
Player Collaboration in Virtual
Environments using Hierarchical Task

Network Planning∗

Daniele Masato, Stuart Chalmers and Alun Preece
University of Aberdeen, Computing Science, Aberdeen, UK

{dmasato,schalmer,apreece}@csd.abdn.ac.uk

Abstract

In recent years, the fast evolution in computer games has moved govern-
ment organizations to investigate how they can be exploited as virtual
environments to simulate scenarios which could be expensive or even dan-
gerous to set up in real life, in particular when collaboration among hu-
mans is required in order to carry out a shared plan. The proposed system
allows the tracking of progresses achieved by each plan participant within
the planning domain, by mapping its steps to states and humans’ actions
in the virtual environment. It also permits to render the environment and
the planning software loosely coupled and to provide flexible responses to
participants’ actions in the form of different alternatives to the same plan,
such that goals can be achieved following different courses of action.

1 Introduction

In recent years computer games have evolved rapidly both graphically and from
a playability point of view, exploiting the more and more powerful hardware
resources and becoming increasingly immersive, realistic and compelling. This
evolution has moved several government organizations to launch various initia-
tives about Serious Gaming1, that is the study of how computer games can be
used as a virtual environment to simulate scenarios which could be expensive,
difficult or even dangerous to set up in real life. These scenarios range from
military applications such as house search and clearance or foot patrols to in-
dustrial applications like safety analysis and accident prevention, where they
are employed as a teaching support to train the target audience. This approach
could also be used in Noncombatant Evacuation Operations and Peace Keeping
Operations simulations [1]: the former in which military forces are needed to
evacuate people whose lives are in danger, trying at the same time to minimize
the risk of combat zones [4] while the latter consists of activities that impar-
tially makes use of diplomatic, civil and military means to restore or maintain
peace [3]. Moreover, virtual environments are suitable to study individual and

∗This research is continuing through participation in the International Technology Alliance
sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence. See
http://www.usukita.org/

1Several government initiatives about Serious Gaming can be found in these websites:
http://www.seriousgames.org and http://www.defencegaming.com.



collaborative behaviours emerging from teams consisting of players with dif-
ferent cultural/social backgrounds carrying out the same tasks. Examples of
using a virtual environment in training and research activities include DIVE22,
SABRE3 [9] and Virthualis4.

This paper focuses on interactions among human players (and possibly soft-
ware agents) in a virtual environment where collaboration is required in order
to carry out a shared plan. Since a plan can be hierarchically decomposed in a
series of smaller tasks assigned to each participant involved in the operations,
the main aim consists in tracking the progress achieved by the players within
the planning domain, by mapping its various steps to states and players’ actions
in the virtual environment.

2 The Virtual Environment: Battlefield 2

The virtual environment chosen for our work is Battlefield 2 5, a first-person
shooter game with strategy elements, in which players fight in a realistic bat-
tlefield. The publisher6 provides a complete scenario editor to build custom
modifications and scenarios for the game. Furthermore, the game provides both
a server and a client implementation, hence while players are playing in the
environment rendered by their clients, the server manages all the game logic
and represents the right place to gather data about events happening in the
scenario. The server is instrumented by means of Python scripts which can cap-
ture many types of game events, such as player spawns and deaths, vehicle use
or area accessing/leaving7. In this way, it is possible to write a series of Python
functions which will be called automatically by the game engine whenever one
of the supported events happens during the match. The list of catchable events
is quite extensive8:

Player events: triggered when a player interacts with other players/weapons
and on changes to players’ health;

Vehicle events: triggered when a player interacts with a vehicle. Vehicles
differ from weapons because they can experience damage and be restored
to full functionality, whereas weapons cannot;

Sensitive areas events: sensitive spherical areas within the environment,
generating events upon player/vehicles entry/exit;

Timer events: set up during the match, they capture elapsed time.
2Dismounted Infantry Virtual Environment, see http://www.defenseindustrydaily.com/

2005/11/combat-sims-half-life-goes-to-afghanistan/index.php
3Situation Authorable Behavior Research Environment
4Virtual Reality and Human Factors Applications for Improving Safety, see

http://www.virthualis.org/index.php
5See http://www.ea.com/official/battlefield/battlefield2/us
6Electronic Arts Ltd.
7Although official documentation is poor under this aspect, information can be found at

http://bf2tech.org and http://bfeditor.org.
8Notifications are also triggered when the game changes status (loading/playing/end).

