
BT Technol J Vol 17 No 4 October 1999

117

A knowledge processing system for data service network
design

N J Fiddian, P Marti, J-C Pazzaglia, K Hui, A Preece, D M Jones and Z Cui

The knowledge reuse and fusion/transformation system (KRAFT) is research prototype software for combining and
transforming constraint-based knowledge. It is being developed in collaboration with BT by three UK universities —
Aberdeen, Cardiff and Liverpool. The KRAFT system is designed to help its users to locate relevant data and constraint
knowledge held in distributed heterogeneous data and knowledge bases, convert this knowledge to generate a required
composite problem specification, and exploit appropriate constraint solvers in solving the specified problem. The system
architecture utilises intelligent software agent technology in the form of wrapper, facilitator and mediator agents for co-
operative knowledge processing, and also a shared data model and a shared ontology as the basis for knowledge exchange.

This paper describes the application of KRAFT in the design of data service networks for BT. It presents, in turn, an
introduction including an overview of the KRAFT system architecture, a description of the BT network design test
application scenario, the application of KRAFT to this scenario, conclusions and further work.

1. Introduction

1.1 Motivation and related work

Recent research in the area of software agent technology
offers promising ways of supporting distributed design
applications, but the area is still far from mature. Early
projects such as PACT [4] and SHADE [5] showed that
agent technology could support the exchange of rich
business information (using the knowledge interchange
format (KIF)) between organisations using heterogeneous
technologies, with a limited amount of organisational agility
— basic ‘matchmaking’ brokerage connecting suppliers to
customers. While demonstrating the promise of the agent-
based approach, these projects revealed problems — the
complexity of the KIF representation has prevented it from
gaining widespread use, while the limited brokerage model
hinders the implementation of flexible negotiation schemes.

The design of the KRAFT architecture builds upon
recent work in agent-based distributed information systems.
In particular, the roles identified for KRAFT agents are
similar to those in the InfoSleuth system [1]; however,
while InfoSleuth is primarily concerned with the retrieval of
data objects, the focus of KRAFT is on the combination of
data and constraints.

KRAFT also builds upon the work of the Knowledge
Sharing Effort (KSE) [6], in that some of the KSE
facilitation and brokerage methods are employed, along
with a subset of the 1997 Knowledge Query and
Manipulation Language (KQML) specification [7].

Unlike the KSE work, however, which attempted to
support agents communicating in a diverse range of
knowledge representation languages (with attendant
translational problems), KRAFT takes the view that
constraints are a good compromise between expressivity
and tractability.

1.2 Overview of the KRAFT system architecture

The KRAFT system has an agent-based architecture, in
which all knowledge-processing components are realised as
software agents. As the benefits and features of agent-based
software architectures have been reported widely elsewhere
[8—10], these will not be dwelt upon here. However, it is
worth noting why an agent-based architecture was chosen
for KRAFT:

Agent-based architectures are proving to be an effective
approach to developing distributed information

systems [1], as they support rich knowledge representations,
meta-level reasoning about the content of on-line resources,
and open environments in which resources join or leave a
network dynamically [2]. KRAFT employs such an agent-
based architecture [3] to provide the required extensibility
and adaptability in a dynamic distributed environment.

Unlike most agent-based distributed information
systems, however, KRAFT focuses on the exchange of data
and constraints among agents in the environment it
supports.

KRAFT

BT Technol J Vol 17 No 4 October 1999

118

• agent architectures are designed to allow software
processes to communicate knowledge across networks,
in high-level communication protocols — since
constraints are a sub-type of knowledge, this was seen
as an important feature for KRAFT,

• agent architectures are highly dynamic and open,
allowing agents to locate other agents at run time,
discover the capabilities of other agents, and form co-
operative alliances — as KRAFT is concerned with the
fusion of knowledge from available on-line sources,
these features were seen as being of great value.

The design of KRAFT is consistent with several
emerging agent standards, notably KQML [11] and FIPA
[9, 10]. Agents are peers — any agent can communicate
with any other agent with which it is acquainted. Agents
become acquainted by registering their identity, network
location and an advertisement of their knowledge-
processing capabilities with a specific type of agent called a
facilitator (essentially an intelligent Yellow Pages service).
When an agent needs to request a service from another
agent, it asks a facilitator to recommend an agent that
appears to provide that service. The facilitator attempts to
match the requested service to the advertised knowledge-
processing capabilities of agents with which it is
acquainted. If a match is found, the facilitator can inform
the service-requesting agent of the identity, network
location and advertised knowledge-processing capabilities
of the service provider. The service-requesting agent and
service-providing agent can now communicate directly.

It is worth emphasising that, while this model is
superficially similar to that used in distributed object
architectures such as CORBA [12] and DCOM [13], the
important difference is the semantic level at which
interactions take place. In distributed object architectures,
objects advertise their presence by registering method
signatures with registry services, and communicate by
remote method invocations. In agent-based systems,
advertisements of capabilities are much richer, being
expressed in a declarative knowledge representation
language, and communication uses a high-level conver-
sational protocol built from primitive conversational actions
such as ‘ask’, ‘tell’, ‘advertise’ and ‘recommend’.
Distributed object architectures are in fact highly suitable
for implementing agent-based architectures (for example,
the ADEPT system used CORBA [8]), but the converse is
not true.

