreover, a
clear advantage of this approach is that it provides an integrated means of
verifying hybrid software systems which contain both knowledge-based and
conventional imperative components. Evidence for this was provided by an
IBM project in which a pseudo-procedural KBS was verified using an
adaptation of IBM's "cleanroom" validation methodology [Highland:92].

16

3 KBS Testing

Validation entails testing: the decision as to whether a KBS meets some
criterion is based upon evidence obtained by running the system through a
set of tests. The results of validation will only be credible when the test-set is
sufficiently representative of the domain of problems that the system will be
required to solve when in use. The fundamental problem in testing
knowledge-based systems is the same as that for conventional software:
systems cannot be tested on all input cases because the input domain is
intractably large [Rushby:88]. The problem, then, is to choose a reasonable
subset of the input domain that provides the maximum assurance of system
reliability. The strongest proposal along these lines is thorough testing
[Goodenough:75], which will find all faults in a program by formulating a set
of test cases which are called a thorough test set. Formulation of a thorough test
set depends on identifying a test selection criterion C which guarantees:
a) that all test sets T satisfying C give the same results when run on program

F (in this case, we say that C is reliable); and
b) that if F is faulty, then some T satisfying C will fail when run on F (we say

that C is valid).

There are several serious problems with applying this method in practice
[Weyuker:80]. The most serious problem is that the difficulty of formulating
C is equivalent to a formal proof-of-correctness for C. In fact, problems with
applying the theory of thorough testing led researchers to the technique of
partitioning the input domain. In the following sections, we consider several
ways of doing this.

3.1 Function-Based Partitioning

Validation establishes that the system meets its requirements with respect to
functionality; therefore, all such requirements should be specified as precisely
as possible during the early stages of development [Batarekh:91].

3.1.1 Knowledge-Based System Requirements

Knowledge-based system requirements can be identified and grouped
according to whether they are "AI software technology-based" or
"conventional software technology-based". In an influential report, Rushby
has observed that, although many important elements of AI software can be
only weakly specified at best due to their reliance on human knowledge or
skill, many other requirements for these systems are no different in principle
from those of conventional software [Rushby:88]. As examples of such service

17

requirements, he cites input and output formats, user interface requirements,
and processing rate, and he points out that these can and should be specified
as precisely and formally as for conventional software. The issues unique to
validating knowledge-based systems are concerned with the essentially "AI"
aspects of these systems (that is, those utilizing AI techniques), which Rushby
terms the competency requirements. He proceeds to identify two sub-types of
competency requirements: minimum and desired.

The minimum requirements seem to have much in common with safety
properties; that is, they state not only what the system must always do, but
also what it must never do. The idea is that, even where it is too hard to
specify precisely the optimal solution to a problem-solving task, it may well
be feasible to specify a minimally-valid solution. The hope here is that such
requirements will be specifiable with greater precision than the desired
properties, thus permitting them to be validated with a greater degree of
reliability. This in turn would promote acceptance of knowledge-based
systems since, whatever else they may or may not do in practice, at least there
would be a high degree of assurance that disasters will not follow from their
introduction in safety-critical applications.

If we can specify the service requirements and minimum competency
requirements with a fair degree of precision, this leaves only the desired
competency requirements. Rushby suggests two possibilities in this case: if
there is a deep model for the domain (for example, a simulation of an
electrical device), it can be used to generate tests against which to compare
the knowledge-based system; in the absence of a deep model, comparison
with human experts is suggested as the only recourse. Rushby stresses that, in
any case, the comparison standard should be identified at the outset of
development, as the target for system developers to meet.

3.1.2 Equivalence Class Partitioning

The specification of a knowledge-based system provides a generally specified
functional relation F : I ∅ O, where F is the knowledge-based system and I
and O its input and output domains, respectively. Since it will usually be
infeasible to test every input/output pair because of the sheer size of most
knowledge-based system input domains, we seek equivalence classes which
partition the input space into classes of input which are expected to produce
similar output. We can then use these to design tests which will determine if
the system behaviour on the input classes is acceptable, based on the required
output classes. We first identify each equivalence class Ik to be a set of input Ik
℘ I, which the system is expected to map to output class Oj ℘ O. Then, we
select at least one sample input ik Ik from each equivalence class, and we test
that it does indeed map to an output oj Oj. These sample pairs (ik , oj)
constitute our test cases.

18

The revealing subdomain method [Weyuker:80] from the software engineering
literature is an implementation of the equivalence class idea. Intuitively, a
revealing subdomain is a class of input the elements of which behave
identically: either all produce correct output or none does. There are two
stages to defining revealing subdomains: the problem-partitioning and
solution-partitioning stages. In the problem-partitioning stage, as described in
[Weyuker:80], the problem specification is used to identify classes of input
that should be treated identically by the system. The category-partition method
is one technique for doing this in conventional programs [Ostrand:88].
Essentially, this method entails identifying distinct functional units from the
program-independent requirements documents, and determining the
essential characteristics of the input for each unit. In the solution-partitioning
stage, the solution specification for the system is studied in order to
determine sets of input which will be treated identically by the program. This
is related to structural testing of the system, in that it is likely to involve
studying paths through the system.

Following these two stages of analysis, the revealing subdomains are defined
to be the intersection of the two sets of input classes. That is, a revealing
subdomain is a set of inputs which should (according to system requirements)
and will (according to system design) be treated identically by the system. For
example, in a medical diagnosis system, a set of input cases (sets of patient
symptoms) which indicate a common disease and which would result in the
same set of rule firings by the knowledge-based system, would constitute an
equivalence class. The definition of equivalence class is equivalent to the
definition of a revealing subdomain given previously. Unfortunately, in
practice we cannot define a revealing subdomain I such that, if the system
correctly processes input i I, then we can be assured that the system will
correctly process all i I. Such a formulation would be as hard as a full proof-
of-correctness for the program [Weyuker:80]. Instead, the best approach
seems to be to define revealing subdomains which reveal the presence of
specific errors in the system. We want to be able to say that, if an error E is
present, and E affects the processing of input i I, then I is defined such that
E affects all i I. Now, if the system correctly processes a single input i I we
can be assured that E is absent; however, if i is processed incorrectly then we
cannot say if this is due to E or to some other unspecified error.

Preliminary evidence for the applicability of the revealing subdomain method
of functional testing to knowledge-based systems is presented in [Rushby:90].
A rule-based knowledge-based system is analysed and a complete set of
revealing subdomains is distinguished; test cases are generated for each
subdomain based on the distinguishing characteristics of each subdomain,
and errors are detected in the system. Although the system used is fairly
simple, it is a real application. This evidence for the efficacy of the revealing
subdomain method is not conclusive, but further research is encouraged.

19

3.1.3 Risk-Based Partitioning

The heuristic testing approach advocated in [Miller:90] provides a practical
synthesis of ideas from the approaches described above. The principle in
heuristic testing is that system reliability is a more important issue than bugs in
the system. In other words, rather than seeking to eradicate all bugs in a
knowledge-based system, we seek assurance that any bugs remaining will be
harmless. Assuming that, in a complex knowledge-based system, we will
never be sure that we have removed every bug, it is desirable to seek
assurance that remaining bugs are unlikely to cause serious harm.

