
Argument Based Contract Enforcement

Nir Oren, Alun Preece, Timothy J. Norman

Department of Computing Science, University of Abedeen

Aberdeen, Scotland

Abstract

Agents may choose to ignore contract violations if the costs of enforcing
the contract exceed the compensation they would receive. In this paper
we describe an argumentation based framework for agents to both decide
whether to enforce a contract, and to undertake contract enforcement
actions. The framework centres around agents presenting beliefs to jus-
tify their position, and backing up these beliefs with facts as necessary.
Presenting facts costs an agent utility, and our framework operates by
using a reasoning mechanism which is based on the agent comparing the
utility it would gain for proving a set of literals with the costs incurred
during this process.

1 Introduction

Open environments may contain self–interested agents with different levels of
trustworthiness. While self–interested, these agents may both cooperate and
compete so as to increase their own utility. Many mechanisms have been pro-
posed to ensure correct agent behaviour in such environments, and most make
use of some form of implicit or explicit contract between the agents [1, 6].
The purpose of such a contract is to lay out what is expected from each con-
tracting party. Given norm-autonomous agents, i.e. agents which are able to
decide whether to fulfil their normative requirements, contracts also allow for
the imposition of penalties and compensation to the wronged party if any de-
viations from the agreed upon behaviour occurs. Sanctioning of agents often
takes place through the use of a trust or reputation framework [12], or some
monetary mechanism.

In the real world, minor contract violations are often ignored, either due
to the loss in trust that would arise between the contracting parties, or due
to the small compensation the wronged party would receive when compared to
the overhead of enforcing the contract. Even major violations might not result
in the wronged party being (fully) compensated, or the guilty party being
penalised as the cost of proving the violation might exceed the compensation
which would have been obtained by the victim, resulting in them not attempting
to enforce the contract. While the former behaviour might be useful to replicate
within multi-agent systems (due to increased efficiency), at first glance the
latter behaviour seems undesirable. Such behaviour is however rational (and

1



thus desirable in many settings), as it maximises an agent’s gain. It could
be argued that loss making contract enforcement actions, which might increase
the society’s welfare as a whole, are the responsibility of some “pro-bono” third
party agents, rather than contract participants.

Contract enforcement costs are not constant in many scenarios. Referring
again to a typical real world example, if a contract case goes to court, extra costs
are incurred due not only to lawyer’s fees, but also due to the cost of gathering
evidence. As the case progresses, additional evidence might be needed, leading
to further escalating costs. Some legal systems avoid this by having the loser
of a case pay its opponent’s fees.

The increasing complexity of artificial agent environments means that many
of these scenarios have analogies within the agent domain. Agents interacting
with each other on the web, virtual marketplace or a Grid do not trust each
other and sign contracts before providing and consuming services. If one agent
believes another did not fulfil its obligations, it may need to verify its belief by
gathering large amounts of evidence. This evidence gathering might cost it not
only computational, but also monetary resources as it might have to purchase
information from other agents. In a similar manner, it might cost the accused
agent resources to defend itself. Allowing for such behaviour can increase both
the efficiency and robustness of agent environments.

In this paper we examine multiple issues related to this type of contract
enforcement. We provide an argumentation/dialogue game based framework
which allows agents to both decide and undertake contract enforcement ac-
tions. We also look at how aspects of this framework can tie into contracting
languages. Our work forms part of the CONOISE-G project [13]. CONOISE-
G centres around the creation and implementation of technologies designed to
improve the performance and robustness of virtual organisations. Agents oper-
ating within the environment have their behaviour regulated by contracts, and
contract monitoring and enforcement thus form a major part of the project
focus.