A conceptual view of the KRAFT architecture is shown
in Fig 1. KRAFT agents are shown as shaded ovals or
rectangles according to whether they are internal or external
to the KRAFT domain, respectively. There are four kinds of
these — user agents, wrappers, mediators and facilitators.
All of these are in some way knowledge-processing entities.
The (external) knowledge resources with which they work
are shown as unshaded rectangles in Fig 1.

User agents provide end users with entry-points into a
KRAFT knowledge-processing system. A user agent will
offer some kind of user interface, through which the user
will present queries to the KRAFT network. The user agent
wrapper will transform user queries into the internal
knowledge representation language of the KRAFT system,

Fig 1 The KRAFT conceptual architecture.

UA UA

UA

UA

R

R
R

R

R

W

M

M

M

M

M

F

F

F

W

WW

W

W

W

KRAFT
domain

user
agent

resource

wrapper

facilitator

mediator

KRAFT

BT Technol J Vol 17 No 4 October 1999

119

and interact with other KRAFT agents to answer the
queries. A user agent will typically also do some local
processing on knowledge, at least to transform it for
presentation.

Wrappers are agents that act as proxies for user agents
and for external knowledge resources, typically databases
and knowledge-based systems. As these resources are often
legacy systems, one task of a wrapper is to provide a bridge
between the legacy system interface and the KRAFT agent
interface. For example, the legacy interface of a relational
database will typically be SQL/ODBC. The associated
KRAFT wrapper will accept incoming request messages
from other agents in the KRAFT agent communication
language, transform these into SQL queries, and run them
on the database. Finally it transforms the returned results to
an outgoing message in the KRAFT agent communication
language.

Mediators are the ultimate internal knowledge-
processing agents of the KRAFT system — every mediator
adds value in some way to knowledge obtained from other
agents. Typical mediator tasks include filtering, sorting and
fusing knowledge obtained from other agents.

Facilitators have already been mentioned above — these
are the ‘matchmaker’ agents that allow other agents to
become acquainted and thereby communicate. Facilitators
are knowledge-processing entities — establishing that a
service request ‘matches’ a service advertisement requires
reasoning with the declarative representations of request
and advertisement, respectively.

KRAFT agents communicate via messages using a
nested protocol hierarchy. KRAFT messages are
implemented as character strings transported by a suitable
underlying protocol (for example, CORBA IIOP or TCP via
sockets). A simple message protocol encapsulates each
message with low-level header information including a
timestamp and network information. The body of the
message consists of two nested protocols — the outer one is
the agent communication language CCQL (Constraint,
Command and Query Language) which is a subset of the
1997 specification of the KQML [7]. Nested within the
CCQL message is its content, expressed in the CIF protocol

(constraint interchange format). Figure 2 shows the
anatomy of a KRAFT message and will be useful in
understanding the message sequences presented for
illustration purposes in the following sections of this paper.

It is worth noting that, syntactically, KRAFT messages
are implemented as Prolog term structures. This is chiefly
for convenience, as most of the knowledge-processing
components are written in Prolog. However, the Prolog
term structures are easily parsed by non-Prolog KRAFT
components; currently there are several of these im-
plemented in Java, for example.

2. The BT network design application scenario

• a suitable point of presence (POP) for connection to the
BT network,

• a suitable customer premises equipment (CPE) product
with which to service the connection (types of CPE
include routers, bridges and FRADs, though it was
decided to focus initially on router products).

A user agent was required as the front end to the test
system, with a graphical user interface allowing a BT
network designer to enter the customer’s requirements, and
launch queries into the KRAFT system. This interface is
shown in Fig 3.

• POP query

For a POP query, the user specifies the location of the
customer’s site, and the customer’s required WAN
services (for example, Frame Relay and ISDN). The

Fig 2 Anatomy of a KRAFT message.

kraft_msg(
 context(1,id(19),krl(bt,ua),krl(bt,ua),krl(aberdeen,cpe_m),
 time_stamp(date(15,10,1998),time(16,45,10))),
 ccql(ask_one,[
 sender : krl(bt, ua),
 receiver : krl(aberdeen, cpe_m),
 reply_with : id(61)
 ontology : shared,
 language : cif,
 content : [
 [var(c)]:[string],[generate(route,var(r)),
 restrict(product_code,[router],[var(r)],var(c))]]
])

 header

 CCQL

CIF

The network design application problem area was
defined to be, on the one hand, simple enough to build

in a reasonable period of time without the need for a great
deal of knowledge acquisition, and, on the other hand,
complex enough to test the important features of the
KRAFT architecture. It was decided to define the problem
from the viewpoint of a customer at a single site, allowing
the BT network designer, as a KRAFT user, to select
components to meet the customer’s requirements:

KRAFT

BT Technol J Vol 17 No 4 October 1999

120

user agent, through its KRAFT wrapper, must
formulate the POP query as a KRAFT message, and
attempt to locate an agent that can answer the query. It
will do this by contacting a facilitator, as described in
the previous section. Assuming that a suitable service-
providing agent is found, the query will be sent to that
agent. If the query is answered successfully, a reply
message will eventually be received by the user agent.
If one or more suitable POPs were found these will be
displayed to the user, ranked in order of proximity to
the customer’s site.

• CPE query

For a CPE query, the user specifies additional
constraints on the type of equipment needed, including
support for various LAN protocols used within the
customer’s site (TCP/IP, AppleTalk, 10BaseT,
Ethernet, etc) and support for the required WAN
services that determined the choice of POP (Frame
Relay, ISDN, etc). Having acquired these constraints,
the user agent issues a query to the KRAFT network as
above. However, assuming that a choice of CPE is
returned by reply, the user agent has the final task of
creating design configurations for the possible
solutions (combinations of LAN configuration + CPE
+ POP), and allowing the user to explore these.

