
A Semantic Web Blackboard System

Craig McKenzie, Alun Preece, and Peter Gray

University of Aberdeen, Department of Computing Science
Aberdeen AB24 3UE, UK

{cmckenzie,apreece,pgray}@csd.abdn.ac.uk

Abstract. In this paper, we propose a Blackboard Architecture as a
means for coordinating hybrid reasoning over the Semantic Web. We
describe the components of traditional blackboard systems (Knowledge
Sources, Blackboard, Controller) and then explain how we have enhanced
these by incorporating some of the principles of the Semantic Web to pro-
duce our Semantic Web Blackboard. Much of the framework is already
in place to facilitate our research: the communication protocol (HTTP);
the data representation medium (RDF); a rich expressive description
language (OWL); and a method of writing rules (SWRL). We further en-
hance this by adding our own constraint based formalism (CIF/SWRL)
into the mix. We provide an example walk-though of our test-bed system,
the AKTive Workgroup Builder and Blackboard(AWB+B), illustrating
the interaction and cooperation of the Knowledge Sources and providing
some context as to how the solution is achieved. We conclude with the
strengths and weaknesses of the architecture.

1 Introduction & Motivation

Since the Semantic Web (SW) is essentially a symbolic version of the current
Web, anyone attempting to use published data is still faced with handling the
standard knowledge integration and reuse problems [12, 3]: accommodating er-
rors in the data at either a syntactic or semantic level, incompleteness, inconsis-
tency, intractability, etc. Performing reasoning of various kinds in order to “do
the best we can with what we’ve got” is a hard problem. The primary goal of
our research is to investigate the suitability of a Blackboard System as a means
of co-ordinating hybrid reasoning over the SW.

The SW is intrinsically hybrid in terms of its knowledge representation for-
malisms. Our ground data exists as RDF which will normally conform to either
an RDF Schema or an OWL ontology1. The semantics of these mean that we are
able to perform different types of reasoning upon them – ranging from transi-
tive closure right up to full DL (ABox and/or TBox[7]) classification – to better
enrich the data by deducing facts that may not have been explicitly stated.
Derivation rules, represented using SWRL2, can also be applied in order to gen-
erate additional entailments.

1 http://www.w3.org/2001/sw/
2 http://www.w3.org/Submission/SWRL/



We believe that reasoning on the SW requires a combination of reasoning
methods rather than just a single “super-reasoner”. For example, [16] compared
a DL reasoner to a first-order theorem prover, and conclused that when dealing
with a very expressive OWL DL ontology a combination of both is necessary
because there was no known single reasoning algorithm able to adequately cope
with the full expressivity possible with the OWL DL language. They also identi-
fied slow performance speed as a potential hurdle. Advocacy of a hybrid approach
to reasoning predates the SW [1]. However this is not without its problems. How
should contradictions be handled? Can conflicting reasoning strategies interfere
with one another? Hence, some mechanism is required to help manage such is-
sues. However there is currently nothing in the SW architecture for coordinating
this effort, so we believe that the Blackboard architecture is appropriate as it
meets our requirements – supporting the use of distributed Knowledge Sources
(KSs) responding to a central, shared knowledge base via a control mechanism
[13, 2].

Having outlined our reasons for our research, in the following section (Section
2), we introduce the problem domain and our test-bed Blackboard System. In
Section 2 we discuss the blackboard architecture and explain the role of each
of its constituent parts, then in Section 3 we discuss the changes to this in
our Semantic Web approach. In Section 5, we perform a walk-through of the
application to illustrate the interplay between the component. Section 6 is a
discussion of how we focus the reasoning effort. In Section 7 we describe the
issues we encountered and outline our future work before discussing our final
conclusions in Section 8.

2 Problem Domain and the AWB+B Application

We needed to decide the problem domain within which to we wished to work.
We settled upon the same context as that of the CS AKTive Space [15], namely
the Computing Science (CS) community in the UK. The data describes people,
their research interests, affiliations, publications and projects at various levels of
granularity and completeness.

Our demo application, called the AKTive Workgroup Builder and Black-
board (AWB+B)3, is a web-based application that utilises disparate RDF based
information in constructing a workshop, containing one or more working groups
of people, from this pool of known individuals. Each workgroup must adhere
to a set of user defined constraints, e.g. “the workgroup must contain between
5 and 11 individuals” or “at least half the members of the workgroup must be
students”. Since the user is not expected to have knowledge about the lower
level operations of the blackboard, we assume that all the necessary RDF infor-
mation resources (describing the people, constraints, derivation rules, etc) to be
included are known to the user and accessible via URIs.