An agent monitors a contract, and, if it believes that it can gain utility
by starting a contract enforcement action (e.g. due to clauses where it would
gain utility coming into force, or clauses wherein another agent should pay it
a penalty), it will start such an action. At each stage of the dialogue, it calcu-
lates the amount of utility it would (lose) gain by (not) enforcing the contract.
While a net utility gain exists, the agent maintains its enforcement action,
bringing forward evidence as required. The action of probing the environment
for evidence decreases the agent’s utility. The accused agent(s) follow a similar
process, computing how much utility they would lose by not defending them-
selves, and paying for evidence they use in their defence. This process ends
when the accusing or defending agents capitulate, or no further evidence can
be presented, after which a decision regarding the status of the contract can
be reached. While the method we propose in this paper is simple, we believe it
can both be useful in a large number of scenarios, as well as provide the basis
for more complicated techniques.

This work is based on [11]. A major difference between the work presented



there and this work is that the formalism described in this paper allows agents
to reason about multiple goals simultaneously. This leads to agents which can
reason about more than one contract clause at a time. The ability to reason
about multiple (possibly conflicting) clauses is critical in all but the simplest
of contracts.

In the next section we formalise our framework, after which an small exam-
ple is presented. Section 4 looks at the features of our framework, and places
it within the context of related work. Finally, possible extensions to this work
are discussed.

2 The Formalism

In this section, we describe our approach. We are primarily interested in only
one section of the contract enforcement stage, namely the point at which an
agent attempts to prove that another agent has (or has not) broken a contract.
Informally, the agent begins by determining how much utility it would gain by
proving that it has been wronged, as well as what the net utility gain would
be for not being able to prove its claims. A dialogue then begins between
the involved agents. In the course of this dialogue, evidence is presented from
outside sources. Presenting this evidence costs utility, imposing an ordering
on the best way to present the evidence, as well as possibly causing an agent
to give up on its claims. Once the agents have made all the utterances they
desire, an adjudication process can take place, determining whether an agent
has been able to prove its case. The work presented here is an extension of the
work described in [8, 9].

We begin by describing the logical layer in which interaction takes place,
and the way arguments interact with each other. We decided against using an
abstract argumentation framework (such as the one described by Dung [3]) or
a legal based argumentation framework (such as Prakken and Sartor’s [16]) as
our arguments are grounded and do not make use of any default constructs.
Making use of our own logical formalism also helps simplify the framework.

After describing the logical level, we specify the dialogue game agents can
use to perform contract monitoring actions, examining strategies agents can
use to play the game, as well as looking at how to determine the winners and
losers of an instance of the game. It should be noted that we discuss very few of
our design decisions in this section, instead simply presenting the framework.
An in depth examination of the framework is left for Section 4. The section
concludes by describing how to transform a contract into a form usable by the
framework.

2.1 The Argumentation Framework

Argumentation takes place over the language Σ, which contains propositional
literals and their negation.

Definition 1 Argument. An argument is a pair (P, c), where P ⊆ Σ ∪ {>}



and c ∈ Σ such that if x ∈ P then ¬x /∈ P . We define Args(Σ) to be the set of
all possible arguments derivable from our language.

P represents the premises of an argument (also referred to as an argument’s
support), while c stands for an argument’s conclusion. Informally, we can read
an argument as stating “if the conjunction of its premises holds, the conclusion
holds”. An argument of the form (>, a) represents a conclusion requiring no
premises (for reasons detailed below, such an argument is not necessarily a
fact).

Arguments interact by supporting and attacking each other. Informally,
when an argument attacks another, it renders the latter’s conclusions invalid.

An argument cannot be introduced into a conversation unless it is grounded.
In other words, the argument ({a, b}, c) cannot be used unless a and b are either
known or can be derived from arguments derivable from known literals. Care
must be taken when formally defining the concept of a grounded argument,
and before doing so, we must (informally) describe the proof theory used to
determine which literals and arguments are justified at any time.

To determine what arguments and literals hold at any one time, let us
assume that all arguments refer to beliefs. In this case, we begin by examining
grounded beliefs and determining what can be derived from them by following
chains of argument. Whenever a conflict occurs (i.e. we are able to derive
literals of the form x and ¬x), we remove these literals from our derived set.
Care must then be taken to eliminate any arguments derived from conflicting
literals. To do this, we keep track of the conflicting literals in a separate set,
and whenever a new conflict arises, we begin the derivation process afresh,
never adding any arguments to the derived set if their conclusions are in the
conflict set.

