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Abstract—Task-centric wireless sensor network environments
are often characterized by the simultaneous operation of multiple
tasks. Individual tasks compete for constrained resources and
thus need resource mediation algorithms at two levels. First,
different sensors must be allocated to different tasks based on
the combination of sensor attributes and task requirements.
Subsequently, sensor data rates on various data routes must be
dynamically adapted to share the available wireless bandwidth,
especially when links experience traffic congestion. In this paper
we investigate heuristics for incrementally modifying the sensor-
task matching process to incorporate changes in the transport
capacity constraints or feasible task utility values.

I. INTRODUCTION

Sensor networks are typically required to do multiple si-
multaneous task. These tasks do not only compete for the
sensing resources available in the field but also for the wireless
links in the network. Given that both resources are constrained,
mediation algorithms become necessary. Prior works have used
utility-based approaches to address the sensor task matching
problem and link rate assignment problems in task-oriented
wireless sensor networks independently. Algorithms for both
optimal or near-optimal assignment of sensors to competing
tasks of multiple priorities and, separately, for applying dis-
tributed network utility maximization (NUM) techniques to
mitigate network congestion were developed.

In this work, we address the problem of joint treatment of
these two separate problems. We define an iterative approach
where the sensor assignment algorithms operate on a slower
time scale with awareness of the currently achieved task satis-
faction levels, which are themselves computed by a faster time
scale adaptation of sensor rates based on transport capacity
constraints. Our work demonstrates how convergence time and
overall utility may be improved by sharing information across
the matching and rate adaptation processes.

We propose two algorithms for assigning sensors to tasks.
Both algorithms try to select the sensors that provide the best
sensing utility to the tasks. They also both run in rounds
to reach the best possible assignment. They differ, however,
in the way and the order in which they select sensors if,
due to contention on edges, the best sensors cannot provide
acceptable rates to the tasks’ sinks.

The first algorithm, called Greedy-Divide, only uses infor-
mation about the interference along the routes from selected

sources to the sinks for the different tasks. NUM is used after
acceptable interference levels are reached at which time it
decides on the optimal rates for the selected topology. The
second algorithm, called NUM-based Iterative, runs NUM
in rounds and using the rate results to decide on which
task is affected the most by the contention on links and
hence should reselect sensors. We find through simulation
that both algorithms improve the network utility by 5% to
14% compared to assigning sensors based only on the utility
a sensor provides to a task without considering the rates.

We also propose three schemes for base station selection.
This is motivated by our observation that contention on links
causes the most loss in terms of utility. This loss is higher
when each task has a single base station to which all data
is delivered. We introduce the use of multiple base stations
which are connected to the sinks to alleviate this problem.

II. RELATED WORK

Sensor Selection. There has been work on defining frame-
works for sensor-task assignment. For example, [1] defines
a framework for the assignment problem in which the goal
to maximize the utility while staying under a predefined
budget. The general problem of sensor selection to achieve
an objective has also received sizable attention lately. For
example, in [2], [3] the authors solve the coverage problem,
which is a related problem, using the least number of sensors
to conserve energy. The problem we consider here considers
multiple tasks that contend for the same set of sensors which
calls for resolution mechanisms. The Semi-Matching with
Demands (SMD) problem for sensor-task assignment was
recently introduced in [4] and was later extended in [5] and
[6].

Congestion Control. There is a wealth of literature on
optimization-based techniques for rate control in communica-
tion networks, an approach first introduced by Kelly et al. [7],
[8] for the case of wired links. In this model, each source node
s is associated with a concave, non-decreasing utility function,
which depends on the source’s transmission rate. The network
is modeled as a set of links and each flow is a collection
of links. This classical network utility maximization (NUM)
framework was recently extended in [9] and [10] to a more
general WSN environment, where the topology is arbitrary



and individual sensors have subscribing tasks. In this extended
model, each task derives its utility from a composite set of
sensors assigned to it. Intermediate nodes are used to forward
sensor data to tasks’ data sinks.

III. NETWORK MODEL

We assume a set of static sensors pre-deployed in a field.
The deployed sensors are directional in nature and hence
each of them can be assigned to a single task (i.e. directed
to one location). They also have limited sensing range Rg;
only sensors that are within that range from a task can be
assigned to the task. We assume that sensors use the same
communication equipment and hence link capacities are equal.
Sensors are aware of their location.