This problem, when suggested, appeared well-suited to
solution by a KRAFT system. First of all, it was clear that
solutions would need to employ at least three sources of
knowledge:

• a database of POP information,

• two databases of CPE information — one for each of
two competing vendors.

Moreover, it was entirely reasonable to consider these
information resources as legacy databases, as they were
known to pre-exist. For the purposes of the test, simplified
versions of these resources were created. However, care was
taken to ensure that the databases of CPE information were
created independently, in order to ensure realistic
heterogeneity. Each of these databases was populated with
data and constraints; for example, a vendor database was
populated with data on the vendor’s CPE products, and
constraints defining the valid usage of each product. The
main aim of creating the three resources was to test the
feasibility of creating wrapper agents to transform between
the internal knowledge representation (data and constraints)
of the resources and the KRAFT CIF language.

Here are some examples of vendor database constraints:

constrain each r in isdn_router
 so that at least 1 p in ports(r)
 so that some proto in protocol(p)
 has name(proto)= “ISDN”

constraing each r in serial_router
 so that at least 1 p in ports(r)
 so that some proto in protocol(p)
 has serial_supported(proto)= “serial”

Fig 3 Interfaces of the BT user agent for querying (a) a POP, then (b) a CPE.

(a) (b)

KRAFT

BT Technol J Vol 17 No 4 October 1999

121

In the KRAFT model, the tasks of identifying potential
POPs and CPEs are the responsibility of mediators. As the
two tasks are independent in practice (it is possible to select
a CPE on the basis of a customer’s LAN and WAN
requirements, without knowing which POP will be used,
and vice versa), it was decided to provide a separate
mediator for each task.

The conceptual architecture of the test system is shown
in Fig 4; the main interactions between agents in solving the
two test problems (choose POP in Fig 5, choose CPE in Fig
6) are also shown.

3. Application of KRAFT to the BT scenario

3.1 Interaction 1 — choose POP

The first part of the BT network design application — find
a suitable POP — using KRAFT consists of two main

stages:

• the registration stage,

• the resolution stage, which itself contains three sub-
stages:

— the recommendation stage,

— the querying stage,

— the answering stage.

Registration

This is an initialisation stage where the agents are
spawned in the KRAFT domain and where each resource/
wrapper and each mediator registers with a facilitator and
then advertises its capabilities.

A typical registration message is prefixed by the
register performative and contains information necessary
to identify the resource. Once sent, this information is
stored in the facilitator.

Fig 4 BT network design application architecture.

Fig 5 Interaction 1 — select a suitable POP.

vendor 1 DB

vendor 2 DB

POP DB

vendor 3 DB

solver

user
agent

designer
database

W

F

W

W

W

W

W

POP
mediator

CPE
mediator

vendor 1 DB

POP DB

vendor 2 DB

solver

user
agent

designer
database

W
F

W

W

W

W

POP
mediator

CPE
mediator

KRAFT

BT Technol J Vol 17 No 4 October 1999

122

An advertisement message is prefixed by the
advertise performative and contains an abstract defi-
nition of the capabilities of the advertising resource, that is:

• a signature of the functionalities made available,

• or the classes defining the data that the resource can
handle or provide.

Here is an example of a resource (the popdb_wrapper)
advertising its capabilities (the following messages are
simplified versions of the actual ones):

advertise:
 sender: (liverpool,popdb_wrapper)
 receiver: (cardiff,facilitator)
 content:
 performative = ask_one
 class = pop

This message calls for a new entry to be made in the
advertisement database of the facilitator and declares that
queries prefixed by ask_one can be handled by the
resource. Moreover, the resource/wrapper agent capabilities
are advertised as a set of possible requests that deal with a
certain class (the class field of the advertisement has been
set, whereas the pattern field has been left blank). This is
known as class-based advertisement. In other
circumstances, capabilities could be advertised as a set of
possible CIF expressions that a resource/wrapper or a
mediator can handle. This is known as pattern-based
advertisement. Here is an example, advertising the
capabilities of the Liverpool pop_mediator :

advertise:
 sender: (liverpool,pop_mediator),
 receiver: (cardiff,facilitator),
 content:
 performative = ask_one
 pattern = get_pops(integer,
 integer,set_of(string),integer)

This message specifies a CIF expression of the pattern-
type get_pops(...) as a well-formed query that the
pop_mediator at Liverpool can handle.

Resolution

As indicated previously, the resolution stage consists of
three sub-stages — firstly, recommendation which allows
the querying agent to locate the relevant facility (the
resource/wrapper or the mediator able to answer its query),
then, the actual querying of the newly found facility, and
finally, the answering stage where the (set of) solution(s) is
retrieved and returned to the original querying agent.

As will be shown, it is possible to nest a resolution stage
inside a querying sub-stage just as it is possible to nest goals
within a sub-goal in any goal-directed resolution algorithm.

Recommendation

This first sub-stage is when a consumer agent (a
mediator or a user agent), in this case the BT user agent,
sends a query to the facilitator as a request to the latter to
identify a suitable facility capable of meeting its consumer
knowledge.

recommend_one:
 sender: (bt,user_agent)
 receiver:(cardiff,facilitator)
 content:
 performative = ask_one
 class = pop
 function_pattern = get_pops

The facilitator answers with a forward message con-
taining the original advertisement that matches the pattern
contained in the foregoing recommend_one message.