The final aspects of the problem were the representation of constraints. For
this, we had already developed an ontology as a means of representing Constraint

3 This is a refinement of the non-blackboard AWB system in [11].



Fig. 1. The core architectural components of a Blackboard System. Each KS can view
the contents of the Blackboard but it is the Controller that decides which KS(s) are
allowed to contribute.

Satisfaction Problems (CSPs) on the SW[14]. This also builds upon our earlier
work, CIF/SWRL [11], in developing a SW representation for fully-quantified,
individual constraints. This is based on SWRL and is used for expressing the
individual constraints that comprise a CSP.

3 Blackboard Architecture

Back in the late ’70s, when Lesser and Erman developed Hearsay-II [10] they
conceived the Blackboard Architecture [6, 9] as an effective means for collabo-
rative problem solving. The premise was simple: how would a group of real-life

experts work together to solve a complex problem? Since none of the individuals
were capable of solving it on their own, they would all gather around a black-
board, with each person using their knowledge and expertise to contribute by
either: decomposing a problem into smaller sub-problems and writing these on
the board; or solving an existing problem and writing up the answer. Slowly, the
overall problem would be progressed until, finally, it reached a state where it was
solved (for a fuller description see [13]). The key aspects of this approach being
that the solving process is only possible through collaboration (no individual
is capable of solving the problem on their own) and in an incremental manner
(progress is made via small steps).

The whole process is overseen by a Controller that performs two roles. Firstly,
it enforces a protocol for who gets to write on the blackboard and when. Re-
turning to the metaphor, if there is only one piece of chalk, the controller would
decide whom gets to use it and when. If there is a whole box of chalk, the
controller would ensure that all the writers do not get in one another’s way. Sec-
ondly, the controller attempts to keep the contents of the blackboard relevant
by asking each KS what sort of contribution they can make before deciding to
let them make it or not (see Figure 1).



As stated by Wooldridge in [17], “Blackboard Systems were recognisably the
earliest form of a Multi-Agent Systems”. Now, over a quarter of a century later,
we believe that the blackboard paradigm is still a valid one (in fact, recent work
has focussed on [4, 5] their suitability for collaborating software), especially when
used in concert with the newer technologies that make up the SW. The following
subsections describe the roles of the three main components of the traditional
Blackboard architecture (the Knowledge Sources, the Blackboard itself and the
Controller) before discussing in more detail our SW based approach.

3.1 The Knowledge Sources (KSs)

The KSs represent the problem solving knowledge of the system. Each KS can
be regarded as being an independent domain expert with information relevant
to the problem at hand. In implementation terms, KSs do not interact with
one another, nor even know about any of the others that are present. Also, no
assumptions should be made about the capabilities of a KS – conceptually it
should be regarded as a black box. Each KS has a precondition, or event trigger,
(indicating that it can add something to the blackboard) and an action (what it
can add to the blackboard). Due to the tightly coupled nature of the KSs and the
Blackboard, all KSs must be “registered” so that they can continually check the
blackboard and determine if they can make a contribution. The whole process
is driven by the posting of goals which a KS either offers a direct solution to, or
breaks down further into sub-goals (indicating that more knowledge is required).

3.2 Knowledge on the Blackboard

The actual blackboard itself can be thought of as a shared data repository rep-
resenting a communal work area or “solution space” of potential solution com-
ponents. Since the KSs are required to both view and modify the contents of the
blackboard it is also a communication medium. For all this to work efficiently, the
data held on the blackboard is structured hierarchically into what were called ab-

straction Levels. If the blackboard contained multiple distinct hierarchies, these
were referred to as panels.

This organisation served two purposes. Firstly, it aided each KS in checking
if it can contribute (i.e. the KS was activated, or triggered, by the propagation
of information onto an abstraction level that it was monitoring). Secondly, it
helped focus the search for the solution. As the name suggests, each layer is an
abstraction using concepts that hide the detail on the layer below it. To clarify,
using the domain of speech understanding, suppose the lowest abstraction level
could be the phonetic sounds accepted by the system; the level above could be
potential combinations of these sounds into letter groups; the next level being
single words; the next level could be phrases; with, finally, the topmost level
consisting of potential whole sentences. A word-dictionary KS would examine
the phonetic letter groups and combine these to form words, which (controller
permitting) it would then post onto the level above.