These events can be used to perform initialization and cleanup tasks relating to the planner.



2.1 JSHOP2 and Hierarchical Task Network planning

In Hierarchical Task Networks (HTN) planning, a plan is defined by a high-
level abstract description of required tasks (e.g. build a house) [7]. The plan is
then refined by applying a recursive decomposition process, where each task is
reduced to a partially ordered set of smaller tasks (e.g. obtain a permit, dig the
ground, lay foundations etc.). The process terminates when it reaches primitive
tasks, represented by planning operators defined by a domain description, also
called the planning domain. The planner needs to be instructed on how to
decompose complex tasks to simpler subtasks and this is achieved by means of
schemata called planning methods. For the same high-level task there could be
a number of applicable methods, so the planner may have to perform several
attempts before finding a suitable decomposition to a lower level.

We have utilised JSHOP2 9, a planning algorithm based on Ordered Task De-
composition, a modified version of HTN planning involving planning for tasks
in the same order that they will later be executed10. In this way, much of the
uncertainty regarding the world represented by the planning domain is removed,
and this makes it possible to know the world status at each step of the decom-
position process. Moreover, additional expressive power may be added through
axioms11, symbolic and numeric conditions and external function calls which
allow the planner to reason about the current world state and make decisions
on this basis. Methods, operators and axioms all involve logical expressions,
that are combinations of atom terms using logical operators (and, or, not),
implications (imply) and universal quantificators (forall).

JSHOP2 does not interpret the plan dynamically but compiles the plan,
meaning that given the planning problem and its domain, JSHOP2 transforms
these into a set of Java classes (contained in the domain-specific planner and
in the problem) tailored and optimized to solve the specific problem (Figure
1). This approach does not pose any difficulties, as long as the planner, which
relies on a closed-world assumption, does not need to interact with an exter-
nal environment. Instead, should an external event (e.g. a function call) be
used to trigger a modification in the planner world state, problems would arise.
In fact, the compilation process implies that all the entities defined in the do-
main description, such as operators, methods and axioms will be mapped to
an internal, domain-specific representation (i.e. specific Java classes). Accord-
ingly, these entities are identified by means of unique integer values (not known
prior to compilation). This means that all state atoms included in the domain
description will be mapped to integer values, and these will be the only refer-
ences an external component may use to assert or retract such atoms in order
to change the world state. In conclusion, all the state atoms which require to
be later accessible by an external software must be declared somewhere in the
domain definition, to retrieve their correspondent integer representations.

9See http://www.cs.umd.edu/projects/shop
10O-Plan [8] has also been considered and tested, and we believe that substituting this an

alternative planner is possible due to the open architecture implemented.
11Axioms are simply evaluations performed on the current world state.



Figure 1: JSHOP2’s plan compilation process (from [2], page 14)

Figure 2: System overview

3 System Architecture & Design

In Figure 2 we can see the two main components of the system: the virtual
environment and the planner. In this example the players are at the Start
point on the hilltop and the plan requires that they reach the Target point (a
fence) at the hill foot following the blue path. The players interact with the
virtual environment, hosted in a server machine, using their client machines and
receive visual feedback of their interactions (moving, picking up objects, driving
vehicles, firing weapons).

The virtual environment maps these operations into a machine understand-
able format, triggering events which are sent to the planner. Since the planner
has been instructed about the goal (reach the target) and how to achieve it,
one or more events are applied to the world state, thus modifying and driving
the plan execution. When the planner realizes that a primitive operator is ap-
plicable to the current world state, it fires one or more actions back to the
environment, which transforms these into advice or directions for the players.
Note that the players are not forced to follow the instructions issued by the
planner.



Figure 3: The event model

Figure 4: Two examples of events

3.1 Message modelling: Events and Actions

Before outlining the system design, we define the messages exchanged between
the environment and the planner, in the form of events and actions.

Events An event is defined as something happening in the environment, which
in turn causes a change in the planner world state (Figure 3). In this model,
an event instance is identified by a unique integer ID and a Name indicating
the type of event (e.g. spawn of player, death of player). The ID distinguishes
different events as well as events with the same features and content but trig-
gered at different times: in this way, when they are mapped into the planner
world state, they maintain their own identity, allowing reasoning on the basis
of sequences of events instead of every single event. Each event involves one
or more entities, defined by a Type (e.g. players, vehicles) and a Name (e.g.
Player1, Jeep). Each entity has one or more properties (e.g. position, rotation)
related to the event it is involved in.