Fig 6 Interaction 2 — select a suitable CPE.

vendor 1 DB

POP DB

vendor 2 DB

solver

user
agent

designer
database

W

F

W

W

W

W

POP
mediator

CPE
mediator

KRAFT

BT Technol J Vol 17 No 4 October 1999

123

forward:
 sender: (cardiff,facilitator)
 receiver: (bt,user_agent)
 content:
 advertise:
 sender: (liverpool,pop_mediator),
 receiver: (cardiff,facilitator),
 content: function_pattern = get_pops

Querying

Now that the relevant facility (in this case, a mediator)
has been identified, the user agent can query it. The
following code is the CCQL part of this query and it asks
the pop_mediator for a list of POPs (thanks to the
get_pops function built into the mediator) which are
equipped with frame relays and are within a 10 000 units
radius of the geographic x,y co-ordinates (615760,244340):

ask_one:
 sender: (bt,user_agent)
 receiver: (liverpool,pop_mediator)
 content:
 get_pops(615760, 244340,
 [‘Frame Relay’],10000) : pop

This query will trigger a sub-resolution attempt by the
mediator and consequently a new recommend_one/
forward exchange between the mediator and the facilitator
occurs. These two messages will not be examined in detail
but they are nevertheless displayed in the screenshot
sequence (Fig 7).

This sub-resolution stage will also trigger a subquery
(ask_all) from the pop_mediator to the popdb_
wrapper . Indeed, the mediator needs a list of the possible
POPs to be able to filter out the bad candidates (i.e. those
not equipped with frame relays or outside the specified
geographical radius). Here is the code of the query to the
database of POPs:

ask_all:
 sender: (liverpool,pop_mediator)
 receiver: (liverpool,popdb_wrapper)
 content:
 generate all (Pop,Xpop,Ypop) where
 supported_protocol(Pop) = ‘Frame
 Relay’,
 location_x(Pop) = Xpop,
 location_y(Pop) = Ypop.

Less formally, this code queries the POP database
through the popdb_wrapper to return every stored
instance of the class pop (together with their x,y co-
ordinates) which supports frame relay.

Figure 8 shows the sub-resolution and resolution stages
of Interaction 1 (choose POP) unwinding as they return
their results.

Answering

Here are the contents of the tell message issued by the
popdb_wrapper (the core of the contents only is shown):

[[var(id)=‘Aberdeen’, var(xloc)=394100,
 var(yloc)=806420],
 [var(id)=‘Birmingham’, var(xloc)=407720,
 var(yloc)=287880],
 [var(id)=‘Bristol’, var(xloc)=358900,
 var(yloc)=173100],
 .
 .
 .
 [var(id)=‘Ipswich’, var(xloc)=615760,
 var(yloc)=244340],
 .
 .
 .
 [var(id)=’Telford’, var(xloc)=369540,
 var(yloc)=309220],
 [var(id)=’York’, var(xloc)=460400,
 var(yloc)=452700]
]

This message is then exploited by the pop_mediator
which will send the final result back to the BT user agent.
The final answer can be seen in the contents part of the
following CCQL tell message:

tell:
 sender: (liverpool,pop_mediator)
 receiver: (bt,user_agent)
 content:
 P : pop
 P = ‘Ipswich’

This tell message completes Interaction 1 (choose
POP).

3.2 Interaction 2 — choose CPE

In this second part of the BT network design application
of KRAFT, the user composes a CPE query by specifying
the POP selected in the first part and other parameters such
as the required communication protocol support, bandwidth
and transmission delay. The task of this part of the problem-
solving process is to find a usable CPE that satisfies all
these requirements. This involves:

• problem-solving knowledge,

• customer specifications,

• designer constraints that define a usable configuration
of equipment products,

• restrictions that are attached to these products by their
vendors as small-print constraints.

The KRAFT approach to this task employs a constraint-
fusing mediator which extracts and combines constraints
from distributed sources. Constraints, as abstract mobile
objects, are transported and transformed to compose a
constraint satisfaction problem (CSP), which is then
analysed and solved by a combination of distributed

KRAFT

BT Technol J Vol 17 No 4 October 1999

124

database queries and constraint logic programs. With the
help of a facilitator, this approach allows tailoring of an
execution plan in a dynamic environment, depending on the
capability and availability of active on-line resources.

This section presents a higher level description of the
interaction between KRAFT agents and the activities within
them, in contrast to the detailed treatment of agent
intercommunication presented in the previous section. Also
highlighted are the major steps that constitute important
elements in this approach which make KRAFT a suitable

system for solving configuration problems in a distributed
environment.

Constraint gathering

The CPE query from the user agent represents one of the
many problem-solving constraints that come from different
sources and the problem-solving process starts when this
query reaches the CPE mediator (CPE-M). Before an
execution plan can be decided, the CPE-M needs to acquire
a complete description of the problem by gathering all
problem-solving knowledge from the following sources.

Fig 7 An ask_one message (a) to the pop_mediator results in an ask_all message (d) to the popdb_wrapper .