The heuristic testing method is so-named because it identifies fault classes
which should be validated in order of priority: the idea is that it is a
reasonable heuristic to look for each class of fault in order of seriousness.
Miller identifies ten classes; we focus on five of the more interesting ones to
give a flavour for the method. The five are listed in the order of priority
suggested by Miller:
• Basic safety As the name implies, these faults, if present in the

system, would have a direct or indirect causal relationship with harmful
actions. These actions are identified by structured interview with domain
experts, by looking for actions which, if properly or improperly performed
or recommended by the knowledge-based system, could lead to harm (an
example given is opening an airlock door on a spacecraft when it is not
known that all occupants are wearing spacesuits).

• Essential function This class can be considered equivalent to those
minimum competency requirements not covered by the class of basic
safety requirements. They represent a lower bound on system competency
not involving basic safety.

• Robustness-failure These faults are caused by deviant input
conditions. These include familiar problems such as typographical errors,
overloaded input, values out-of-bounds or of the wrong type, and so
forth.

• Secondary function These are faults in non-critical system functions,
which would seem to include functionality in the desired competency areas,
and may also include functions such as user explanation and help
facilities.

• Error-Metric This class can be regarded as a "safety net" for faults
which are missed out from the other fault classes. Metrics can be created
based upon statistical analyses of the structural properties of the
knowledge-based system, and the existence faults may be hypothesised
based on the results of applying the metrics. For example, a metric may
measure the complexity of an individual rule based upon the logic therein;
a reasonable hypothesis based upon this metric might be that errors are
more likely in highly complex rules than in simple ones. The difficulty,

20

however, lies in finding good metrics. In the example, a single complex
rule may be conceptually easier to understand than a logically-equivalent
inference chain of simple rules. Metrics in software engineering are based
upon a great deal of experience in writing many thousands of programs. It
will be several years before the same breadth of experience is available for
designing good metrics for knowledge-based systems. In the meantime,
some researchers have produced metrics for quantifying knowledge base
modularity [Jacob:90, Mehrotra:93], rule base complexity [Chen:93], and
the metrics for knowledge-based system search space complexity,
discussed in Section 3.2.

One advantage of the heuristic testing approach is that its use is not
predicated upon the existence of complete functional specifications for the
system. Many of the fault classes can be (at least partially) constructed by
interviewing domain experts and/or consulting system code.

3.2 Structure-Based Partitioning

The idea in structure-based testing is to validate the system by exercising as
many of its structural components as possible. In conventional software,
structural testing is usually based upon viewing imperative programs as flow
graphs: a minimal criterion is to exercise every statement (node) in the
program (graph); a better criterion is to exercise all outcomes of each decision
point (traverse each edge in the graph) at least once. This is called the
minimally thorough structural testing criterion [Huang:75]. However, it is still
too weak to be useful in practice, because many faults will be too subtle to
manifest themselves in every execution of a given statement. The context for
the execution of the statement, in terms of the state of the program variables
at that moment, needs to be accounted for [Rushby:88]. Path testing addresses
this problem by attempting to execute every path through the program.
However, this method is not foolproof, since two different test cases may
follow the same path and yet one may reveal an error while the other does
not.

The first problem in applying structural testing techniques to knowledge-
based systems is to formulate an adequate notion of path for these systems.
The purpose of structural testing for rule-based knowledge-based systems is
to ensure that test cases are run on the rule-based system which exercise each
path through the rule base [Rushby:90]. There are three tasks involved:
1) generate paths from the rule base according to certain constraints;
2) create test cases for each path;
3) run the test cases on the rule base.

There is a trade-off at the heart of this issue: the weaker the constraints used
in path generation, the easier generation will be, but this may result in

21

wasteful testing of invalid paths; the stronger the constraints, the more
difficult generation will be, but testing will be more efficient. The very
strongest constraints will result in exhaustive generation of all possible valid
paths, although this may not be computationally feasible for very complex
rule bases. In the following sections, we consider four proposals for path
testing of rule-based knowledge-based systems.

3.2.1 EVA approach

The EVA system [Chang:90b] features a structural test case generator based
on a dependency graph (DG) of the rule base. The first step in this procedure
is to create a connection graph of knowledge base rules. Consider the
following simple rule set (based on an example in [Kiper:92]):

 p ∅ q (1)
 q ∅ r (2)
 q r ∅ s (3)
 p ∅ s (4)
 r s ∅ t (5)

In the DG, the rules are prepresented as nodes, and an edge is drawn from
node i to node j if a literal in the consequent of rule i unifies with a literal in
the antecedent of rule j. The DG for the above rule set is shown below.

1

2

3

4

5

Note that the presence of an edge from node i to node j to another does not
necessarily mean that firing rule i would lead to the firing of rule j. As
Rushby observes in [Rushby:90], there would be an edge between the
following rules, even though firing the first rule would actually prevent the
second from firing:

 p ∅ q ¬r
 q r ∅ s

22

EVA uses the DG to generate a rule flow diagram, in which nodes represent
rules and edges represent rule firing sequences. This implies that additional
sequencing information needs to be employed, because the DG does not
record the fact that more than one rule may jointly enable some rules. In the
graph above, either rules 2 and 3 or rules 2 and 4 jointly enable rule 5, but this
information is not apparent from the graph alone.

EVA creates a set of paths from the flow diagram such that each rule appears
in at least one path. Test cases are then generated for each path; each of these
is a data set which satisfies the conjunction of the antecedents of all rules on
the path. These are generated using the constraint solver described in Section
3.3. Working from the example rule set graphed above, EVA would create
four paths, as follows: (1, 2, 5), (1, 3, 5), (1, 2, 3, 5), (4, 5). The conjunctive
expressions for generating test cases for these are as follows:

 (1, 2, 5) p q r s t
 (1, 3, 5) p q r s t
 (1, 2, 3, 5) p q r s t
 (4, 5) p r s t

In actual fact all of the above paths can be exercised with the single input p,
due to the highly redundant nature of the simple rule set. (Consider the
antecedent of rule 5: p directly implies s from rule 4, and p indirectly implies r
via rules 1 and 2; the combination of rules 1, 2 and 3 is subsumed by rule 4. It
is not clear from the published reports whether the EVA method retains
enough sequencing information to realise this, but it seems clear that the
sequencing information is important in practice.

3.2.2 Kiper's approach

The graphing method proposed by Kiper [Kiper:92] records enabling
relations between rules. The meaning of an edge between two nodes i and j in
one of Kiper's graphs is that, as a result of firing all the rules on the path
leading to i, rule j is now firable (though whether j fires immediately after i
depends on the conflict resolution strategy employed in practice by the
inference engine). The Kiper graph of the earlier set of rules is shown below
(this is taken from [Kiper:89]).

23

1

2

3

4

2

5

However, it is not clear from Kiper's method whether this is the only possible
graph, or what the precise meaning of the sharing of rule 2 between the two
separate chains is. Kiper's paper states the additional condition that an edge
from rule i to rule j means that rule j was not firable before rule i was fired.
This is inconsistent with the example shown above, where the "enabling" of
rule 2 by rule 4 in the second chain is puzzling in view of Kiper's additional
condition: rule 2 was firable before rule 4 fired. To understand this, it is
necessary to note that, in the first chain of the graph, rule 1 is seen to enable
rule 2. When rule 1 is firable, so is rule 4 (they have the same conditions), but
since neither of these rules depends on any other rules, it seems to make
sense to draw the graph in the way shown. However, following Kiper's
definition (without the additional condition), it would appear to be strictly
possible to draw the second chain thus: rule 2 ∅ rule 4 ∅ rule 5 In any case,
these graphs will be difficult to compute in practice – a point also observed in
[Rushby:90].