Differentiating between beliefs and facts makes this process slightly more
complicated. A literal now has a chance of being removed from the conflict set
if it is in the set of known facts.

More formally, an instance of the framework creates two sets J ⊆ Args(Σ)
and C ⊆ Σ, while making use of a set of facts F ⊂ Σ such that if l ∈ F then ¬l /∈
F and if ¬l ∈ F then l /∈ F (i.e. F is a consistent set of literals). J and C
represent justified arguments and conflicts respectively.

Definition 2 Derivation. An argument A = (Pa, ca) is derivable from a set
S given a conflict set C (written S, C ` A) iff ca /∈ C and (∀p ∈ Pa(∃s ∈ S
such that s = (Ps, p) and p /∈ C) or Pa = {>}).

Clearly, we need to know what elements are in C. Given the consistent set
of facts F and a knowledge base of arguments κ ⊆ Args(Σ)1 , this can be done
with the following reasoning procedure:

J0 = {A|A ∈ κ such that {}, {} ` A}

C0 = {}

1We assume that κ contains all our facts, i.e. ∀f ∈ F, f ∈ κ



Then, for i > 0, j = 1 . . . i, we have:

C∗

i = Ci−1 ∪ {cA,¬cA|∃A = (PA, cA), B = (PB ,¬cA) ∈ Ji−1}

Ci = C∗

i \(C
∗

i ∩ F )

Xi0 = {A|A ∈ κ and {}, Ci ` A}

Xij = {A|A ∈ κ and Xi(j−1), Ci ` A}

Ji = Xii

The set X allows us to recompute all derivable arguments from scratch after
every increment of i2. Since i represents the length of a chain of arguments,
when i = j our set will be consistent to the depth of our reasoning, and we
may assign all of these arguments to J . Eventually, Ji = Ji−1 (and Ci = Ci−1)
which means there are no further arguments to find. We can thus define the
conclusions reached by a knowledge base κ as K = {c|A = (P, c) ∈ Ji}, for the
smallest i such that Ji = Ji+1. We will use the shorthand K(κ, F ) and C(κ, F )
to represent those literals which are respectively derivable from, or in conflict
with a knowledge base κ and fact set F . C∗

i represents the conflict set before
facts are taken into account.

2.2 The Dialogue Game

Agents make use of the argumentation framework described above in an at-
tempt to convince others of their point of view. An agent has an associated
private knowledge base (KB) containing its beliefs, as well as a table listing
the costs involved in probing the system for the value of literals (M). An in-
stance of the argumentation dialogue is centred around agents trying to prove
or disprove a set of goals G. Utility gains and losses are associated with suc-
ceeding or failing to prove these goals. The environment also contains a public
knowledge base recording the utterances made by the agents. This knowledge
base performs a role similar to a global commitment store, and is thus referred
to as CS below.

Definition 3 Environment. An environment is a tuple (Agents, CS, F, S)
where Agents is the set of agents participating in the dialogue, CS ⊆ Args(Σ)
is a public knowledge base and F ⊂ Σ is a consistent set of literals known to be
facts. S ⊆ Σ contains literals representing the environment state.

Definition 4 Agent. An agent α ∈ Agents is composed of a tuple
(Name, KB, M, G, T ) where KB ⊆ Args(Σ), M is a function allowing us to
compute the cost of probing the value of a literal. G is a goal function (described
in Definition 6) allowing the agent to calculate its utility at various stages in
the argument. T ∈ R keeps track of the total costs incurred by an agent during
the course of the argument.

2This allows us to get rid of long invalid chains of arguments, as well as detect and
eliminate arbitrary loops.