(a) (b)

(c) (d)

KRAFT

BT Technol J Vol 17 No 4 October 1999

125

• Constraints from the customer

These constraints originate as design parameters and are
specified by filling in parameter values in the BT user
agent GUI (see Fig 3). These values are then used to
compose the constraints into a CPE query which is sent
to the CPE-M to initiate the whole problem-solving
process of Interaction 2. The following is a customer
constraint restricting all potential network design
solutions to have a required-bandwidth of 123 units:
constrain each nd in network_design_n1
 each cr in customer_requirements(nd)
to have value(req_bandwidth(cr))=123

• Designer constraints

These constraints represent generic restrictions on
composing a usable configuration relating to a
particular application problem. In the current
prototype, designer constraints are stored in the user
agent as canned queries. The following is an example
of a designer constraint that requires all routers in a
usable network configuration to have a bandwidth
greater than or equal to the required value:
constrain each nd in network_design_n1
 each cr in customer_
 requirements(nd)
 each rb in req_bandwidth(cr)
 each cp in customer_
 premises(nd)
 each e in equipment(cp)
 such that e is a router_n1
 each rp in port(e as router_n1)
 such that rp is a router_
 port_n1
 each b in bandwidth(rp as
 router_port_n1)
to have value(rb) =< value(b)

• Small-print constraints from vendors

Small-print constraints resemble the footnotes in a
product catalogue restricting the use of a particular
item of equipment. Conceptually, these constraints are
attached to their corresponding equipment products
and must be satisfied when the equipment is used.
They are stored in different vendor equipment
databases. The following is a small-print constraint in
the 3COM database putting extra requirements on a
router when it is in the ‘superStack II NETBuilder SI
44x U’ series:

constrain
 each s in router_n1
 such that series(s)= “superStack II
 NETBuilder SI 44x U” and name
 (manufacturer(s))=”3Com"
 each c in connector(port(s)) such
 that c is a ethernet_n2
to have value(line_speed(c)) in {10,100}
 and name(system_of_measure(line_
 speed(c)))=“bps"
 and units(system_of_measure(line_
 speed(c)))=“M”

Resource location

In the KRAFT prototype, the CPE query encapsulates
customer and designer constraints in a single message. To
retrieve the third category of problem-solving knowledge
(small-print constraints), the CPE-M consults the facilitator
for relevant resources by sending a number of
recommend_all messages. This allows the CPE-M to
locate all vendor equipment databases containing small-
print constraints and candidate CPE values.

Fig 8 The result of the ask_all message is returned to the pop_mediator and processed to produce a result which is returned to the BT user agent.

KRAFT

BT Technol J Vol 17 No 4 October 1999

126

Constraint extraction

When the resource locations come back as forward
messages from the facilitator, the CPE-M composes meta-
queries to extract constraints from the databases concerned.
This is accomplished by sending ask_all messages to the
corresponding database wrappers.

Constraint transformation

As outlined in section 2, a KRAFT wrapper performs
bidirectional translation of messages, using ontology
mappings to specify semantic transformation:

• requests to knowledge resources are transformed into a
local representation for processing by the knowledge
resource,

• the results generated by the knowledge resource are
transformed from the local representation into a
KRAFT message for transmission to the querying
agent.

For example, a request from the pop_mediator is
transformed by the popdb_wrapper into a form that can be
processed by the associated popdb . The results of this query
are then transformed by the popdb_wrapper into a
KRAFT internal representation and are passed as the value
of the result message ‘content’ field to the pop_mediator .
The transformation performed by a wrapper addresses two
types of heterogeneity:

• syntactic heterogeneity — knowledge resources use
different representation formats,

• semantic heterogeneity — variations in terminology
occur across knowledge resources.

This section focuses on the second of these. For the
purpose of this discussion, it is assumed that when
translating an expression from a knowledge resource
representation to the KRAFT internal representation, the
syntactic transformation is performed before the semantic
transformation and vice versa for expressions passed in the
opposite direction. Thus all semantic transformation is
performed on expressions represented in the KRAFT
internal format.

To overcome the problem of semantic heterogeneity, a
‘shared ontology’ is specified, which formally defines the
terminology of the problem domain. The content of
messages within the KRAFT domain must be expressed
using terms that are defined in the shared ontology. For each
knowledge resource, a local ontology is specified. For
example, where the knowledge resource is a database, the
local ontology defines the terms that are used in the
database schema. Between a local ontology and the shared
ontology, there will be a number of ‘ontology mismatches’,

which are instances of semantic heterogeneity [14]. These
include the use of different terms to refer to the same
concept (i.e. synonyms) and the use of the same term to
refer to different concepts (i.e. homonyms). To overcome
these mismatches, for each knowledge resource an
‘ontology mapping’ is defined. An ontology mapping is a
function that maps from expressions using terms defined in
a source ontology to expressions using terms defined in a
target ontology. To enable bidirectional translation between
a KRAFT domain and a knowledge resource, two such
ontology mappings must be defined. The format that is used
to specify ontology mappings is now described. In defining
an ontology mapping, firstly a set of ordered pairs —
‘ontological correspondences’ — is specified. An onto-
logical correspondence specifies the term or expression in
the target ontology that represents as closely as possible the
meaning of the source ontology term or expression. For
each term in the source ontology, an attempt is made to
identify a corresponding term in the target ontology. It may
not be possible to directly map all of the source ontology
terms to a corresponding target ontology term. For some of
the terms in the source ontology that cannot be mapped in
this way, it may be possible to include them in the ontology
mapping by defining correspondences between compound
expressions. This leads to the following classification of
ontological correspondences:

• class-to-class — maps a source ontology class name to
a target ontology class name,

• attribute-type-to-attribute-type — maps the set of
values of a source ontology attribute to a set of values
of a target ontology attribute,

• attribute-to-attribute — maps a source ontology
attribute name to a target ontology attribute name,

• relation-to-relation — maps a source ontology relation
name to a target ontology relation name,

• compound-expression-to-compound-expression —
maps compound source ontology expressions to
compound target ontology expressions.