3.2.3 Rushby and Crow's approach

Essentially, this is an extended version of the EVA DG method, described in
[Rushby:90]. It is designed to improve over the EVA approach without
incurring the extreme computational expense of Kiper's method. Once again,
rules are represented as nodes, and the first condition on edge formation is
that an edge may be drawn from node i to node j if a literal in the consequent
of rule i unifies with one in the antecedent of rule j. However, Rushby and
Crow place two additional constraints on the drawing of edges:
• The antecedent of rule j should at least be logically consistent with the

antecedent of rule i; as a stronger constraint, the antecedent of rule j
should be logically consistent with the antecedents of the path of n rules
terminating with j (we set a bound n to control the computational
difficulty of implementing this constraint).

• Drawing an edge from node i to node j should not introduce a cycle into
the graph.

24

The first of these constraints is supposed to avoid problems such as the one
described under the EVA approach, above:

 p ∅ q ¬r
 q r ∅ s

However, this will not be the case, unless we tighten the constraint further:
the antecedent of rule j must be logically consistent with the conjunction of the
antecedent and consequent literals of rule j. The other improvement offered
by this method over the EVA approach is that the graph is post-processed to
eliminate paths which do not correspond to potential rule chains: an arc is
drawn between edges from nodes which jointly satisfy a common successor
node. This is illustrated below, using the same ruleset as the earlier examples.

1

2

3

4

5

Since many knowledge bases contain legitimate (and even desirable) cycles,
the restriction on cycles imposed in Rushby's proposal is rather restrictive.
Tools such as COVER use the notion of input items (or askables) to break
cycles in cycle-detection procedures [Preece:92c]. Once detected, the cycles
are reported so that the knowledge base designer can decide if they are
legitimate. A path generator must be able to work with cycles, and it appears
that the notion of input items would serve adequately here, too.

The other problem with Rushby's proposal is that the details of what
constraints are needed to control path generation are rather sketchy. In
particular, the post-processing method (for drawing arcs between the edges
as illustrated above) is not formalised. Nevertheless, Rushby comes closest to
the heart of the trade-off between constraints and computability, and the
constraints proposed are certainly towards the weak end of the scale
(stronger than used in EVA but weaker than used by Kiper). These ideas beg
further investigation.

3.2.4 COVER approach

25

Verification tools such as COVER can be used to provide rule execution
paths. As described in [Preece:92c], COVER attempts to exhaustively
compute all execution paths for a rule base, in order to check them for
redundancy and conflict. A product of this analysis is the set of environments
for each rule base output, associated with the chains of rules that establish the
outputs from the environments. For the example rule set used above, COVER
would compute the environments and associated rule-chains shown below:

 Output: Environment: Rule chains:
 q { p } (1)
 r { p } (1, 2)
 s { p } (4) and (1, 2, 3)
 t { p } (1, 2, 3, 5) and (1, 2, 4, 5)

Not only does this analysis produce the execution paths for the rule base, but
also it generates the sets of test cases required to exercise those paths, in the
form of environments. Note that COVER would also detect that either rule 3
or rule 4 (but not both) is redundant in this rule set – the redundancy would
probably be removed before doing a dynamic analysis, to eliminate testing of
unnecessary paths.

This analysis is not unique to COVER: EVA, KB-Reducer [Ginsberg:88] and
other inference chain verifiers also perform variants of it. The issue is how
practical this procedure is. Although the computational complexity is
exponential, and therefore the procedure is intractable in the worst case,
empirical evidence produced from trials of COVER and KB-Reducer on
substantial real-world knowledge bases suggest that it is perfectly feasible in
practice.

As we have seen, there is a trade-off between computability and the strength
of the definition of paths in rule bases. If we set strong constraints on path
formulation, we face hard computations. If the computations prove
intractable, we can relax the constraints, allowing some invalid paths to be
generated but permitting the analysis to proceed where it would otherwise
have to be abandoned. We need to experiment to determine how such bounds
might be determined. We can also study ways to make the analysis more
tractable, by designing knowledge bases that are more amenable to testing
strategies (by the use of modularization, for example).

Even if we can overcome the problem of computing all paths for a knowledge
base, a second significant problem in applying exhaustive path testing to
knowledge-based systems is the size of the solution space. For example, the
size of the MYCIN search space has been estimated to be about 900 paths
(5.54) [Buchanan:87], using the metric bd, where b is the average branching
factor (b = 5.5 for MYCIN) and d is the average depth of search (d = 4 in
MYCIN). Therefore, about 900 test cases would be required to exhaustively

26

cover this space using structural testing, and every one of these cases would
have to be checked for correctness. However, the solution of a real-world
problem by MYCIN would involve the tracing of more then one path through
the knowledge base, and so the actual complexity is even worse than our
simple metric suggests.

A more realistic quantification of search space complexity for a knowledge-
based system is presented in [Shwe:89]. Here, the ONCOCIN knowledge base
is viewed as an augmented transition network (ATN) and a computation
formula is derived for the number of paths through the network. We do not
go into the details here, except to observe that as the size of ATNs based on
subsets of the ONCOCIN rule base grows from 4 to 29 rules, the lower bound
on the number of paths grows from 30 to 8163. This has serious implications
for the creation of test cases, as discussed below.

3.3 Test Case Generation Tools

The issue here is whether to obtain the test cases by selecting real past cases
or by generating artificial cases. Use of the selective approach ideally requires
a large number of well-documented historic cases, representing a wide
variety of problem types and the experience of different experts [O'Keefe:87].
In some domains, such as telecommunications, such cases are readily
available from logs of past sessions [Grogono:91]. However, in other
domains, such past cases may be rare or non-existent. In contrast, the
generative approach involves the creation of synthetic test cases. Although
such cases can be constructed manually by experts, to minimise bias it is
better to generate them automatically using randomised generation
procedures, ideally guided by knowledge about likely cases in the real world
[Shwe:89].

Each approach has its advantages and disadvantages. Real cases will
probably reflect the actual types and range of problems encountered in
practice, and have known correct (or at least acceptable) solutions. However,
they may be hard to obtain, especially if the domain is highly esoteric, and
may be incomplete, in the sense that many hard or unusual problems are not
covered by the available historic cases. Generated cases not only solve the
problem of lack of past cases, but also have the advantage that they can be
tailored to reflect appropriate problem types and ranges, as well as covering
unusual situations. However, human experts will need to be consulted to
ensure that realistic cases are generated, and also to provide acceptable
solutions for the cases (if these cannot be provided in any other way). Unless
several experts are consulted, this may result in a biased set of generated
cases.

27

Given the advantages and disadvantages of each approach, we concur with
O'Keefe's suggestion that a synthesis of both types of test case is probably the
best approach in general [O'Keefe:87]. This can be achieved by including a
good cross-section of real cases, together with synthesised cases to "fill the
gaps". In practice, most of the systems described in the literature for
generating test cases for knowledge-based systems use a synthesis of
techniques from the random, structure-based and function-based approaches.
We consider three systems: the Generic Testing Method [Miller:90], the
structural and functional test case generators of the EVA tool [Chang:90b],
and the domain-specific ScriptGen tool for the ONCOCIN knowledge-based
system [Shwe:89]

3.3.1 Generic Testing Method

Miller's Generic Testing Method (GTM), as described in [Miller:90], is
specifically designed for generating test cases for rule-based knowledge-
based systems. Nevertheless, in theory it is applicable to knowledge-based
systems using alternative knowledge representations, and even to
conventional software systems. The method is intended to be applied in the
context of the heuristic testing strategy: test cases are generated specifically
for each of the applicable fault classes, some of which were discussed in
Section 3.1. It is assumed that test cases generated using the GTM will be
supplied to the system by test driver software, using testing scripts to
simulate actual operating conditions (for example, by simulating the
interfaces of a knowledge-based system embedded in some other hardware
or software system). Note that the GTM is limited to addressing the problem
of generating test case input data only – the acceptable outputs have to be
determined for each case, and some method of checking the correctness of the
system outputs must be implemented.