Multiple sensing tasks that require information, from one
or more deployed sensors, exist in the system. Each task is
defined by a specific geographic location and has a sink. Data
gathered by sensors in the field are transmitted over a multihop
route, through sensors acting as relays, to a base station from
which it is transferred through a wired network to the sink
for that task. The routes from sensors to the base stations are
pre-determined.

IV. PROBLEM DEFINITION

In this section we define the problem assuming that each
task has a sink that is attached to a unique base station. Later
in the paper (see Section VI) we relax this assumption and
decouple sinks from base stations. This allows for an extra
level of freedom in making assignment decisions.

Let {S; : ¢ = 1...n} be a set of sensors and {7} : j =
1,...,m} be a set of tasks. The sensors and tasks appear as
nodes in some larger graph, which also includes relay nodes.
The simplest relevant matching problem is weighted bipartite
matching (also known as the assignment problem), though
we relax the matching requirement to allow many-one sensor
assignment. Assuming flows f;; on edges g;;, the problem is
to choose a node-disjoint set of edges of maximum total flow.

Conversely, we have the NUM problem. In a simple version
of this problem, a set of S; — T paths or routes r;; are given.
Also given are capacity constraints limiting the feasible flow
on each edge in the network. Each edge g has a capacity ¢,
which, due to interference, depends on the number of flows
sharing the same edge. The maximum potential flow of a pair
(i,7) is the minimum edge capacity along the route r;;, i.e.
Cij = minge,,; cq. The task is to assign a feasible flow to
each route, maximizing total flow.

The two problems can be combined as follows. Given the
network, including specified sensors and task sinks, the two
problems are, when viewed in sequence, first to choose an
assignment of sensors to tasks and then to choose the routes’
flow values. Moreover, we can add utility values e;; to the
routes. The utility of the route represents the relevance of the
sensor’s information to the task, in contradistinction to the
amount of information allowed to flow on this route f;;. This
core problem, which we refer to here as NUM/Matching, can
be formulated as a mixed integer program (MIP):

max.: Zi,j eijfij
sty ger,, Jis < ¢qg » for each edge g,
ijt i
fij S C’ijxij, for all (’L,])
Zj Tgj S 1, for all Si

zij € {0,1}, fi; >0

In this formulation, there are two sets of variables, x;;
indicating whether route 7;; is selected, and f;; indicating the
flow along this route (if selected), which is weighted in the
objective function by the profit value. We assume each route’s
maximum potential flow is encoded in the network itself. The
first two sets of constraint enforce network capacities. The
remaining constraints prevent any sensor from being assigned
to more than one task. Note that the second constraint set
ensures that flow f;; = 0 if the decision variable z;; = 0.

If we drop the capacity constraints, then we are left with
the assignment problem. If we drop the unique-assignment
constraints, then we are left with a constrained version of
max-flow. Both of these problems (each solvable optimally
in polynomial time) can therefore be viewed as relaxations
of the problem. The minimum of their solutions provides
an upper bound on the optimal solution of the combined
problem. Unfortunately, solving the problem itself optimally
is computationally hard.

Theorem 1: The NUM/Matching problem is NP-hard, even
in the special case of unit edge capacities and unit profits.

Proof: We reduce from 3-SAT [11]. In that problem, we
are given a boolean formula of the form A; A As A ... A Ay,
where each clause A; is of the form ¢1 V {5 V £3, where each
£; is a variable or a negated variable. The task is to determine
whether the formula is satisfiable.

Given a 3-SAT instance, we produce a NUM/Matching
instance with n sensors and 3n tasks, each of profit value one.
For each clause A;, we create a sensor named .S; and three
tasks, labeled (i,4;1),(i,%;2), (i,¢;3), where ¢; ; indicates
the jth literal appearing in clause A;. These three tasks each
connect to .S; on routes of capacity 1. Note that each sensor
has only one non-zero-value route.

We now explain how to construct these routes. We require
that there be a conflict between any two routes for tasks
(41,4, 5,) and (i2,4s, ;,) if 4;, j, is the negation of ¢;, ;, or
vice versa. This means that these two routes share an edge,
which implies that the sum of their flows cannot be greater
than one. Note that the total number of conflicts (and hence
the number of additional edges inserted) is bounded by O(n?).