As the local and shared ontologies are not represented in
the same format that is used for the CIF, the semantic
transformation of CIF expressions by wrappers is not based
directly on ontology mappings. The relevant ontology
mappings form part of the specification of a wrapper rather
than part of its implementation. Consequently, developers
have complete autonomy in the implementation of
wrappers. In KRAFT, the transformation of CIF ex-
pressions is being implemented using rewrite rules [15].

A pair of terms and/or expressions in an ontological
correspondence are not necessarily semantically equivalent.
However, when a wrapper translates a CIF expression, it
must be ensured that the target CIF expression is

KRAFT

BT Technol J Vol 17 No 4 October 1999

127

semantically equivalent to the source CIF expression. If this
were not the case, constraints passed to the CPE-M using
terms defined in the shared ontology could express very
different knowledge about a vendor’s products than the
original constraints expressed in terms defined in the local
ontology. We ensure that the semantics of CIF expressions
are maintained by defining pre- and post-conditions for
each ontological correspondence. A wrapper that
implements an ontology mapping must ensure that these
conditions are satisfied when translating CIF expressions
from the source to the target ontology.

Semantic transformation of constraints

Having outlined the method of semantic transformation
of expressions, this is now related to the transformation of
constraints in the BT network design application. Firstly,
the query from the CPE-mediator to the vendor databases
that requests constraints must be translated to the local
representation for each vendor database. Since this is a
meta-data query, there are no semantic mismatches between
the shared and local versions of the query. Once the
syntactic conversion of the query has been performed, the
wrapper passes the query to the resource. The wrapper next
needs to translate the results of the query into the shared
form. This section focuses on the semantic aspects of this
transformation by giving an example of the semantic
translation of a constraint.

The following constraint is the local form of one of
those that satisfies the query passed to the 3COM wrapper:

constrain each s in superStack_II_
 NETBuilder_SI_44x_U
 each rp in router_inv(s) such
 that port_type(rp)= “Ethernet”
 each i in interface(rp)
 to have line_speed(i) in {10,100}

 This constraint expresses the information that for the
specified set of routers (SuperStack_II_NETBuilder_
SI_44x_U routers), the transmission speed of the Ethernet
port is either 10 Mbit/s or 100 Mbit/s. The translation of this
constraint relies on the wrapper implementing an ontology
mapping which specifies correspondences in the shared
ontology for the local ontology terms. Not all such
correspondences will be given here, but the approach will
be illustrated with a suitable example.

To enable the translation of the local ontology term
superStack_II_NETBuilder_SI_44x_U to the shared
ontology, the following correspondence is specified:

Source : superStack_II_NETBuilder_SI_44x_U
Target : router_n1

Although the term router_n1 is semantically the
closest term in the shared ontology for the given local
ontology term, it is not semantically equivalent to it. Unless
the mapping is specified further, it cannot be guaranteed
that the shared ontology version of the above constraint will
express the same knowledge as the local original. To this
end, the following post-condition to be applied by the
wrapper is then added:

Post : [r:router_n1],[name(manufacturer(r))
 ="3Com”
 and series(r)= “superStack II
 NETBuilder SI 44x U”]

Now when the wrapper translates the first line of the
constraint:

constrain each s in superStack_II_
 NETBuilder_SI_44x_U

it will append this additional information to ensure that the
translated constraint is semantically equivalent to the local
version, giving:

constrain each s in router_n1
 such that series(s)= “superStack II
 NETBuilder SI 44x U” and name
 (manufacturer(s))= “3Com”

Further, such correspondences and conditions used in
the implementation of the wrapper will ensure that the rest
of the constraint is also translated to the shared ontology in
a semantically equivalent fashion. The whole constraint
expressed in terms of the shared ontology is:

constrain each s in router_n1 such that
 series(s)= “superStack II NETBuilder
 SI 44x U”
 and name(manufacturer(s))= “3Com”
 each c in connector(port(s)) such that
 c is a ethernet_n2
 to have value(line_speed(c)) in {10,100}
 and name(system_of_measure(line_
 speed(c)))=“bps”
 and units(system_of_measure(line_
 speed(c)))= “M”

Constraint fusion

Constraint fragments in KRAFT represent problem-
solving knowledge distributed among different sources.
Each of them is part of a conjunctive statement that imposes
restrictions on the variables involved. When all constraints
have arrived, the CPE-M fuses them together to form a
complete CSP description which summarises all
requirements on the solutions.