Two instances of event are shown in Figure 4. The first shows the player
entity Daniele has just spawned in the environment at coordinates (X1, Y1, Z1).
The second shows that the player has entered the vehicle entity identified by
Jeep, located in position (X2, Y2, Z2)12.

Actions An action is a primitive operator applied by the planner to its world
state, causing modification or visual feedback in the environment (Figure 5).
The action is identified by a Name (e.g. say-to-player, move-object) which
indicates the environment modification caused. An action is addressed to a
particular Target, that is an entity as above, but with no specified properties.
Properties are moved outside the target because they are related to the action

12Here the property role states that the player is acting as the event source, whereas the
vehicle is the event target, meaning that Daniele has entered in the Jeep, not the opposite.



Figure 5: The action model

Figure 6: Two examples of action

itself and their aim is to specialize the generic modification it represents. Two
instances of action are shown in Figure 6. The first is addressed to the player
Daniele and causes a message to appear on screen. The message content is
specified by the Text property. The second indicates that the vehicle entity
Jeep has to be moved to the position (X3, Y3, Z3).

3.2 System Architecture

This section outlines the system architecture (Figure 7), following a top-down
approach, from the two web services to the calls to and from the game engine
and planner. The system design is almost completely symmetric: as will be dis-
cussed later in the next sections, this design allows both asynchronous message
exchanges between the two sides and a more rational development process. It
also provides a good level of abstraction for easy extension or adaptation.

The communication channel between the environment and the planner is
realized in the form of web services. The web services expose some methods (de-
scribed in the WSDL format) which are called by clients. Messages exchanged
between the web service and clients are enclosed in Simple Object Access Pro-
tocol13 envelopes and formatted according to the XML standard.

3.3 Game side design

The Game Web Service The game web service is the recipient of actions
from the planner, modelled as described in section 3.1. Actions are unwrapped
from their SOAP envelope and deserialized into language-specific14 complex
data structures ready to be delivered to the level below. In order to fulfil its
role, the game web service must expose at least the following methods15:

• postAction: the method the planner side will call to post its actions;

13See http://www.w3.org/TR/wsdl and http://www.w3.org/TR/soap
14Python in this case.
15The last two methods should cause a restart in the environment to allow another course

of action for the same scenario or to load another scenario.



Figure 7: System architecture

• planSucceeded: method called when all the plan tasks have been com-
pleted successfully;

• planFailed: method called when all the attempts to solve the plan fail.

The Event/Action Manager This is the most important component of the
system because it acts as an interpreter between the web service and the game
engine, and it performs a client role with respect to the planner web service
using an asynchronous communication channel16. In fact, the E/A Manager
provides an Action Buffer where the game web service can enqueue received
actions continuously, thus allowing the planner side to send them whenever
they are available. This means that:

• the planner is not forced to post an action only in response to a received
event. It may send actions related to sequences of events or actions unre-
lated with any event (e.g. to welcome to the game participants);

• although an event response should not arrive too late, the planner is not
required to provide a solution in a fixed timeframe, increasing its ability
to solve complex situations;

• the planner may map a single operator applied to its world state to more
actions and post them sequentially.

When actions are available in the buffer and the environment manager is
ready to process them, the Action Performer module dequeues the first action

16An asynchronous communication channel increases the decoupling of the two components,
providing more flexibility as they can both proceed in parallel, helping mitigate delays in
delivery or temporary bottlenecks.



and maps it to the game engine format (e.g. a function call, see later). Although
the Action Performer works together with the E/A Manager, it should run in
parallel as an independent unit to allow the latter to handle efficiently the
callbacks triggered by the game engine and the actions enqueued in the buffer.

When an event is triggered inside the environment, the E/A Manager is
notified (e.g. through a callback mechanism) and receives a raw event. The raw
event must then be mapped to a complex data structure (compliant with the
event model). Finally, the web service client embedded inside the E/A Manager
posts the event to the planner using the postEvent method exposed by the
planner web service.