The monitoring cost function M expresses the cost incurred by an agent
when it must probe the environment for the value of a literal. It maps a set of
literals to a real number:

Definition 5 Monitoring costs. The monitoring cost function M is a do-
main dependent function M : 2Σ → R

Representing monitoring costs in this way allows us to discount multiple
probing actions, for example, it might be cheaper for an agent to simultaneously
determine the cost of two literals than to probe them individually in turn.

We assign a utility to a goal state based on the literals that can be derived
within that state, and the literals in conflict within that state. More formally,

Definition 6 Goal function. The utility function G is a domain dependent
function G : KS → R where KS = {(K, C)|K ∈ 2Σ, C ∈ 2Σ such that if c ∈
C then ¬c ∈ C, and if {c,¬c} ∈ C then {c,¬c} ∩ K = {}}

Agents take turns to put forward a line of argument and ascertain the
value of a literal by probing the environment. For example {((>, a), (a, b)), b)}
is a possible utterance an agent could make, containing the line of argument
{(>, a), (a, b)} and probing the environment for whether b is indeed in the
environment state. Alternatively, an agent may pass by making an empty
utterance {,}. The dialogue ends when CS has remained unchanged for as
many turns as there are players, i.e. after all players have had a chance to make
an utterance, but didn’t. Once this has happened, it is possible to compute
the literals derivable from CS and F , determine the status of an agent’s goal
expression, and thus compute who won the dialogue.

Definition 7 Utterances. The utterance function

utterance : Environment × Name → 2Args(Σ) × Σ

accepts an environment and an agent name, returns the utterance made by
the agent. The first part of this utterance lists the arguments advanced by the
agents, while the second lists the probed environment states.

Given an agent with a monitoring cost function M , we may compute the
cost to the agent of making the utterance (Ar, Pr), where Ar is the line of
argument advanced by the agent and Pr is the set of literals the agents would
like to probe, as M(Pr).

Definition 8 Turns. The function

turn : Environment × Name → Environment

takes an environment and an agent label, and returns a new environment con-
taining the effects of the agent’s utterance.



Given an environment Env = (Agents, CS, F, S) and an agent
α = (Name, KB, M, G, T ) ∈ Agents, we define the turn function as follows

turn(Env, Name) = (NewAgents, CS ∪ Ar, F ∪ (Pr ∩ S), S) where Ar, Pr

are computed from the function utterance(Env, Name) = (Ar, Pr), and

NewAgents = Agents\α ∪ (Name, KB, M, G, T + M(Pr))

We may assume that the agents are named Agent0, Agent1, . . . , Agentn−1

where n is the number of agents participating in the dialogue. It should be
noted that the inner workings of the utterance function are dependent on agent
strategy, and we will describe one possible game playing strategy below. Before
doing so however, we must define the dialogue game itself. Each turn of the
dialogue game results in a new environment, which is used during later turns.

Definition 9 Dialogue game. The dialogue game can be defined in terms of
the turn function as follows:

turn0 = turn((Agents, CS0, F0, S), Agent0)

turni+1 = turn(turni, Agent
i mod n

)

The game ends when turni . . . turni−n+1 = turni−n.

CS0 and F0 contain the initial arguments and facts, and are usually empty.
Note that the agent may make a null utterance {, } during its move to (even-
tually) bring the game to an end.

For any state, we can compute an agent’s utility by combining the amount
of utility it gains for the state together with T , the amount of utility it has
expended to achieve that state.

Definition 10 Agent utility. Given an environment = (Agents, CS, F, S),
and abbreviating an agent definition (Name, KB, M, G, T ) as α, an agent’s net
utility is defined as

U(CS, F, T ) = G(K(CS, F ), C(CS, F )) − T

2.3 The Heuristic

We are now in a position to define one possible technique for taking part in the
dialogue game. We assume that our agent is rational and will thus attempt to
maximise its utility. By using the reasoning procedure described in Section 2.1
over the environment’s knowledge base CS, its knowledge base KB and the
set of known facts F , an agent can both determine what literals are currently
in force and in conflict, as well as determine the effects of its arguments. To
compute what utterance to make, an agent determines what the utility of the
resultant state would be, and advances the argument that maximises this utility.
One difficulty encountered here is that the agent does not know what facts
probing the environment will yield. To overcome this, we assume optimistic



agents, that is, an agent believes that all environment probes will yield results
most favourable to it.