The original sample constraints give the following fused
constraint:

KRAFT

BT Technol J Vol 17 No 4 October 1999

128

constrain each nd in network_design_n1
 each cp in customer_premises(nd)
 each e in equipment(cp) such that e is
 a router_n1
 each rp in port(e as router_n1) such
 that rp is a router_port_n1
 each cr in customer_requirements(nd)
to have value(req_bandwidth(cr)) =< value
(bandwidth(rp as router_port_n1))
 and value(req_bandwidth(cr))=123
 and if series(e)= “superStack II
 NETBuilder SI 44x U” and name
 (manufacturer(e))= “3Com”
 then each c in connector(port(e))
 such that c is a ethernet_n2 has
 value(line_speed(c)) in {10,100}
 and name(system_of_measure(line_
 speed(c)))=“bps” and units
 (system_ of_measure(line_speed
 (c)))=“M”
 else true

The reason for fusing the constraint fragments is to
provide the basis for exploring how the CSP can be best
divided into sub-problems of distributed database queries
and sub-CSPs. When a single piece of constraint is
insufficient to solve a CSP effectively, it is hoped to be able
to combine information from multiple constraint fragments
to arrive at a more tractable solution. It is from the fusion
process that useful information can be inferred and captured
for problem-solving purposes.

CSP solving

The constraint-fusion process composes a concrete
description of the overall CSP in a declarative form. The
next step is to solve the composed CSP by retrieving
candidate data values from relevant databases and testing
them against the required constraints. This solving process
has two characteristics:

• variables in the CSP are fed with candidate data values
from distributed databases — data retrieval must be
involved, although data filtering techniques can be
applied to reduce the resultant traffic,

• candidate values are tested against the required
constraints for their validity — a reasoning mechanism
is needed to eliminate invalid values and find the CSP
solutions.

These two characteristics highlight a key concept in
KRAFT — the duality of constraints as database query
filters and CSPs. It allows constraint information to migrate
between the two paradigms and to be solved by the
collaboration of constraint solvers and databases.

Distributed database query generation

To solve the composed CSP efficiently, the CPE-M
feeds it into a problem decomposer which extracts selection

information from the CSP description to generate
distributed database queries, with the remaining constraints
forming a smaller sub-CSP. The CPE-M then sends these
database queries in multiple ask_all messages to different
vendor equipment database wrappers to retrieve candidate
data values.

In our current example, the CPE-M deduces from the
fused constraints that no router with a bandwidth less than
123 units is acceptable as a solution. As a result, it generates
the following database query to retrieve the manufacturer
and product-code of all potential routers that satisfy the
bandwidth requirement:

for each e in equipment
 each rp in port(e as router_n1)
 such that value(bandwidth(rp as
 router_port_n1)) >= 123
print(manufacturer(e),product_code(e));

Database query generation constitutes an important
phase of pre-processing. It shifts part of the problem-
solving process into the distributed databases by composing
data filters as database queries. This prevents unnecessary
transportation of irrelevant data into the KRAFT domain
and relieves network traffic in a distributed system. Data
filtering by database query generation, however, is not
sufficient to resolve all constraints. The amount of selection
information which can be represented as database queries
depends on the expressiveness of the database query
language. The remaining sub-CSP has to be resolved by a
more powerful constraint solver in the next stage.

Constraint logic programming code generation

The final stage of the problem-solving process is to feed
data and constraints into a constraint solver so that solutions
to the CSP can be obtained. The current prototype uses the
finite domain constraint solver in the ECLiPSe constraint
logic programming (CLP) system.

A typical CLP system, like ECLiPSe, works by solution
elimination. A CLP program starts by declaring the initial
domains of variables and removes invalid values by posting
constraints on these variables. Variables are finally
instantiated to obtain a consistent solution of the CSP.
Backtracking through the labelling process will get all
solutions to the problem.

To form the initial value domains of variables in a CLP
program, candidate data retrieved in the previous stage are
compiled into CLP data structures. The sub-CSP which is
formed by the problem decomposer is then compiled into
CLP program codes to impose constraints on these
variables. Finally, the CPE-M sends the CLP program and
data to the constraint solver and waits for the result to be
returned:

KRAFT

BT Technol J Vol 17 No 4 October 1999

129

[[var(r)=router_n1(12)],

 [var(r)=router_n1(34)]]

(The numbers in parentheses are instance identifiers of the
selected routers.)

This last tell message completes Interaction 2 (Choose
CPE).

4. Conclusions and further work

A number of issues have been raised in the process
which require further research. Among the most important
of these are issues of:

• system scalability and robustness,

• ontology structuring and evolution,

• application diversity.

The most significant contribution of the KRAFT project
has been:

• to highlight the value of constraints as a distinct
category of knowledge in their own right,

• to develop techniques for processing such knowledge
flexibly and profitably in a distributed environment of
multiple heterogeneous knowledge resources.

 References

1 Bayardo R et al: ‘Infosleuth: agent based semantic integration of
information in open and dynamic environments’, in Proceedings of
Sigmod’97 (1997).

2 Wiederhold G and Genesereth M: ‘The basis for mediation’, in
Proceedings of the 3rd International Conference on Cooperative
Information Systems (COOPIS’95) (1995).

3 Gray P M D et al: ‘KRAFT: knowledge fusion from distributed
databases and knowledge bases’, in Proceedings of the 8th
International Workshop on Database and Expert Systems Application
(DEXA), IEEE Computer Society, pp 682—691 (1997).

4 Cutkosky M, Engelmore R, Fikes R, Genesereth M, Gruber T, Mark
W, Tenenbaum J and Weber J: ‘PACT: an experiment in integrating
concurrent engineering systems’, IEEE Computer, 26, No 1, pp 8—27
(1993).

5 Kuokka D, McGuire J, Weber J, Tenenbaum J, Gruber T and Olson G:
‘SHADE: technology for knowledge-based collaborative engineering’,
Journal of Concurrent Engineering: Applications and Research
(CERA), 1, No 2, (1993).