The GTM is a structure-based test case generation method. The basic idea is
very simple: that errors in rules are more likely to be subtle than gross. For
example, given a rule condition A < C, where A is some attribute (data value)
and C is a constant, it is more likely that there is a small error in the chosen
value of C or a mistaken choice of comparison operator (perhaps it should
have been ≤ instead of <) than a major error in choice of A or magnitude of C.
The argument supporting this assumption is that most of the gross errors will
have been detected in verification and knowledge base inspection. Therefore,
for each specific rule condition, the GTM creates test cases of three kinds,
where appropriate: the case where the condition is exactly true; two cases
where the condition is "minimally" true and false, respectively; and two cases
where the condition is "extremely" true or false. (Here, the terms "minimally
true/false" and "extremely true/false" are used somewhat loosely: the
difference is that, in the "minimal" case, a slight change in the numeric
constant could affect the success or failure of the test, while in the "extreme"

28

case a slight change would have no effect.) Selection of numeric data values
in the test cases is determined by knowledge of an appropriate step size for
the attribute. Limits for the extreme values may also be determined by
relevant knowledge. Non-numeric attributes are treated as a special case of =
operator tests, unless their values are ordered, in which case any of the
comparison operators may be used and appropriate test cases may be
generated.

For rules with multiple conditions, there is an exponential increase in the
number of test cases required for exhaustive testing: as we have seen, one
condition requires at most five tests, two conditions requires at most 25 tests,
three conditions requires at most 125 tests, and n conditions requires at most
5n tests. Since this rapidly becomes unreasonable in practice, Miller suggests
weakened versions of the full GTM strategy, involving one test (the exactly-
true or minimally-true case) or three tests (exactly-true and minimally true)
for each condition.

The GTM is extended to generate test cases for rule chains by a procedure
similar to backward chaining, working backwards through rules whose
conclusions satisfy the conditions of the later rules in the chain. All primary
inputs discovered along the chain become part of the test case, and their
values are assigned using the basic GTM procedure. The places to start the
backward-chains (that is, the final conclusions of the chains) are determined
by the fault class that the GTM is being employed to detect. For example, to
test for basic safety faults, test cases need to be generated that lead to
conclusions concerned with basic safety. In this sense, the GTM can be
considered a structural (path) testing method, driven by a functional testing
strategy (heuristic testing).

3.3.2 EVA Test Case Generator Tools

The Lockheed EVA system [Chang:90b] consists of a broad range of
independent knowledge-based system verification and validation tools.
Several of the verification facilities were described in detail in Section 2; here,
we focus upon two of the validation tools: the structure-based test case generator
and the function-based test case generator. Both of these tools are based upon a
constraint solver program, written in Prolog. Given a conjunction of literals C,
the solver performs three steps:
1) identify the sets of dependent variables X and independent variables Y

appearing in C;
2) generate a set of assignments to all variables in X that satisfy the

dependencies specified in C;
3) randomly assign values to variables in Y, according to their types and

ranges.

29

Upon backtracking, the constraint solver will generate alternative
assignments to variables in X and Y, thereby creating a set of test cases.

The EVA function-based test case generator consists of the constraint solver
plus a set of constraints specifying the characteristics of functional test cases.
The constraint solver is domain-independent, while the constraints are
application-dependent and need to be specified anew for each knowledge-
based system validated using EVA. For example, the constraints might be
based upon a revealing subdomain analysis, as described in Section 3.1. The
constraint solver appears capable of generating both the input and output
parts of test cases, if the relationships between input and output can be
specified simply enough. However, it seems most likely that, in any realistic
domain, only the minimum output requirements could be specified in this way,
for if it were possible to write a simple conjunctive expression describing the
full input-output relation, then the problem would probably be too simple to
warrant a knowledge-based system solution. If the input-output relation
cannot be specified in the constraint solver, then human experts or a
simulation model will have to provide the required outputs as previously
discussed.

The EVA structure-based test case generator was examined in Section 3.2. It
automatically obtains conjunctive expressions for the constraint solver by
finding a path (inference chain) through the rule base that requires testing,
and creates a conjunction of input items that satisfy the antecedents of each
rule on the path. The process is repeated for each path that needs to be tested.
As we saw, there are two problems with this method. Firstly, the definition of
path is so weak that attempts will be made to test many invalid paths
(presumably, in such cases the constraint solver will fail to solve the
conjunctions). Secondly, rule enabling relations do not appear to be
adequately accounted for by the method, leading to inefficiencies and
inaccuracies in test case generation.

3.3.3 ONCOCIN ScriptGen

The ScriptGen system [Shwe:89] is a fully-realised demonstration of the
parallel model approach to generating knowledge-based system test cases. This
approach is based on the idea that test case generation is a knowledge-based
activity, and therefore an effective test case generator requires its own
knowledge base [Mars:87]. This knowledge base cannot be the same as that
used by the knowledge-based system, since then the system would only be
capable of testing the cases that it "knows about"; errors and omissions in the
system would not be revealed. For the same reason, the parallel model needs
to be constructed using the knowledge of different experts from those used in
building the knowledge-based system.

30

There are two types of parallel model, depending upon whether the model
can create the correct (acceptable) outputs for generated test cases, or the
input sets only. In the former case, the parallel model is similar to a deep
model for the domain; in the latter case, the parallel model is more akin to a
functional specification for the system. In neither case is it a replica of the
system itself. Knowledge in the parallel model will probably be at a more
abstract level than that in the system knowledge base, to keep the amount of
work in constructing the parallel model to a reasonable level. Otherwise, the
parallel knowledge base would be of comparable size and complexity to the
original.

The chief disadvantage of this approach is the effort involved in building the
parallel model. Furthermore, it will be necessary to validate the parallel
model itself, for obvious reasons. This is another argument for building a
parallel model that is far less complex than the original system. Moreover, if
there are bugs in the parallel model, then these will manifest themselves
when the system behaves "incorrectly", according to the erroneous
expectations of the model (this assumes that bugs in the parallel model will
be different to any in the original system – a reasonable assumption since
different experts supplied the knowledge). The parallel model approach to
validation will be of most value when the effort of building and validating the
parallel model is small relative to the effort of the alternative approaches
(having human experts painstakingly check the outputs of many blindly-
generated random test cases, or having human experts manually design and
check a set of test cases). The parallel model approach may be of greatest
value when testing needs to be repeated several times with different test
cases; the only additional effort each time will be that of checking the
correctness of the system outputs, if the parallel model is not capable of doing
this automatically.

The primary motivation for building ScriptGen to generate test cases for
validating ONCOCIN lies in the nature of the task performed by this expert
system. ONCOCIN provides recommendations to physicians concerning the
administering of treatment protocols to patients receiving cancer therapy.
These protocols specify standardised cycles of radiation and drug therapies to
be administered to patients over time periods lasting several months.
Therefore, each test case for ONCOCIN is a complex temporally-distributed
sequence of varying parameters, following a specified protocol. These cases
are called scripts, and a typical test script might contain values for 20
parameters over 10 visits: 200 values in total. Such scripts are hard to create
manually (especially if bias is to be minimised and coverage is to be
maximised), and even harder to check as to the required system
recommendations. ScriptGen was developed to perform the following tasks:
• Assist experts in generating test scripts by allowing the user to select goals

to test for a particular protocol, and then generating plausible sequences
of visit and parameter data to simulate realistic protocols with ONCOCIN.