Interfacing with the game engine The lower level consists of the interface
between the E/A Manager and the environment engine. This part of the system
is heavily dependent upon the engine itself and its degree of openness, therefore
an abstraction of this component is not easy to devise. However, every virtual
environment to be interfaced with the E/A Manager should provide these two
facilities:

• a way to modify some aspects of the environment in response to actions;

• a way to notify the E/A Manager of events happening in the environment.

In Battlefield 2 server these are achieved by a set of game engine function
calls, callable from the Python interpreter, which includes support for display-
ing messages on client screens, creating new spherical sensitive areas with a
given radius and position and moving objects or vehicles in the map17, and a
callback mechanism that allows different Python functions implemented in the
E/A Manager to be called by the game engine whenever players’ interactions
with the environment trigger some events.

3.4 Planner Side Design

The Planner Web Service The planner side design is similar to the game
side, apart from the lower level where the interface to the environment is replaced
with the interface to the planner. The planner web service act as a hub which
collects events arriving from the planner side (and modelled as described in
section 3.1), unwraps them from their SOAP envelope and finally deserializes
them into language-specific complex data structures, ready to be delivered to
the level below. In order to synchronize itself with the game side, the planner
web service must expose at least the following methods:

• postEvent: the method the game side will call to post its events;

• startPlan: method called when the virtual environment scenario is load-
ed and ready to accept actions;

17Many other functions are available in Battlefield 2 server, but these are the most important
and were used in the system implementation



• stopPlan: method called when the virtual environment is shut down due
to an error or players’ directive. This should also reset the planner to its
initial state so it is ready the next time startPlan is called.

The Event/Action Manager This performs the same functions as its twin
on the game side. In particular this E/A Manager provides an Event Buffer
where the planner web service can enqueue received events continuously, allow-
ing the game side to send them whenever they are produced. As a consequence:

• the environment is not required to post an event only in response to a
received action. This is an extremely important consideration since the
environment engine is optimized to deliver high performances during the
gameplay and its overhead should be minimized18;

• a callback in the game E/A Manager may be mapped into multiple events
which the game side may send sequentially at its maximum speed.

When new events are available in the buffer and the planner needs additional
information to reach a solution, it queries the E/A Manager which in turn
dequeues the first event from the buffer and maps it into state atoms. These are
then returned to the planner that will assert or retract them in its world state.
Although many events can be triggered at the same time in the environment,
they will be delivered in a particular order to the planner web server, hence the
Event Buffer should be implemented as a queue to preserve such order and for
consistency with its twin on the game side.

When the planner applies a primitive operator to its world state, the E/A
Manager is notified and receives a raw action in a format dependent from the
planner itself. The raw action must then be mapped to a complex data structure
which complies with the action model for it to be sent. Finally, the web service
client embedded within the E/A Manager posts the action to the environment
using the postAction method exposed by the game web service.

Changing the planner world state This level of the architecture allows
the modification of the planner world state to take advantage of the received
events. Interfacing the E/A Manager with the planner is not as difficult as its
counterpart on the game side, however, every planner to be interfaced with the
E/A Manager should provide these two capabilities:

• a way to specify what state atoms are to be asserted or retracted in re-
sponse to an event;

• an external function call support which allows to notify the E/A Manager
that an operator has been applied.

JSHOP2 provide a flexible function call support through a Java interface
called Calculate. A multi-purpose function, whose behaviour is based on the
arguments it receives, has been implemented to address both the requirements.

18If the environment had to wait for an action in response to each event sent to the planner,
this would slow down or possibly block the game engine, causing unpredictable behaviours
that may range from impaired user experience to game engine crashes.



4 Implementation

Figure 8: Planner side implementation

The system implementation follows the design in Figure 7. The virtual
environment is provided by Battlefield 2: its server runs on a dedicated machine
and works as a hub for all the events generated by the clients, while players
connect to it from machines running the clients, which in turn render the virtual
environment on players’ display.

The plan is managed by JSHOP2, which generates the domain specific plan-
ner, allowing the description of the current plan state at each generated step [6]
and permits tracing of the plan development interactively, without waiting for
the planner to calculate the entire sequence of steps of the plan. JSHOP2 has
already been used with good results in various kinds of similar situations [5].

Our work involves the creation of two web services, the first programmed in
Python and running inside the game server, the second developed in Java (to
communicate with JSHOP2) and hosted by the Axis framework on a Tomcat19

web server. This approach has some immediate advantages: firstly, it allows
Battlefield 2 and JSHOP2 to exchange messages over a network; moreover it
offers a loose coupling between the virtual environment and the planner, allow-
ing experimenting with environments other than Battlefield 2 (and the use of
planners other than JSHOP2). Finally, it permits the implementation of the
asynchronous communications described in section 3.