Given a set of possible utterances with equal utility, we use a secondary
heuristic (as described in [9]) to choose between them: the agent will make the
utterance which reveals as little new information to the opponent as possible.
More formally,

Definition 11 Making utterances. For an environment (Agent, CS, F, S)
and an agent
α = (Name, KB, M, G, T ), let the set of possible utterances be PA = 2KB.
Then for each pa ∈ PA, we define the set of possible facts that the agent can
probe as3

PPpa = {f,¬f |f or ¬f ∈ (K(CS∪pa)∪C(CS∪pa))\F} and {f,¬f}∩S 6= {}

Then the set of possible facts can be computed as PFpa = 2PPpa such that
if f ∈ PFpa,¬f /∈ PFpa and vice-versa. We can compute the utility for an
utterance (pa, P r) where Pr ∈ PPpa as maxpf∈PFpa

(U(CS ∪ pa, F ∪ pf, T +
M(Pr))), and advance the argument that maximises utility over all pa ∈ PA.

If multiple such possible utterances exist, we will choose one such that
K(pa ∪ CS) − K(CS) + C(pa ∪ CS) − C(CS) is minimised.

Assuming that every probing action has an associated utility cost, such
an agent would begin by attempting to argue from its beliefs, probing the
environment only as a last resort. This behaviour is reminiscent of the idea
put forward by Gordon’s pleadings game [4], where agents argue until certain
irreconcilable differences arise, after which they approach an arbitrator to settle
the matter. However, when multiple issues are under debate (as in the example
provided later), probing may be interleaved with arguing from beliefs.

2.4 Contracts

To utilise such a framework in the context of contracting requires a number of
additional features:

1. S, the set of facts which can be probed must be defined.

2. T the agent’s cost for performing the probing must also be determined.

3. G the set of agent goals must be computed.

4. Utilities must be set appropriately.

5. The agent’s knowledge bases KB must be created to reflect the content
of the contract, as well as any initial beliefs held by the agents regarding
the environment state.

3The second part of the condition allows us a way of limiting the probing to only those
facts which are in fact accessible, without having to know their value



6. F0, the set of known facts must be generated.

While all of these are contract specific, some guidelines can be provided
due to the features of the framework. The set of facts which can be probed
is totally environment dependent, as is the cost for probing. All probe-able
literals should be placed (with their “true” value) within the environment’s S.
Contract clauses, together with an agent’s beliefs about the state of the world
are used to determine an agent’s KB. F0 (and thus CS0) will not be empty if
certain facts about the environment state are already known.

Assume that an agent gains r utility for proving a certain literal. This
means that the other agent will lose r utility for this literal being shown. It
could be argued that ensuring that the other agent is unable to prove this
literal would thus gain the agent r utility. Legal systems usually require that
a plaintiff prove its case either beyond reasonable doubt, or on the balance of
probabilities. Due to the binary nature of our system, this means that an agent
must show that a literal is justified to gain its reward. This means that if a
contract associates a reward r with a literal l, the agent wanting to gain the
reward will have l within the K component of G, while the other agent will
have l in C, and will also assign a utility r to states where l does not appear
in K.

At this stage, contract enforcement is possible using the framework. We
will now provide a short example to illustrate the framework in operation.

3 Example

We now examine the functionings of our framework using a simplified example
inspired by the CONOISE domain [13]. Assume that a supplier has agreed to
provide movie services to a consumer, subject to restrictions on the framerate.
A simplified version of the contract may look as follows:

fr25 → payPerson

¬fr25 → giveWarning1

wrongMovie → giveWarning2

giveWarning1 ∧ giveWarning2 → penalty

We assume that monitors exist for fr25, giveWarning1 and giveWarning2
at a cost of 7,10 and 27 respectively (in fact, they cost half this, as both the
literal and its negation must be probed). Finally, let the penalty for contract
violation be 30 units of currency, while payPerson would cost the consumer 10
units of currency.