31

• Assist experts in checking the acceptability of ONCOCIN
recommendations by providing script annotations that describe the
purpose of tests at each stage in the simulated protocol.

Although randomness is employed in generating the data in the scripts,
considerable protocol knowledge is used to constrain and guide the
generation (knowledge of how testing is to proceed), and to provide the
annotations (knowledge of what is being tested). The test goals are specified in
ScriptGen as a template, such that any script generated for protocol P from
template T is expected to produce the same ONCOCIN recommendations.
That is, ScriptGen employs a domain-specific implementation of the
equivalence partitioning method described in Section 3.1. Scripts within a
partition can be generated at random or to test boundary values for the
partition. If two scripts generated from the same partition result in different
recommendations, then the method (random or boundary-value) used to
generate them will suggest the likely source of error. Discordant output from
boundary-value cases suggest small errors in the constants used in rule
antecedent conditions, while those from randomly-generated cases suggest
gross errors in system knowledge base, such as missing rules or incorrect
rules.

ScriptGen was evaluated by an experiment in which ten errors were seeded
into the ONCOCIN knowledge base [Shwe:89]. A domain expert suggested
likely errors for this task. Test cases generated by ScriptGen successfully
detected five of these errors; subsequent analysis of these results revealed the
types of errors that ScriptGen is well-suited and ill-suited to detecting.
Interestingly, one of these results indicates that ScriptGen should only be
used after the knowledge base has been subjected to verification by anomaly
detection, because ScriptGen fails to detect redundancy (in fact, it can fail to
reveal errors in the presence of redundancy). In view of the results of this
evaluation, ScriptGen can be considered an error-based testing method, since
the equivalence partitioning method employed is directed towards revealing
the presence of specified types of error in ONCOCIN. It does not guarantee
the absence of unspecified errors.

Concluding Note As a final observation on the methods for generating test
cases for validating knowledge-based systems, there seems to be a dichotomy
in the available literature between domain-dependent systems which have
been used in practice (for example, ScriptGen) and generic systems for which
we could find no evidence of application as yet (GTM and EVA). Clearly, this
work is still in its infancy, but it shows promise.

4 KBS Evaluation

32

The sub-field of KBS evaluation is neither as well-delineated nor as well-
explored as the sub-field of formal verification. There are at least two reasons
for this fact: the first is that, by definition, evaluation addresses less well-
defined aspects of KBS, where there is little uniformity between systems in
different application domains; the second reason is that most of the work in
the validation domain has been carried out in university computer science
departments, where formal methods are a more common research topic than
empirical techniques.

One way in which we can assess the current state of KBS evaluation is to
consider the main problems with which the sub-field has been concerned.
Primarily, these problems are: the choice of standard against which the
system will be evaluated, the choice of test-set to which the system will be
subjected, and the choice of overall strategy in which evaluation will be
conducted. We have already considered issues in choosing the test set, above,
so this section focuses upon the other two questions.

4.1 Choice of Evaluation Standard

Ideally, we would always prefer to evaluate the performance of a KBS against
an objective standard, often referred to as a "gold standard". For this to be
possible for a given application, we would need to be able to obtain a set of
correct (or, at least, acceptable) solutions to each problem that the system will
be required to solve during evaluation. While this is possible in some
relatively well-defined domains, it is not possible in many – if not most –
domains in which KBS technology is applied. When no objective standard is
available, two alternatives have been proposed [O'Keefe:87]:
• Define the opinion of a human expert (or that of the consensus between a

group of human experts) to be the "gold standard". This may be
appropriate if the system is designed to emulate the abilities of the
expert(s) in question; otherwise, since all humans are fallible, this may be
a poor choice of standard.

• Instead of treating the human expert(s) as an infallible "oracle", have a
third-party group of experts compare – without knowing which is which –
the solutions from humans and machine to the same set of problems; the
machine can be considered to perform acceptably if there is no discernible
difference in its performance.

When a gold standard is available, a number of standard statistical metrics
have been adapted to measure the extent to which the results of the system
agree with the standard results. We briefly consider four quantitative
methods from the literature that are suitable for measuring agreement
between a knowledge-based system and the comparison standard (usually
human experts): the kappa statistic, the accuracy coefficient, the mean
probability score, and the paired-t test.

33

4.1.1 Kappa Statistic

A widely-used method for evaluating the agreement between a knowledge-
based system and human expert is the kappa statistic [Reggia:85] and also its
weighted variant [Cohen:68]. In its simplest form:

k =
(0p − cp)
(1− cp)

where 0p is the proportion of observed agreements between system and
expert, and cp is the proportion of agreements that could be attributed to
chance. The result k = 1 indicates perfect agreement, while k = 0 is the level of
agreement expected by chance alone. k < 0 would indicate a system which
performs worse than chance.

4.1.2 Accuracy Coefficient

The kappa statistic does not address the issue of uncertainty in the
knowledge-based system conclusions. The accuracy coefficient [Reggia:85]
takes this into account:

Q =
1

n(1− cp)
(ip − cp)

i=1

n

∑

where n is the number of test cases, cp is the level of conclusion certainty
equivalent to pure chance, and ip is the level of certainty assigned by the
knowledge-based system to the correct solution for the i th test case (this is
zero if the system failed to suggest that solution as a conclusion). Here, Q = 1
indicates perfect performance, Q = 0 indicates no skill (chance alone would
account for this), and Q < 0 indicates a level of performance worse than
chance.

4.1.3 Mean Probability Score

Another method used to assess system accuracy under uncertainty is the
mean probability score (MPS) statistic [Levi:89]. For example, assume that the
correct solution for the three test cases is x, and the system offers the
following conclusions (the bracketed numbers are probabilities representing
the level of certainty that the knowledge-based system has for each
conclusion): x [0.3], y [0.6], x [0.9]. The MPS for the conclusions of the system
for solution x would be:

34

(2(0.3 −1) + 2(0.6− 0) + 2(0.9− 1))

3
= 0.287

An MPS of 0 represents perfectly correct performance, 1 indicates perfectly
incorrect performance, and (c −1)2 indicates a level of performance due to
chance alone, where the probability of a chance agreement is c).

4.1.4 Paired-t Test

The paired-t test [O'Keefe:87] can also be used to compare agreement
between human experts and knowledge-based systems. For a set of test cases,
we can compute the difference between human and system results as
Di = Xi − Yi , where Xi are system results, and Yi are human results (or gold
standard results). Over n test cases, we have differences Di ...Dn , for which the
following confidence interval can be produced:

d ± n−1,α / 2t dS
n

where d is the mean difference, Sd is the standard deviation, and tn−1,α / 2 is the
value from the t distribution with n degrees of freedom. We can accept the
system as valid if zero lies in the confidence interval.

Additional statistical methods are considered in [Adelman:91, O'Keefe:87]. In
general, if complex statistical procedures are used to validate knowledge-
based systems, a statistician should participate in designing the validation
experiment and interpreting the results.