We claim that the constructed instance has an optimal
solution of value n iff the 3-SAT instance is satisfiable. If
the optimal value is n, then by the matching constraint and
the unit capacities and profits, n of the tasks each receive
value one. By construction, the only way for a task to receive
value one is for its unique route to have flow exactly one.
Hence any route conflicting with this flow must have value
zero, which implies the formula is satisfied. Conversely, if the
formula is satisfied, then in each clause there is a least one
literal which can be made true, and so at least one route for
the corresponding sensor that can be given flow one. [ ]

Given the hardness of the problem we turn to heuristics



Algorithm 1 Greedy-Divide

Algorithm 2 NUM-based Iterative

for each task Tj
while(|S(T;)| < N)
S(T5) < S(T3) + {max(S; : e;;)}
egj = e;;/(1 + max. interferers along route)
r«—0
while(r < R and decrease > «)
Find task 7} with highest number of interferers
Find source S; — T with maximum interferers
Replace S; with max(Sk : e};)
r—r+1

Run NUM

for each task T}
while(|S(T3)| < N)
S(T;) < S(T;) + {max(S: : ei;)}

r«—0
while(r < R and increase > 3)

Run NUM

Find task 73 with minimum rate utility U, :

Find source S; — T with maximum interferers
egj = ei; /(1 + max. interferers along route)
Replace S; with max(Sk : e};)
r—r+1

to provide solutions. In the rest of the paper, we consider a
generalization of this problem to more complex utility models,
still with the objective of maximizing the sum total of the
utility received by the tasks in the network.

V. ALGORITHMS

In this section we provide the details about the two proposed
algorithms. Although the algorithms differ in the way and the
order in which they decide which sensors to choose, they are
similar in some aspects of the protocol they follow.

A. Overview

For each task, a leader is chosen, i.e. a sensor close to the
task’s location. Each task leader is informed about the location
of its task by a command center. Task leaders then run a local
algorithm to match nearby sensors to the requirements of the
task. We allow a task to assign up to N sensors. The set of
assigned sensors to task T is denoted by S(T}).

Since the utility a sensor can provide to a task is limited by a
finite sensing range (1), only nearby sensors are considered.
The leader advertises its task information to the nearby sensors
(e.g. sensors within a certain number hops).

To decide on the actual rates at which each source sends
data we run NUM. This occurs after the final assignment in the
Greedy-Divide algorithm and in each iteration of the NUM-
based iterative algorithm. Running NUM also determines the
rate utility of each task T} denoted by U.,.,.

B. Greedy-Divide

In this algorithm (shown as Algorithm 1), we make a first
approximation of the competition on a link before making an
assignment. Before an assignment is made, sensor .S; uses
(1) its actual utility to task T}, e;;, and (2) the number
of interfering flows along the route to the base station, to
determine its effective utility, egj. The effective utility is equal
to the actual utility divided by the maximum number of
interferers, i.e. the bottleneck, along the route to the base
station. In this way, sensors attempt to account for competition
on links before proposing to a task. A task selects sensors
greedily based on the effective utility.

After the initial assignment, the algorithm runs for R
rounds. In each round, the task with the highest number of
interferers (calculated as the sum of the interferers of all
sources) releases the sensor that has the most interfering

flows along its route. The task leader reselects a sensor based
on the updated effective utilities of the nearby sensors. The
information about which task is facing the most interference
can be learned by overhearing or by limited flooding of
interference information. To calculate its effective utility, each
sensor that can serve the task probes the network to determine
the number on interferers along the route.

To allow the algorithm to progress beyond a task that has no
better options, we limit the unsuccessful retries that a task can
have to ¢ tries. An unsuccessful try is a reselection that leads
to a decrease or no change in the task’s number of interfering
flows. The algorithm can terminate earlier than the R rounds
if no significant improvement is seen. The termination point is
determined using an application parameter «.. That is if there is
less than « percent decrease in the total number of interferers
of all tasks then the algorithm terminates.