Now let us assume that the consumer believes that it has been given the
incorrect movie, and when the movie finally arrived, its framerate was below
25 frames per second (i.e. the literal ¬fr25 evaluates to true). The provider
on the other hand, believes that it has fulfilled all of its obligations, and should
be paid. After converting the contract and agent beliefs to a format usable by



the framework, the provider’s goal set thus includes the following:

((payPerson), (), (), 10), ((payPerson), (penalty), (), 10),
((payPerson), (), (penalty),−20), ((), (payPerson, penalty), (), 0),
((), (payPerson), (penalty),−30), ((), (), (penalty),−30)

If the supplier initiates a contract enforcement action, the dialogue will
proceed as follows (brackets are omitted in places for the sake of readability):

(S1) ({(>, fr25), (fr25, payPerson)}, {})
(C2) ({(>,¬fr25), }, {})
(S3) ({}, {¬fr25, fr25})
(C4) ({wrongMovie, giveWarning2},

{(giveWarning1, giveWarning2), penalty}, {})
(S4) ({>,¬wrongMovie}, {})
(C5) ({}, {¬giveWarning2, giveWarning2})
(S6) (, )
(C7) (, )

The supplier begins by claiming it should be paid. While the consumer
believes that the supplier should pay it a penalty, probing the monitors to
show this would be more expensive than the compensation it could gain, and
it thus only refutes the supplier’s claim. At this stage, the supplier probes the
state of the frame rate literal, hoping to win the argument. Instead, it opens
the way for the consumer to pursue penalties. The supplier attempts to defend
itself by claiming that it provided the correct movie, but the consumer probes
the environment (indirectly) to show this was not the case.

4 Discussion

While we have focused on using our framework for contract enforcement, it can
also be used in other settings. For example, given a non-adversarial setting
where probing sensors still has some associated cost (for example, of network
resources or time), an agent can reason with the framework (by generating an
argument leading to its goals) to minimise these sensing costs.

The contract enforcement stage is only part of the greater contracting life-
cycle. With some adaptation, our framework can also be used in the contract
monitoring stage: by constantly modifying its beliefs based on inputs from the
environment, an agent could continuously attempt to prove that a contract has
failed; once this occurs contract enforcement would begin.

Contract enforcement and monitoring has been examined by a number of
other researchers. Given a fully observable environment in which state determi-
nation is not associated with a utility cost, the problem reduces to data mining.
Research such as [19] operates in such an environment, but focus more on the
problem of predicting imminent contract failure. Daskalopulu et al. [2] have
suggested a subjective logic [5] based approach for contract enforcement in par-
tially observable environments. Here, a contract is represented as a finite state



machine, with an agent’s actions leading to state transitions. A central monitor
assigns different agents different levels of trust, and combines reports from them
to determine the most likely state of the system. While some weaknesses exist
with this approach, most techniques for contract enforcement are similar in na-
ture, making use of some uncertainty framework to determine what the most
likely system state is, then translating this state into a contract state, finally
determining whether a violation occurred. An argumentation based approach
potentially has both computational as well as representational advantages over
existing methods. In earlier work [10], we described a contracting language
for service level agreements based on semantic web standards (called SWCL).
One interesting feature of that work is the appearance of an explicit monitoring
clause describing where to gather information regarding specific environment
states. Most other contracting languages lack such a feature, and the (trivial)
addition of a monitoring cost would allow SWCL to be used as part of our
framework. A related feature of our framework which, in a contracting context
would require a language with appropriate capabilities, is the ability to as-
sign different monitoring costs for determining whether a literal or its negation
holds. In an open world environment, such a feature is highly desirable.