4.2 Choice of Evaluation Strategy

Early evaluation efforts were planned either in an ad hoc manner as in XCON
[Gaschnig:83], or used a variation on the blind-peer ("Turing test") approach
as in MYCIN [Buchanan:84]. Neither is capable of delivering a reliable KBS,
as experience shows [Gaschnig:83]: the initial evaluations of XCON and
MYCIN failed to reveal flaws in these systems which would cause them to
fail when fielded (XCON due to inadequate coverage of the validation tests;
MYCIN due to a lack of field evaluation). The current viewpoint identifies
two distinct types of validation activity, according to their placement within
the knowledge-based systems development cycle [Preece:90]. Laboratory
validation tests the system in an artificial setting, concentrating mainly upon
the technical performance aspects of the system requirements. Field validation
tests the system in situ, permitting the assessment of organisational and

35

ergonomic requirements. The purpose here, as observed in [Rushby:88], is to
systematically address each factor that could cause the users to reject the
system – an example is that of the MYCIN system, which was evaluated only
for its clinical utility after its diagnostic ability was validated as being expert-
level [Buchanan:84]. The remainder of this section considers the design of
laboratory and field validation procedures in more detail.

4.2.1 Laboratory Validation Procedures

Although some developmental validation tests will often be conducted
informally, the laboratory setting provides the validators with the maximum
control over experimental conditions. Therefore, at least some of the
laboratory validation tests should be the most rigorous type of validation
performed on a knowledge-based system. For this reason, a recent tutorial
[Adelman:91] recommends the use of carefully designed experiments for
laboratory validation. As defined by Adelman, the essential characteristics of
an experiment are as follows:
• Participants If the knowledge-based system is to be tested with

human users, then a test population of users needs to be recruited. For the
results of the experiment to be considered reliable, the users should be
selected at random from a population of intended users of the knowledge-
based system. If the knowledge-based system is designed to be embedded
in a larger software system, then it will not be necessary for human users
to participate in the validation (although the inputs to the knowledge-
based system from the external system will have to be simulated).

• Independent variables These are the experimental conditions. For
example, if the performance of a group of humans using the system to
solve test cases in the laboratory is to be compared with a control group
who did not use the system, then one independent variable is whether a
specific individual used or did not use the system.

• Tasks These are the test cases that the system will be used to solve.
Criteria for choosing these are discussed at length in Section 3.

• Dependent variables These are the measurements that determine the
acceptability of the results of the validation, as described in Section 4.1.

• Control procedures These are the procedures followed by the
validators to control the experiment. The reliability (that is, the likelihood
that the experiment can be repeated with the same results) and validity
(acceptability of the results) of the experiment depend for the most part on
these procedures. Factors that need to be considered to assure reliability
include:
– Effect of competing hypotheses: we must establish a causal link between

the independent variables and the changes in dependent variables, and
rule out any spurious factors.

36

– Randomisation: we do not want the results of the experiment to be
sensitive to choice of participants or tasks, so these should be selected
at random.

– Statistical validity: using methods such as increasing sample size and
careful choice of test hypothesis, statistical errors need to be controlled
for. A Type I error is committed when a valid system is rejected, and a
Type II error is committed when an invalid system is accepted.

– External validity: consideration of the accuracy of experimental
conditions with respect to users and tasks will increase the likelihood
that the results of the laboratory experiment will generalise to the
target setting.

Not all laboratory validation procedures need be conducted at the above level
of rigour. In practice, one would choose a procedure commensurate with the
objectives of validation. Alternative, less-rigorous procedures are considered
for field validation below, but all of these are also applicable to laboratory
validation.

4.2.2 Field Validation Procedures

The purpose of field validation is to demonstrate that the introduction of the
knowledge-based system improves performance of the tasks required of the
system. Sometimes this will be easy to demonstrate, such as when a
knowledge-based system performs real time fault detection in isolated
equipment (for example, a satellite). In other situations, such as the
introduction of an knowledge-based system for diagnostic decision support
in a hospital, it will be necessary to show that the users' diagnostic
performance is improved by their use of the system.

Typically, in field situations, it will be harder to control the experimental
conditions and thereby assure reliability and validity than in the laboratory.
Therefore, if it is not possible to perform rigorous experiments as described
above, the following are possible alternative methods, in decreasing order of
reliability and validity [Adelman:91]:
• Case study Case studies are the next-best alternative to fully-

controlled experiments in which lack of experimenter control is balanced
by careful methodological procedures to minimise the loss of reliability
and validity. For example, it may be impossible to reliably measure a
dependent variable where experts in the domain disagree over the correct
answers to test cases. In such cases, various agreement methods may be
employed, or it may be possible to take several alternative measurements
of the effect of the independent variables and see if they correlate well.

• Time series design quasi-experiment This design is useful where no
control group is available. Instead, the single group is essentially used as
its own control by taking a series of both pre-test and post-test

37

performance measurements over time. Thus, the effect of competing
hypotheses which explain performance variations over time (such as
seasonal variations or increasing user experience) can be controlled.

• Non-equivalent control groups quasi-experiment This design uses a
control group and takes a single pair of pre-test/post-test observations per
group. The weakness of the design lies in the fact that random sampling is
not used to select the groups (hence, the word non-equivalent). Therefore,
statistical tests applied to the observations from this study must control
for possible selection differences in the groups.

There are many more possibilities for empirical validation procedures than
the ones listed above, but these give a flavour for validators' options in
procedure design. The most important point arising from this is that
validators need to be aware of the reliability and validity implications of any
empirical procedures that they might wish to use.

5 Conclusion

Despite the considerable amount of activity in the field, KBS validation is still
an immature field. This assertion is based primarily on the following
observations:
• While certain issues have been well-explored, other important issues have

been neglected. This can be seen most clearly in the disparity between
work in verification and evaluation, where both the theoretical and
practical aspects of verification for rule-based systems are now well-
understood, but almost nothing is known about what constitutes a
thorough testing strategy for these systems.

• While many novel techniques and tools have been proposed in the last
decade, there have been few attempts made to evaluate the relative
effectiveness of these. No known experiment has been conducted to
compare state-of-the-art verification tools with state-of-the-art evaluation
techniques, in terms of their effectiveness in detecting different kinds of
fault in KBS.

• The field suffers from the problem of trying to "hit a moving target": when
work began, the majority of KBS under development were rule-based;
now, object-based, model-based and hybrid systems are becoming
common. Validation technology is still largely directed at the older, rule-
based type of system.

• The technology has not yet become adopted by practitioners. Recent
surveys show that ad hoc techniques dominate in industry, and
developers cite validation problems as among their greatest difficulties
[Hamilton:91, O'Leary:91].

38

To a certain extent, the trends mentioned in Section 2 seem to be emerging in
response to the limitations in the present state-of-the-art in validation. The
current NRC/EPRI-funded work at SAIC includes the following deliverables:
• A survey of the effectiveness of conventional software verification and

evaluation techniques for validating KBS [Miller:93a]. The survey found
that only the knowledge base component of a knowledge-based system
does not seem to be covered adequately by conventional software
validation techniques. The results of the survey are also potentially useful
for validation hybrid systems including conventional and knowledge-
based components.

• An experiment comparing a number of KBS verification techniques
[Miller:93b]. This experiment is one of the first to provide concrete
statistical measurements for the utility of knowledge-based verification
techniques. One finding was that a group using an anomaly detection tool
significantly out-performed its control group in identifying and locating
faults in two nuclear industry KBS applications.

• A set of recommendations for the validation of object-oriented software.
Preliminary findings suggest that a taxonomy of anomaly types can be
identified for this class of software which is compatible with the taxonomy
of anomalies for KBS software (this finding is supported by research into
validation of frame-based KBS, which may be seen as a special case of
object-based systems [Lee:93]). A convergence of these technologies may
provide a means of addressing the validation problems of hybrid software
systems in the future.