C. NUM-based Iterative

Initially, this algorithm (shown as Algorithm 2) simply
assigns sensors to tasks in order of the utility they provide. We
do not consider possible competition on the links when making
the initial assignments, so it is likely the utility achieved after
running NUM will be substantially lower than expected. After
the initial assignment, we run for R rounds.

In each round, we first run NUM to set the rates of the links
given the current assignment. Then, the task that achieves the
lowest rate utility based on the results of NUM releases the
sensors that is facing the most interference. After that, the task
reselects a sensors based on the updated effective utilities of
the nearby sensors, i.e. taking the number of interferers into
account as in the previous algorithm.

Again, to allow the algorithm to progress beyond a task
that has no better options, we limit the unsuccessful retries
that a task can have to ¢ tries. Here, an unsuccessful try is a
reselection that leads to decrease or no change in the task’s
rate utility as determined by NUM. Also, the algorithm can
terminate earlier than the R rounds if less than [ percent
increase in the overall utility of the network is achieved.

The main difference between this algorithm and Greedy-
Divide is that the decision on which task should reselect
is based here on a centralized process that requires high
communication overhead to reach the optimal rates. Greedy-
Divide, on the other hand, can gather the needed information
using overhearing or more efficient limited flooding.



VI. BASE STATION SELECTION

In this section we propose three methods for a source to
choose a base station. Given that the routing table is static
in the network, the route from a sensor to the base station
must always be the same. Because of congestion, however,
we introduce the concept of having multiple base stations that
are connected to all the task sinks.

There are three ways for a source to select a base station:

1) Single base station: Each task has a unique base station
to which data from all sources are sent.

2) Static base station selection: Multiple base stations are
deployed. A sensor always chooses the base station that
has the shortest route.

3) Dynamic base station selection: Multiple base stations
are deployed. A source chooses the base stations dy-
namically based on which one has the lowest number
of interferers along the route. This decision can change
dynamically as the state of the network changes.

Note that in the second and third case, we assume that all
the base stations are connected to task sinks. Hence, a source
can be assigned to any base station and the data is delivered to
the appropriate sink. The last link from the base station(s) to
the sink is assumed to be wired and hence we do not consider
interference issues at this last hop.

VII. PERFORMANCE EVALUATION

In this section we show the simulation results comparing the
performance of the the Greedy-Divide (G-D) and the NUM-
based Iterative (NBI) algorithms. NUM is run after each round
to determine the overall performance of the network. The
application we use is event detection in which the goal is to
assign sensors that can provide the highest combined detection
probability given that utility may change due to the sensor
sending data at a lower rate than expected.

In the experiments, 500 sensors are uniformly deployed
in a field that is 250m x 250m in area. There are also
16 base stations that are deployed based on a uniformly
random distribution. Tasks are created in uniformly distributed
locations in the field. In the first experiment, there are 16 tasks
each assigned a single sensor. In the second experiment, there
are 4 tasks each assigned 4 sensors. In both cases the number
of assigned sensors is equal to 16.

A. Assumptions

The utility of a sensor S; to task T} or e;; represents the
probability of sensor .S; detecting an event at T};’s location. The
detection probability model we use is as follows: we divide
the circle of radius equal to the sensing range R (centered at
the task’s location) into rings. Sensors within the same ring
are assumed to be able to detect an event at the center with
the same probability. In our experiments, we use Rs; = 40m
and divide the circle into 4 rings. Sensors in the inner circle
provide 90% probability of detection, and for those within
the second ring it becomes 80%, and so on. Sensors within
the outermost ring provide 60% detection probability. The
cumulative detection probability that a task achieves from the

assigned sensors ({S; — T} }) is what we call the assignment
utility (Uy,) and it is defined as follows:

Usy = (1= ] (1—ey) )

SiHTj

After running NUM, each source is assigned a specific rate
at which it can send data to the task’s sink. As described in
[9], the rate utility u,, of sensor S; sending at rate r; must be
concave for NUM to find the optimal solution. In this paper
we assume that it is the following function:

U, = /1 2

The rate utility of task 7} is equal to the sum of the rate
utilities of its sources.

To normalize the value of the rate utility we assume that the
best rate utility that a single sensor can achieve is 1200 which
corresponds to a bit rate of 41.5Kbps. If a sensor achieves this
rate utility then the normalized utility is 1. If the rate utility is
600 then the normalized rate utility is 0.5. When NN sensors
are assigned to a task then best rate utility becomes 1200 xN.