Argumentation researchers have long known that a dialogue should remain
relevant to the topic under discussion [7]. This trait allows dialogue based
systems to rapidly reach a solution. The approach presented here enforces this
requirement due to the nature of the heuristic; any extraneous utterances will
lead to a reduction in an agent’s final utility. One disadvantage of our approach
is that, as presented, the computational complexity of deciding what utterance
to make is exponential in nature. Simple optimisations can be implemented to
reduce the average case complexity, but in the worst case, all possible arguments
must still be considered. Mitigating this is the fact that the number of clauses
involved in a contract enforcement action is normally relatively small, making
its use practical in the contracting domain.

Many different argumentation frameworks have been proposed in the liter-
ature ([17] provides an excellent overview of the field). We decided to design
our own framework rather than use an existing approach for a number of rea-
sons. First, many frameworks are abstract in nature, requiring the embedding
of a logic, and then making use of some form of attacking relation to com-
pute which arguments are, or are not in force. Less abstract frameworks focus
on the non–monotonic nature of argument, often requiring a default logic be
used. The manner in which agents reason using our heuristic, as well as the
grounded nature of the subject of arguments in our domain makes the argu-
mentation framework presented here more suitable than others for this type of
work. However, we intend to show the relationship between our framework and
sceptical semantics in existing argumentation frameworks in future work.

Legal argumentation systems often grapple with the concept of burden of
proof (e.g. [14, 15, 18]). We attempt to circumnavigate the problem of as-
signing responsibility for proving the state of a literal to a specific agent by
having agents probe for the value themselves as needed. This approach will
not work in more complicated scenarios with conflicting sensors, and extending



the framework to operate in such environments should prove interesting. One
real world feature which we also ignore, and should be taken into account, is the
concept of “loser pays”. In many real world court systems, the loser of a case
must pay the winner’s costs, and integrating such concepts into the reasoning
mechanism will require further extensions to our approach.

One quirk of our framework is that we do not do belief revision when agents
are presented with facts. While adapting the method in which NewAgents
are created in Definition 8 is possible by setting the new agent’s KB to be
KB ∪ (>, f)∀f ∈ F , and even remove any “obviously conflicting” beliefs, we
are still unable to remove beliefs that arise from the application of chains of
arguments. We would thus claim that an agent’s beliefs are actually a com-
bination of its private knowledge base KB, the public knowledge base CS
and the set of presented facts F , rather than being solely a product of KB.
Overriding beliefs with facts means our framework assigns a higher priority to
fact based argument than belief based argument. This is reminiscent of many
existing priority based argumentation frameworks such as [16]. We plan to
investigate more complicated forms of belief revision in upcoming work. Other
enhancements, such as the ability to withdraw utterances from CS would also
be useful.

By computing the utility gained for making an utterance, our agents plan
one step ahead. It would be useful to plan further, but this requires some form
of opponent modelling. This could range from reasoning about the opponent’s
goals (which we already do implicitly due to the way in which utility is assigned
to states), to in depth knowledge about the opponent’s KB.

Finally, the procedure used to transform a contract into an environment
and agents for argumentation is very simple. Enhancing this procedure to
make use of the full power of the argumentation framework requires further
examination. This enhancement will allow for both the representation of, and
dialogue regarding, more complex contracts, further increasing the utility of
the framework. Another area of future work involves n–party contracts. While
our framework provides support for dialogue between more than two agents,
we have not examined what such contracts would look like, and this might be
an interesting research direction to pursue.

5 Conclusions

Explicit or implicit contracts are the dominant method for specifying desired
agent behaviour within complex multi-agent systems. Contract enforcement is
necessary when agents are able to renege on their obligations.

In this paper we have presented an argumentation based framework for con-
tract enforcement within partially observable environments for which querying
sensors has an associated cost. Our agents are able to reason about multi-
ple goals, which is a desirable quality in all but the simplest contracts. This
work can prove useful in a variety of settings, including untrusted (and trusted)
distributed computing environments such as the Grid. While many interest-



ing research questions remain, we believe that our framework provides a good
starting point to model, and reason about such environments.