While the NRC/EPRI project is currently the largest validation initiative in
North America, the evolving nature of the field is reflected in the work of the
other active groups, including:
• Boeing's use of verification technology in the form of KBR3 [Dahl:93].
• Aerospace Corporation's efforts in validating hybrid software

[Landauer:93].
• The joint NASA/IBM effort in training industry to use existing validation

techniques [French:93].
• Recent interest in evaluating KBS testing strategies from a number of

universities in the U.S. and Canada [Preece:94, Kirani:92, Zualkernan:93].

Taken as a whole, these current efforts are addressing the limitations of the
field, making industry aware of the available technology, strengthening the
areas in which present technology is weak, and adapting to the changing
nature of KBS themselves.

Bibliography

39

[Adelman:91] Adelman, L. (1991). Experiments, quasi-experiments, and case
studies: A review of empirical methods for evaluating decision support
systems. IEEE Transactions on Systems, Man and Cybernetics, 21(2):293–301.

[Batarekh:91] Batarekh, A., Preece, A. D., Bennett, A., and Grogono, P. (1991).

Specifying an expert system. Expert Systems with Applications, 2(4):285–303.

[Buchanan:87] Buchanan, B. G. (1987). Artificial intelligence as an

experimental science. Technical Report KSL 87-03, Knowledge Systems
Laboratory, Stanford University, Stanford, CA.

[Buchanan:84] Buchanan, B. G. and Shortliffe, E. H. (1984). The problem of

evaluation. In Buchanan, B. G. and Shortliffe, E. H., editors, Rule-Based
Expert Systems: the MYCIN Experiments of the Stanford Heuristic
Programming Project, chapter 30, pages 571–588. Addison-Wesley, Reading
MA.

[Chang:90a] Chang, C. L., Stachowitz, R. A., and Combs, J. B. (1990).

Validation of nonmonotonic knowledge-based systems. In Dollas, A., Tsai,
W. T., and Bourbakis, N. G., editors, Proc. 2nd International Conference on
Tools for Artificial Intelligence (TAI-90), pages 776–782. IEEE, IEEE.

[Chang:90b] Chang, C. L., Combs, J. B., and Stachowitz, R. A. (1990). A report

on the Expert Systems Validation Associate (EVA). Expert Systems with
Applications, 1(3):217–230.

[Chen:93] Chen, Z. and Suen, C. Y. (1993). Application of metric measures:

from conventional software to expert systems. In Preece, A. D., editor,
Validation and Verification of Knowledge-Based Systems (AAAI-93 Workshop
Notes), pages 44–51. AAAI. AAAI Press Technical Report.

[Childress:91] Childress, R. L. and Valtorta, M. (1991). EVA and the

verification of expert systems written in OPS5. In O'Leary, D. E., editor,
AAAI-91 Workshop on Verification and Validation of Knowledge Based Systems.
AAAI.

[Dahl:93] Dahl, M. and Williamson, K. (1993). Experiences of using

verification tools for maintenance of rule-based systems. In Preece, A. D.,
editor, Validation and Verification of Knowledge-Based Systems (AAAI-93
Workshop Notes), pages 114–119. AAAI. AAAI Press Technical Report.

[deKleer:86] de Kleer, J. (1986). An assumption-based TMS. Artificial

Intelligence, 28(2):127–162.

[French:93] French, S. W., Culbert, C., and Hamilton, D. (1993). Experiences in

improving the state of the practice in verification and validation of

40

knowledge-based systems. In Preece, A. D., editor, Validation and
Verification of Knowledge-Based Systems (AAAI-93 Workshop Notes), pages
86–93. AAAI. AAAI Press Technical Report.

[Gamble:93] Gamble, R. F. (1993). A perspective on formal verification. In

Preece, A. D., editor, Validation and Verification of Knowledge-Based Systems
(AAAI-93 Workshop Notes), pages 131–134. AAAI. AAAI Press Technical
Report.

[Gamble:91] Gamble, R. F., Roman, G.-C., and Ball, W. E. (1991). Formal

verification of pure production system programs. In Proc. 9th National
Conference on Artificial Intelligence (AAAI 91), pages 329–334. AAAI Press.

[Gaschnig:83] Gaschnig, J., Klahr, P., Pople, H., Shortliffe, E., and Terry, A.

(1983). Evaluation of expert systems: Issues and case studies. In Hayes-
Roth, F., Waterman, D. A., and Lenat, D. B., editors, Building Expert
Systems, chapter 8, pages 241–280. Addison-Wesley, Reading MA.

[Giarratano:89] Giarratano, J. and Riley, G. (1989). Expert Systems: Principles

and Programming. PWS-Kent, New York.

[Ginsberg:88] Ginsberg, A. (1988). Knowledge-base reduction: A new

approach to checking knowledge bases for inconsistency & redundancy.
In Proc. 7th National Conference on Artificial Intelligence (AAAI 88), volume
2, pages 585–589.

[Ginsberg:90] Ginsberg, A. (1990). Theory reduction, theory revision, and

retranslation. In Proc. 8th National Conference on Artificial Intelligence (AAAI
90), pages 777–782. MIT Press.

[Ginsberg:93] Ginsberg, A. and Williamson, K. (1993). Inconsistency and

redundancy checking for quasi-first-order-logic knowledge bases.
International Journal of Expert Systems: Research and Applications, 6(2):321–
340.

[Goodenough:75] Goodenough, J. B. and Gerhart, S. L. (1975). Toward a

theory of data selection. IEEE Transactions on Software Engineering, SE–
1(2):156–173.

[Grogono:91] Grogono, P., Preece, A., Shinghal, R., and Suen, C. (1991).

Techniques for the evaluation of expert systems in telecommunications. In
Proceedings of 1991 Bell Canada Quality Engineering Workshop. Bell Canada.

[Grossner:93] Grossner, C., Preece, A., Chander, P. G., Radhakrishnan, T., and

Suen, C. Y. (1993). Exploring the structure of rule based systems. In Proc.
11th National Conference on Artificial Intelligence (AAAI 93).

41

[Hamilton:91] Hamilton, D., Kelley, K., and Culbert, C. (1991). State-of-the-

practice in knowledge-based system verification aand validation. Expert
Systems with Applications, 3:403–410.

[Highland:92] Highland, F. and Kornman, B. (1992). A design language for

knowledge-based application development. In Miller, L. A., editor, AAAI-
92 Workshop on Verification and Validation of Knowledge Based Systems.
AAAI.

[Huang:75] Huang, J. C. (1975). An approach to program testing. ACM

Computing Surveys, 7:113–128.

[Jacob:90] Jacob, R. J. K. and Froscher, J. N. (1990). A software engineering

methodology for rule-based systems. IEEE Transactions on Knowledge and
Data Engineering, 2(2):173–189.

[Kiper:89] Kiper, J. D. (1989). Structural testing of rule-based expert systems.

In IJCAI-89 Workshop on Verification, Validation and Testing of Knowledge-
Based Systems. IJCAI.

[Kiper:92] Kiper, J. D. (1992). Structural testing of rule-based expert systems.

ACM Transactions on Software Engineering and Methodology, 1(2):168–187.

[Kirani:92] Kirani, S., Zualkernan, I. A., and Tsai, W.-T. (1992). Comparative

evaluation of expert system testing methods. Technical Report TR 92-30,
University of Minnesota, Department of Computer Science.

[Landauer:93] Landauer, C. and Bellman, K. (1993). Designing testable,

heterogeneous software environments. In Preece, A. D., editor, Validation
and Verification of Knowledge-Based Systems (AAAI-93 Workshop Notes),
pages 35–37. AAAI. AAAI Press Technical Report.