6 Neches R, Fikes R, Finin T, Gruber T, Patil R, Senator T and Swartout
W: ‘Enabling technology for knowledge sharing’, AI Magazine, 1, No
12, pp 36—56 (1993).

7 Labrou Y: ‘Semantics for an agent communication language’, PhD
thesis, University of Maryland Graduate School. Baltimore, Maryland
(September 1996).

8 O’Brien P D and Wiegand M E: ‘Agents of change in business process
management’, BT Technol J, 14, No 4, pp 133—140 (October 1998).

9 O’Brien P D and Nicol R C: ‘FIPA — towards a standard for software
agents’, BT Technol J, 16, No 3, pp 51—59 (July 1998).

10 FIPA: ‘Agent communication language’, Technical report. Foundation
for intelligent physical agents (1997).

11 Mayfield J, Labrou Y and Finin T: ‘Evaluation of KQML as an agent
communication language’, from Intelligent Agents II — Proceedings
of the 1995 Workshop on Agent Theories, Architectures and
Languages, Springer-Verlag (1996).

12 Vinoski S: ‘CORBA: integrating diverse applications within
distributed heterogeneous environments’, IEEE Communications
Magazine, 14, No 2, pp 133 (February 1998).

13 Kindel C: ‘Distributed component object model protocol — DCOM/
1.0’, (January 1998).

14 Visser P R S, Jones D M, Bench-Capon T J M and Shave M J R:
‘Assessing heterogeneity by classifying ontology mismatches’, in
Guarino N (Ed): ‘International Conference on Formal Ontology in
Information Systems (FOIS’98)’, IOS Press, pp 148—162 (1998).

15 Gray P M D, Embury S M, Hui K Y and Kemp G: ‘The evolving role
of constraints in the functional data model’, in JIIS, pp 1—27 (1999).

The emphasis of this paper has been on providing a
practical description of the application of KRAFT to a

BT network design scenario. This scenario was chosen as a
suitable test of the KRAFT system architecture because it
offered sufficient scope to instantiate and evaluate each
component of the architecture as well as providing a good
example of constraint fusion, one of the original aspects of
the project. A prototype KRAFT system was developed for
testing purposes and has been employed in successfully
evaluating the KRAFT architecture as this paper has shown.

Nick Fiddian is Head of Department and
Professor of Computer Science at Cardiff
University. He was educated at London (LSE
and ULICS) and Southampton Universities.

His current research interests lie in the field of
meta-translation — meta-programmed
automatic translation between syntactically
diverse but semantically similar pro-
gramming languages in specific areas of
computer application, particularly data/
knowledge-base system interoperation.

KRAFT

BT Technol J Vol 17 No 4 October 1999

130

Philippe Marti has been a Research Associate
on the KRAFT project in the Department of
Computer Science at Cardiff University since
1996. He received an Engineering degree in
Electronics and Computer Science from the
National Engineering School in Brest
(France) and was awarded a PhD by the
University of Nice (France) in 1996.

His current research is concerned with the use
of ontologies for information retrieval
purposes and the role of constraints in agent
communication languages.

Jean-Christophe Pazzaglia was associated
with the Computer Science Department at
Cardiff University in 1997 and 1998 on the
KRAFT project. He received an Engineering
degree from the National School of
Engineering in Computer Science (ESSI) in
1992, and a PhD in 1997 from the University
of Nice Sophia Antipolis, France. He is
presently employed as a Researcher at
Mediatech S.r1., Italy. His current research is
based on principles of knowledge
communication and is centred around
collaborative distance learning — from
acquisition and representation to the process

and transmission of knowledge among software agents, humans and
machines.

Kit-ying Hui received his BSc degree in
Computer Studies in 1990 from the
University of Hong Kong and his MSc degree
in Applied Artificial Intelligence in 1994
from the University of Aberdeen (Scotland).

His research interests embrace software
agents, databases and constraints.

He is currently pursuing his PhD degree in the
Department of Computing Science at the
University of Aberdeen.

Alun Preece has worked in the area of
knowledge-based systems since 1986. He
received his PhD from the University of
Wales, Swansea, in 1989, after which he
spent four years at Concordia University,
Montreal, working on a research contract
with Bell Canada looking at KBS reliability.

His current research interests are in
distributed KBS, software agents and
industrial knowledge management.

Dean Jones has been associated with the
Department of Computer Science at the
University of Liverpool since 1989. He
received a first-class BSc(Hons) from the
department in 1992, was awarded a PhD in
1998 and is presently employed as a Research
Associate.

His current research includes the use of
ontologies in addressing semantic
heterogeneity, ontology development, the
verification and validation of knowledge-
based systems and the formal representation
of metaphor.

 Zhan Cui received a BSc (1981) and an MSc
(1985) in Computer Science from Jilin
University in China, and a PhD in Artificial
Intelligence from Academia Sinica in 1988.
Between 1989 and 1996, he worked as a
research fellow for the Universities of
Edinburgh and Leeds and the Imperial Cancer
Research Fund, and as a lecturer for the
Universities of Swansea and Liverpool. He
joined BT in October 1996. He has published
many papers on mechanical theorem
providing, spatial-temporal logic, deductive
and object-oriented database, qualitative
physics and neural networks. His current

research interests include ontology and knowledge management,
heterogeneous information integration and agent-based business process
management.