References

[1] R. K. Dash, N. R. Jennings, and D. C. Parkes. Computational–mechanism
design: A call to arms. IEEE Intelligent Systems, 18(6):40–47, 2003.

[2] A. Daskalopulu, T. Dimitrakos, and T. Maibaum. Evidence-based elec-
tronic contract performance monitoring. Group Decision and Negotiation,
11(6):469–485, 2002.

[3] P. M. Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Ar-
tificial Intelligence, 77(2):321–357, 1995.

[4] T. F. Gordon. The pleadings game: formalizing procedural justice. In
Proceedings of the fourth international conference on Artificial intelligence
and law, pages 10–19. ACM Press, 1993.

[5] A. Josang. Subjective evidential reasoning. In Proceedings of the 9th
International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems, pages 1671–1678, July 2002.

[6] M. J. Kollingbaum and T. J. Norman. Supervised interaction – creating a
web of trust for contracting agents in electronic environments. In Proceed-
ings of the First International Joint Conference on Autonomous Agents
and Multi–Agent Systems, pages 272–279, 2002.

[7] D. Moore. Dialogue game theory for intelligent tutoring systems. PhD
thesis, Leeds Metropolitan University, 1993.

[8] N. Oren, T. J. Norman, and A. Preece. Arguing with confidential in-
formation. In Proceedings of the 18th European Conference on Artificial
Intelligence, Riva del Garda, Italy, August 2006. (To appear).

[9] N. Oren, T. J. Norman, and A. Preece. Loose lips sink ships: a heuristic
for argumentation. In Proceedings of the Third International Workshop on
Argumentation in Multi-Agent Systems (ArgMAS 2006), pages 121–134,
Hakodate, Japan, May 2006.

[10] N. Oren, A. Preece, and T. J. Norman. Service level agreements for se-
mantic web agents. In Proceedings of the AAAI Fall Symposium on Agents
and the Semantic Web, pages 47–54, 2005.

[11] N. Oren, A. Preece, and T. J. Norman. A simple argumentation based con-
tract enforcement mechanism. In Proceedings of the Tenth International
Workshop on Cooperative Information Agents, 2006. (to appear).



[12] J. Patel, W. Teacy, N. Jennings, and M. Luck. A probabilistic trust model
for handling inaccurate reputation sources. In Proceedings of Third Inter-
national Conference on Trust Management, pages 193–209, 2005.

[13] J. Patel, W. T. L. Teacy, N. R. Jennings, M. Luck, S. Chalmers, N. Oren,
T. J. Norman, A. Preece, P. M. D. Gray, Shercliff, P. J. G., Stockreisser,
J. Shao, W. A. Gray, N. J. Fiddian, and S. Thompson. Agent-based virtual
organisations for the grid. International Journal of Multi-Agent and Grid
Systems, 1(4):237–249, 2005.

[14] H. Prakken. Modelling defeasibility in law: Logic or procedure? Funda-
menta Informaticae, 48(2-3):253–271, 2001.

[15] H. Prakken, C. A. Reed, and D. N. Walton. Argumentation schemes and
burden of proof. In Workshop Notes of the Fourth Workshop on Compu-
tational Models of Natural Argument, 2004.

[16] H. Prakken and G. Sartor. A dialectical model of assessing conflicting
arguments in legal reasoning. Artificial Intelligence and Law, 4:331–368,
1996.

[17] H. Prakken and G. Vreeswijk. Logics for defeasible argumentation. In
D. Gabbay and F. Guenthner, editors, Handbook of philosophical logic,
2nd Edition, volume 4, pages 218–319. Kluwer Academic Publishers, 2002.

[18] D. N. Walton. Burden of proof. Argumentation, 2:233–254, 1988.

[19] L. Xu and M. A. Jeusfeld. Pro-active monitoring of electronic con-
tracts, volume 2681 of Lecture notes in Computer Science, pages 584–600.
Springer-Verlag GmbH, 2003.