The nature of each abstraction level and the actual entries within each level,
can vary from implementation to implementation depending upon the nature of
the problem attempted. Instead of the bottom-up approach used in the example,
a top-down approach may be required, so the first abstraction level is vague with
later ones becoming more refined. Likewise a KS’s trigger could span multiple
layers with a contribution also affecting one or more layers.

3.3 The Controller

As mentioned already, the decision of what is (or is not) placed on the black-
board is made by the controller. The complexity of this strategy can vary from
a simplistic “just action everything” approach to a more complex goal driven
algorithm. The key point is that the controller directs the solving process, via
goals and sub-goals, that each of the KSs can be triggered by. This also helps
to ensure that only relevant information is added. Since the triggering action
can be dependent upon information added by a different KS. This results in
an opportunistic solving paradigm and also means that a blackboard system is
fundamentally backward chaining – it is goal driven. In our case, the initial goal
placed on the blackboard is to find a solution to a specified workgroup problem.
It should also be noted, that the current implementation of the AWB+B, the
blackboard is monotonic, facts are only ever added by the KSs, never retracted.

4 The Semantic Web Approach

Our Semantic Web Blackboard maintains all the principles of a traditional black-
board but improves upon it by incorporating some of the concepts of the SW.
The notion of abstraction levels aligns itself well to the hierarchical, structured
nature of an ontology. Historically, abstraction levels were developed at design
time so their structure was fixed throughout the execution of the system. In the
AWB+B, the information represented on the blackboard is stored as a dynam-
ically created RDF graph. RDF statements (“triples”) can be added incremen-
tally to the blackboard to gradually build up both ontological information and
instance data. For example, we can add the triples
<ex:Tim> <rdf:type> <ont:Lecturer>

<ont:Lecturer> <rdfs:subClassOf> <ont:Academic>

in any order, resulting in the knowledge that some instance Tim is a lecturer
(instance-level data) and that a lecturer is a kind of academic (ontological data).

To the best of our knowledge, in the past the blackboard has always been
passive with any deductive mechanism performed by the KSs. While not wishing
to stray too far from the original concepts of the architecture, we decided to
introduce an element of intelligence to the blackboard itself by enabling it to
perform reasoning on the ontological structure evolving on it. Four rules are
forward chained (here, clauses are RDF triples, and ?x denotes a variable):

i) (?a <rdfs:subClassOf> ?b) & (?b <rdfs:subClassOf> ?c)

⇒ (?a <rdfs:subClassOf> ?c)



ii) (?x <rdfs:subClassOf> ?y) & (?a <rdf:type> ?x) ⇒ (?a <rdf:type> ?y)

iii) (?a <rdfs:subPropertyOf> ?b) & (?b <rdfs:subPropertyOf> ?c)

⇒ (?a <rdfs:subPropertyOf> ?c)

iv) (?a ?p ?b) & (?p <rdfs:subPropertyOf> ?q) ⇒ (?a ?q ?b)

Here we are only materialising all the transitive sub-class/property relations
and all the instance type relations. For example, as per rule (i), if a class C1 is
defined as being a sub-class of C2 and C2 is a sub-class of C3 then the blackboard
would assert that C1 is a sub-class of C3. The blackboard also has the ability
to assert new <rdf:type> statements about individuals (rule (ii)). Continuing
the previous example, if X is an instance of C1 and C1 is a sub-class of C2 then
we can assert that X is also an instance of C2. Rules (iii) and (iv) are similarly
applied for properties.

We elected to only perform this type of reasoning and not a richer type
of classification that is possible within OWL (e.g. using property domain and
ranges) since this is such a common operation that having it done by the black-
board eliminates the need for frequent call outs to KS that would perform the
same function. Unfortunately, enabling the Blackboard to make inferences must
be treated with caution. It would be undesirable if the blackboard became a
bottleneck while it attempted to fully reason about facts posted upon it while
denying all the KSs from contributing (especially if a “denied” KS was attempt-
ing to add a fact that would help the reasoning process). This is why we have
not increased the blackboard’s inference ability any further.