To integrate with the Python interpreter embedded in Battlefield 2 we use
ZSI, the Zolera SOAP Infrastructure20. In particular, ZSI parses and generates
SOAP messages, and converts between native Python data types and SOAP
syntax, including complex data types.

19See http://ws.apache.org/axis and http://tomcat.apache.org
20See http://pywebsvcs.sourceforge.net



Figure 9: Game side implementation

5 Evaluation

We carried out the evaluation of our planner interaction in the system using
the simple scenario detailed in section 3. The scenario requires that the player,
starting from the top of a hill, completes two tasks: reach the fence at the hill
foot, then pass the fence and reach the island behind the hill. To achieve these
goals the player may decide whether to use the vehicles provided (a car and a
boat). An excerpt from the planning domain that tracks the accomplishment
of the first task is shown in Figure 10, together with the scenario definition
showing the sequence of the two goals.

Currently the system tracks one player’s progress in the environment. In
fact, once the plan author has defined the plan and it has been compiled, the
system is able to realize the mapping between the plan logic and the player’s
interactions with the virtual environment without any other user interventions.
As previously stated, the planning problem defines the player’s tasks and their
execution sequence at a very high abstraction level, whereas the planning do-
main drives the planner toward a solution outlining how high-level tasks are
decomposed in simpler tasks. The whole planning process could be seen as a
rule-based system where planning operators are applied when certain conditions
are met and changes in the world state allow to apply some operators rather
than others.

For example, taking the reach-fence method, this is simply decomposed
in three subtasks: notify the player of his/her task21, wait for the task to be
completed, and notify the user of the success. The same approach is applied
to the subtask wait-for-fence-reached where the JSHOP2 constructs (such
as axioms in a method precondition) make it relatively easy to follow different
directions whether some conditions (the fence has been reached) are verified or
not. In general, checking whether particular situations are valid in the virtual

21say-to-player is further decomposed into an operator which performs a dispatch-action
function call to the planner E/A Manager, but the latter is not listed for space reasons.



(defdomain domain
...
; Given a player already in the scenario, asks the player to reach the fence
(:method (reach-fence)

((chosen ?player))
(

; say-to-player will apply an operator to the planner world state which in
; turn will call the dispatch-action method in the E/A Manager
(say-to-player ?player (Reach the fence down the hill))
(wait-for-fence-reached ?player)
(say-to-player ?player (You reached the fence))

)
)

(:method (wait-for-fence-reached ?player)
; Waits for goal achievement, updates the world state at each loop and repeats
((player-available ?player) (not (fence-reached ?player)))
(

(try-use-land-vehicle ?player)
; update-state will call the get-event method in the E/A Manager
(update-state)
(wait-for-fence-reached ?player)

)

; Goal achieved, terminates the plan
((fence-reached ?player))
nil

)

; Suggests the usage of a land vehicle, if available, otherwise walking!
(:method (try-use-land-vehicle ?player)

; Player may drive to the fence
((car-available ?car) (player-in-car ?player ?car))
((say-to-player ?player (Drive the car to the target)))

; Player may reach the fence by car
((car-available ?car))
((say-to-player ?player (Use the car to reach the target faster)))

; Player has to reach the fence by walk
nil
((say-to-player ?player (You have no car-walk to the target)))

)

; Axiom to see whether a player is available (spawned in the environment)
(:- (player-available ?player)

((entity (player ?idp) (event (?ide spawn)))
(assign ?player (player ?idp)))

)

; Axiom to see whether the player has reached the fence
(:- (fence-reached ?player)

((entity ?player (event (?ide enter)))
(entity (area fencepoint) (event (?ide enter))))

)
...
) ; end of domain definition

(defproblem definition domain
; Starts with an empty initial state
nil
((wait-for-player) (reach-fence) (reach-island))

) ; end of problem definition

Figure 10: An excerpt of the planning domain and problem specification, represented
in JSHOP2 formalism



environment is facilitated by the adoption of the event model described in section
3.1. As can be noted from the fence-reached axiom, it is rather straightforward
to capture the situation in which the player has entered in the fencepoint area,
because these two entities are linked by the same event and they are both part
of the current world state.