If the assignment utility is U,, and the normalized rate
utility is Uy, , then the combined utility of task 77 is:

U; =U,, x U, 3)

The average performance of a task is used as a measure for
the utility of the network. The figures show the results aver-
aged over 15 runs. We run the two algorithms for 15 rounds
disregarding the termination point to study their behavior.

B. Simulation Results

Figure 1 shows the results when we limit the number of
sensors that can be assigned to a task to one. The figures shows
the performance as the algorithms progress through 15 rounds
(the two plots use the same scale for easier comparison). We
find that the curves for the three base selection schemes of
G-D stay nearly flat with the static base station (BS) and
dynamic BS closely aligned. The curves for NBI follow the
same trend but with slightly higher network utility. This is
because with only one sensor assigned per task the assignment
utility matters more than the rate utility. When one sensor is
chosen then its detection probability is the assignment utility
of the task. Because the G-D algorithm takes interferers into
account it penalizes sensors on congested routes and chooses
others that are not. The other sensors, however, may provide
lower utility that decision can lower the overall utility.

Figure 2 shows the results when we limit the number of
sensors that can be assigned to a task to four. The figure shows
the performance as the algorithms progress through 15 rounds.
As with the one-to-one case, we find that the curves for the
three base selection schemes of the G-D algorithm stay nearly
flat. For NBI, we see an increase in network utility as we
progress through the 15 rounds. From the initial assignment
(round O in the figures), we note an improvement of 5% to
14% depending on the BS selection used.



°
8
T
Q
o
©
S
3
D
i
o
1
Q
oL
¥

o
3
o

T

-=-=A-=- Dynamic BS
++++:0----=- Static BS
—0— Single BS

Network Utility

e
J
T

065 |—o——ot—g o000 0 q oo

P S S S S S S S S S S
0 1 2 3 45 6 7 8 9 1011 12 13 14 15
Round

(a) Greedy-Divide (G-D) Algorithm
Fig. 1.

gy tep
09 i
B
-t 0, S ST, S e S S S SYcY
0O

08|

°
J
T

---#--- Dynamic BS
-0+ Static BS
06k —o— Single BS

Network Utility

0——0—0—0—0—0—0—0g——0—0———0—0

05

PR T S S S ST S R L
0 1 2 3 45 6 7 8 9 1011 12 13 14 15
Round

(a) Greedy-Divide (G-D) Algorithm
Fig. 2.

G-D on the other hand, starts higher and does not change
significantly through the rounds. This suggests that because
G-D takes the interferers into account when making the initial
assignment, it is able to eliminate most of the interference that
is faced by NBI. This allows the algorithm to converge faster
than NBI.

As for the BS selection schemes, we note that the dynamic
BS selection gives the best results. This is to be expected since
it chooses the BS with the least number of interferers along
the route which leads to higher data rates. Static BS selection
comes as a close second. By selecting the BS that is closest in
terms of number of hops, we are able to distribute the load and
eliminate cross traffic (i.e. traffic going from one side of the
network to the other). This again leads to fewer interferers and
hence higher data rates. Distant third is the single BS scheme.
It has the lowest performance since it forces data from all
sources of a task to go to the same BS which can be located
any where in the network and not necessarily close to the
task’s location. This does not only cause cross traffic but also
contention at the last hop to the task’s BS which is shared by
all sources. Ultimately, this leads to very low rate utility.

In [9] it was found that running NUM requires about 200
seconds per round. This means that for 10 rounds it will take
NBI over 3 minutes to run. Because G-D does not run NUM
in each round it can complete much faster. We estimate that
10 rounds of G-D will take an order of magnitude shorter time
which will make it more desirable in real-time environments.

VIII. CONCLUSION

In this paper we proposed algorithms to solve the combina-
tion of two previous problems, namely sensor-task assignment
and rate utility optimization. We found through simulation
that we can improve the network utility from the initial
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assignment by 5% to 14%. We also found that both algorithms
ultimately achieve nearly the same results but the Greedy-
Divide algorithm can converge much faster than the NUM-
based Iterative algorithm.
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