5 A Walk-though of Cooperative Problem Solving

Having now described the components of the blackboard architecture, we now
use a couple of the possible KS types in order to present a walk-through of a
simplified problem – constructing a single workgroup. This should illustrate the
cooperative and incremental nature of a blackboard system. Since the contents
of the blackboard in the AWB+B is an RDF graph, we have used a simplified
form of RDF to illustrate this throughout.

5.1 Human (User Interface) KS

While not immediately obvious, the user of the system can be regarded as a
type of KS representing the “human knowledge” of the system in the form of
“human input”. In the AWB+B case, this is the user entering the initial system
parameters (via a web interface), i.e. the number of workgroups to be built,
the size of each workgroup, any associated compositional constraints, derivation
rules etc. This information is then transformed into the system’s starting goals
and posted onto the blackboard.

In the current AWB+B implementation human interaction is limited to that
outlined above. However, there is nothing to prevent a more “interactive” human
KS. Another variation of a User KS could, for example, continually check the



blackboard for inconsistencies and when one is found present the user with pop-
up windows asking them to offer a possible resolution, i.e. it gives the user a
“view” of inconsistencies found on the blackboard.

Now, for our running example, let us suppose the user wishes to compose a
single workgroup, as per the following constraints:

1. Must contain between 3 and 5 members, of type Person.
2. Must contain at least 1 Professor.
3. Must contain an expertOn “Machine Learning”.

In addition to this, the user also specifies a SWRL rule, paraphrased as: “if a
person is an author of a book and the subject of that book is known, then this
implies that the author is an expert on that subject”. This is written in SWRL
as follows:
Person(?p) & authorOf(?p, ?b) & Book(?b) & hasSubject(?b, ?s)

⇒ expertOn(?p, ?s).

All this results in the following skeletal workgroup structure being placed on the
blackboard, as well as the class definitions for Person and Professor, and a
property definition for expertOn (from the specified constraints):
<ex:Wg1> <rdf:type> <wg:Workgroup>

<ex:Wg1> <wg:hasMinMembers> 3

<ex:Wg1> <wg:hasMaxMembers> 5

<ex:Wg1> <wg:hasFillerClass> <ont:Person>

<ex:Wg1> <wg:hasConstraint> <ex:OneProfessor>

<ex:Wg1> <wg:hasConstraint> <ex:MLExpert>

<ont:Person> <rdf:type> <owl:Class>

<ont:Professor> <rdf:type> <owl:Class>

<ont:expertOn> <rdf:type> <rdf:Property>

(Here, <ex:OneProfessor> and <ex:MLExpert> are references (URIs) to the
constraints (2) and (3) above, which are expressed in our CIF/SWRL language.

5.2 Instance-based KS

This type of KS contains only instance data corresponding to an ontology but
not the actual schema itself. This could either be from a simple RDF file, a Web
Service or data held in an RDF datastore. We cannot assume that any additional
entailments have been generated for the RDF as this KS may or may not have
a reasoner attached to it. This KS contributes in the following way:

i) Try to add a solution to a posted (sub-)goal by adding instance data for
classes and/or properties defined on the blackboard.

ii) Try to add a solution to classify any property’s direct subject and/or object
which the blackboard does not have a class definition for.

If this KS is a repository of RDF triples (e.g. 3Store [8]) we require a wrapper for
it, allowing us to communicate with the datastore via its API. In the case of the



3Store, it has an HTTP interface that accepts SPARQL queries4. We transform
any blackboard goal into a query, the result of which can be transformed into
triples and asserted onto the blackboard.

Since this type of repository can contain a vast amount of information, this
raises the issue of the state which that information is in. Since access to the data
is via a query mechanism, we are still effectively querying an RDF graph for
which we have no means of knowing whether all, some or no additional entail-
ments have been inferred. For example, while an ontology describes a Professor

as a sub-class of Academic and the datastore contains instances of Professor

for this schema, it might not actually contain the triples saying that Professor
instances are also Academics. Consequently, a SPARQL query for Academics
would not return the Professors as it does not follow sub-class links. The only
way around this is to query for all the sub-classes. However this will eventually
occur because the Schema based KS (described next) will post the sub-classes
as sub-goals which will prompt more refined queries.