In wait-for-fence-reached the world state update is realized by means of
update-state22, then the method calls itself again recursively. In this way the
planner keeps checking for the fence-reached condition to be true, updating
the world state at every loop. Events which do not contribute to satisfying this
condition are asserted in the world state but are virtually filtered. In this way,
events not directly related to the current task do not lead to any new action
generated from the planner. Nonetheless, some of the mentioned events may be
relevant as they may lead to a different alternative for the task (reaching the
fence). This case is considered in the try-use-land-vehicle method which
gives different advice to the player depending on whether a car is present and
whether the player is in the car. Note that the player is not forced to follow the
advice because the main task remains to reach the fence, no matter how this is
accomplished.

To summarize, a carefully crafted plan definition permits various courses of
action for the same plan. However, the implementation mentioned above should
be use with caution, since it recursive nature might lead to stack overflow excep-
tions in the planner. Apart from this, the plan definition may be as complex and
as detailed as resources permit, since the JSHOP2 compilation process always
generates an optimized solver tailored to cope with such specific plan definition.

6 Conclusions and future work

The implementation we have is flexible enough to offer some nice additional
features, such as the possibility to define alternatives for the same plan task
or synchronizing multiple partially dependent plans23. In this case it could be
possible to evaluate how players react to unexpected situations (as in emergency
simulations) and to evaluate how they collaborate together, and to test the
use of and ability of software agents in human/agent collaborative teams. The
former feature was successfully implemented in the plan employed for evaluation
purposes, whereas the latter is currently being investigated. This also touches
on the scenario of plans involving multiple players. Applying a simple plan to
an environment with more than one player should allow a second player to take
over the current task execution should the first player fail in the attempt. For
example, taking again the reach-fence method in Figure 10 and assuming two
players have spawned in the environment, if the designated player (in (chosen
?player)) fails to complete the wait-for-fence-reached subtask, then the
JSHOP2 algorithm should backtrack and bind the variable ?player to another,
attempting to complete the same subtask once more with a different player.

22This task is further decomposed in a get-event function call to the planner E/A Manager.
23As long as the plan author designs plans which support these aspects.



We are also investigating more interactive communication between players
and the planner. Currently we use the planning framework to direct and advise
the players toward the plan solution. However, if more solutions to a plan are
available, it is not possible for a player to ask the planner for a specific solution,
or to reject an unsatisfactory one, as the planner autonomously “decides” what
is best for the player in order to achieve the goals. This extension can be
implemented using the embedded communication channel among Battlefield 2
clients and the game server, which should make possible for players to issue
commands from their local console to the server console. Once received by the
server console, commands could be parsed and sent to the planner to replan
accordingly to players’ requests.

References

[1] Anders Frank. Foreign Grounds, a Digital Game for DecisionMaking in
Foreign Cultures. In 2nd Workshop on Exploring Commercial Games for
Military Use, October 2005.

[2] Okhtay Ilghami. Documentation for JSHOP2. Technical Report CS-TR-
4694, Department of Computer Science, University of Maryland, US, May
2006.

[3] Joint Chiefs of Staff. The Military Contribution to Peace Support Operations,
2nd edition. Ministry of Defence, UK, June 2004.

[4] Joint Chiefs of Staff. Noncombatant Evacuation Operations. United States
Forces, January 2007.

[5] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, Héctor Munoz-Avila,
J. William Murdock, Dan Wu, and Fusun Yaman. Applications of SHOP and
SHOP2. Technical Report CS-TR-4604, Department of Computer Science,
University of Maryland, US, June 2004.

[6] Dana Nau, Héctor Munoz-Avila, Yue Cao, Amnon Lotem, and Steven
Mitchell. Total-Order Planning with Partially Ordered Subtasks. 17th In-
ternational Joint Conference on Artificial Intelligence, August 2001.

[7] Stuart Russell and Peter Norvig. Artificial Intelligence, a Modern Approach,
2nd edition. Artificial Intelligence. Prentice Hall, 2003.

[8] Austin Tate and Ken Currie. O-Plan: the Open Planning Architecture.
Artificial Intelligence, 52, 1991.

[9] Rik Warren, David E. Diller, et al. Simulating scenarios for research on
culture and cognition using a commercial role-play game. In Proceedings of
the 2005 Winter Simulation Conference, 2005.