[Laurent:92] Laurent, J.-P. (1992). Proposals for a valid terminology in KBS

validation. In Neumann, B., editor, Proc. 10th European Conference on
Artificial Intelligence (ECAI-92), pages 829–834. John Wiley.

[Lee:93] Lee, S. and O'Keefe, R. M. (1993). Subsumption anomalies in hybrid

knowledge bases. International Journal of Expert Systems: Research and
Applications, 6(2):299–320.

[Levi:89] Levi, K. (1989). Expert systems should be more accurate than human

experts: Evaluation procedures from human judgment and
decisionmaking. IEEE Transactions on Systems, Man and Cybernetics, SMC-
19(3):647–657.

42

[Mars:87] Mars, N. J. I. and Miller, P. L. (1987). Knowledge acquisition and
verification tools for medical expert systems. Medical Decision Making, 7:6–
11.

[McGuire:90] McGuire, J. G. (1990). Uncovering redundancy and rule-

inconsistency in knowledge bases via deduction. In Proc. 5th Annual
Conference on Computer Assurance: Systems Integrity, Software Safety, and
Process Safety (IEEE COMPASS-90).

[Mehrotra:93] Mehrotra, M. and Wild, C. (1993). Multi-viewpoint clustering

analysis. In Preece, A. D., editor, Validation and Verification of Knowledge-
Based Systems (AAAI-93 Workshop Notes), pages 52–63. AAAI. AAAI Press
Technical Report.

[Miller:90] Miller, L. A. (1990). Dynamic testing of knowledge bases using the

heuristic testing approach. Expert Systems with Applications, 1(3):249–269.

[Miller:93a] Miller, L. A., Groundwater, E., and Mirsky, S. M. (1993). Survey

and assessment of conventional software verification and validation
methods. Technical Report NUREG/CR-6018; EPRI TR-102106; SAIC-
91/6660, Science Applications International Corporation; U.S. Nuclear
Regulatory Commission; Electric Power Research Institute.

[Miller:93b] Miller, L. A., Hayes, J. E., and Mirsky, S. M. (1993). Knowledge

base certification. Technical report, Science Applications International
Corporation; U.S. Nuclear Regulatory Commission; Electric Power
Research Institute. Prepublication version.

[Nguyen:87] Nguyen, T. A. (1987). Verifying consistency of production

systems. In Proc. 3rd Conference on Artificial Intelligence Applications, pages
4–8. IEEE Computer Society.

[Nguyen:85] Nguyen, T. A., Perkins, W. A., Laffey, T. J., and Pecora, D.

(1985). Checking an expert systems knowledge base for consistency and
completeness. In Proc. 9th International Joint Conference on Artificial
Intelligence (IJCAI 85), volume 1, pages 375–378. AAAI.

[O'Keefe:87] O'Keefe, R. M., Balci, O., and Smith, E. P. (1987). Validating

expert system performance. IEEE Expert, 2(4):81–90.

[O'Keefe:93] O'Keefe, R. M. and O'Leary, D. E. (1993). Expert system

verification and validation: a survey and tutorial. Artificial Intelligence
Review, 7(1):3–42.

[O'Leary:91] O'Leary, D. E. (1991). Design, development and validation of

expert systems: A survey of developers. In Ayel, M. and Laurent, J.-P.,

43

editors, Validation, Verification and Test of Knowledge-Based Systems, pages
3–20. John Wiley.

[O'Leary:93] O'Leary, D. E. (1993). Verification and validation of multiple

agent systems: combining agent probabilistic judgments. In Preece, A. D.,
editor, Validation and Verification of Knowledge-Based Systems (AAAI-93
Workshop Notes), pages 27–34. AAAI. AAAI Press Technical Report.

[Ostrand:88] Ostrand, T. J. and Balcer, M. J. (1988). The category-partition

method for specifying and generating functional tests. Communications of
the ACM, 31(6):676–686.

[Preece:92a] Preece, A. and Shinghal, R. (1992). Verifying knowledge bases by

anomaly detection: An experience report. In Neumann, B., editor,
Proceedings of the 10th European Conference on Artificial Intelligence (ECAI
92), New York. European Coordinating Committee for Artificial
Intelligence (ECCAI), John Wiley & Sons.

[Preece:92b] Preece, A. D., Shinghal, R., and Batarekh, A. (1992). Principles

and practice in verifying rule-based systems. Knowledge Engineering
Review, 7(2):115–141.

[Preece:92c] Preece, A. D., Shinghal, R., and Batarekh, A. (1992). Verifying

expert systems: a logical framework and a practical tool. Expert Systems
with Applications, 5:421–436. Invited paper.

[Preece:90] Preece, A. D. (1990). Towards a methodology for evaluating

expert systems. Expert Systems, 7(4):215–223.

[Preece:93] Preece, A. D. (1993). A new approach to detecting missing

knowledge in expert system rule bases. International Journal of Man-
Machine Studies, pages 161–181.

[Preece:94] Preece, A. D., Grossner, C., Chander, P. G., and Radhakrishnan, T.

(1994). Structural validation of expert systems: Experience using a formal
model. In Liebowitz, J., editor, Expert Systems Second World Congress
Proceedings, Oxford. Pergamon Press.

[Reggia:85] Reggia, J. A. (1985). Evaluation of medical expert systems: A case

study in performance assessment. In Proc. 9th Annual Symposium on
Computer Applications in Medical Care (SCAMC 85), pages 287–291. Also in
Miller, Perry L., ed., Selected Topics in Medical AI, New York, Springer,
1988, pp. 222–230.

44

[Rushby:88] Rushby, J. (1988). Quality measures and assurance for AI
software. NASA Contractor Report CR-4187, SRI International, Menlo
Park CA. 137 pages.

[Rushby:90] Rushby, J. and Crow, J. (1990). Evaluation of an expert system for

fault detection, isolation, and recovery in the manned maneuvering unit.
NASA Contractor Report CR-187466, SRI International, Menlo Park CA.
93 pages.

[Rushby:89] Rushby, J. and Whirehurst, A. (1989). Formal verification of AI

software. NASA Contractor Report CR-181827, SRI International, Menlo
Park CA.

[Shwe:89] Shwe, M. A., Tu, S. W., and Fagan, L. M. (1989). Validating the

knowledge base of a therapy planning system. Methods of Information in
Medicine, 28(1):36–50.

[Suwa:82] Suwa, M., Scott, A. C., and Shortliffe, E. H. (1982). An approach to

verifying completeness and consistency in a rule-based expert system. AI
Magazine, 3(4):16–21.

[Waldinger:91] Waldinger, R. J. and Stickel, M. E. (1991). Proving properties

of rule-based systems. In Proc. IEEE Conference on Artificial Intelligence
Applications 1991, pages 81–88. IEEE Press.

[Weyuker:80] Weyuker, E. J. and Ostrand, T. J. (1980). Theories of program

testing and the application of revealing subdomains. IEEE Transactions on
Software Engineering, SE–6(3):236–246.

[Wood:90] Wood, W. T. and Frankowski, E. N. (1990). Verification of rule-

based expert systems. Expert Systems with Applications, 1(3):317–322.

[Zualkernan:93] Zualkernan, I. A. and Lin, Y.-Y. (1993). An analysis of output-

based partition testing for heuristic classification expert systems. In
Preece, A. D., editor, Validation and Verification of Knowledge-Based Systems
(AAAI-93 Workshop Notes), pages 8–15. AAAI. AAAI Press Technical
Report.