Continuing our example, we have three goals on the blackboard (two classes
defined, namely Person and Professor, and a property definition, expertOn).
If this KS has instances of Professor, then it will offer these as solutions (as per
(i)). Property definitions work in the same way, but are slightly more complex.
Let us assume, our KS has a statement relating to the expertOn property, and
therefore offers this statement:
<ex:Tim> <ont:expertOn> "Semantic Web"

However, this gives no information about the subject, <ex:Tim>, of that triple
(the same would have applied for the object, "Semantic Web", had it not been
a literal). This would not be an issue if <ex:Tim> was already instantiated on
the blackboard, but since it it not, then this KS will subsequently offer (as per
(ii)):
<ex:Tim> <rdf:type> <ont:Lecturer>

Because this KS does not know the underlying schema, it cannot contribute class
definition information about the Lecturer (e.g. what this might be a sub-class
of).

5.3 Schema-based KS

This represents a KS that contains only ontological schema information. Since
the blackboard initially contains no ontological structure other than the starting
goals, it is the job of this KS to help facilitate the construction of the relevant
ontological parts on the blackboard. This type of KS attempts to contribute in
the following ways:

i) Attempt to add new sub-goals by looking for ontological sub-classes/sub-
properties of those already defined on the blackboard.

ii) Attempt to improve the (limited) reasoning ability of the blackboard by
adding <rdfs:subClassOf> or <rdfs:subPropertyOf> statements connect-

4 http://www.w3.org/TR/rdf-sparql-query/



ing those already defined on the blackboard. These connective statements
are only added for direct sub-class/sub-property relations.

iii) Attempt to add new sub-goals for any subject/object on the blackboard that
does not have a class definition. The sub-goals, in this case, would be the
missing class/property definitions.

In (i) and (ii) super-classes/properties are never added to the blackboard as
these are deemed irrelevant and would widen the scope of the blackboard con-
tents too much. Likewise, we need to be careful in (iii), as we do not want to
simply use a property definition and add the classes specified in its domain and
range values as new sub-goals. This is because they could introduce non-relevant
goals onto the blackboard, instead, we just use the classes of actual instances
that have this property. To clarify, let us suppose that when the ontology was
first authored, the expertOn property was assigned a domain of Person and a
range of <owl:Thing>. This was because the author believed that only a Person

is capable of being an expert, but what it is they have expertise in could be any-
thing. Therefore, for simplicity, they just widened the domain to encompass as
many classes as possible. If we were to use these domain and range values, we
would introduce a sub-goal asking for all instances of <owl:Thing> which would
result in each KS offering every class instance it knows about. Therefore, in an
attempt to narrow the search space as much as possible, only the class definitions
of instances with the expertOn property are added as sub-goals.

Continuing our running example, based upon the current contents of the
blackboard, this KS would see the class definition of Person and act upon it by
offering to add a sub-goal, as per (i), by defining a sub-class of Person:
<ont:Academic> <rdf:type> <owl:Class>

In blackboard terms, defining the class Academic does not automatically specify
it as a sub-class of Person. This must explicitly be stated on the blackboard.
Therefore, this KS would next offer the explicit sub-class link between these two
classes (as per (ii)):
<ont:Academic> <rdfs:subClassOf> <ont:Person>

Finally, this KS would see the statement (previously contributed by the Instance
KS):
<ex:Tim> <rdf:type> <ont:Lecturer>

The triple already implies that Lecturer is a class (although, it could either be
a rdfs:Class or the more specific owl:Class). The KS would then offer the full
class definition (as per (iii)), hence re-classifying Tim appropriately and creating
a new sub-goal, so from our earlier examples we would now have:
<ont:Lecturer> <rdf:type> <owl:Class>

<ex:Tim> <rdf:type> <ont:Lecturer>

<ex:Tim> <ont:expertOn> "Semantic Web"

5.4 Rule-based KS

A Rule KS, like all the other KS types, can be viewed as a black box, encapsu-
lating its rules and keeping them private. The ability to derive new information



through rules is an extremely important and powerful asset. We achieve this
by expressing them using SWRL, although there is no restriction on what rule
representation is used (especially since the rules within a KS are private) we
elected to use SWRL because it is part of the SW framework.

This KS works by examining the contents of the blackboard to determine if
any of the rules that it knows about are required and then attempts to contribute.
A rule is required only if any of the elements in the consequent (head) are present
on the blackboard5. The KS attempts to contribute to the blackboard in the
following ways:

i) Try to add a “solution” by firing the rule against instances already on the
blackboard and asserting the appropriate statement(s).

ii) Try to add new sub-goals to the blackboard by offering class/property de-
finitions that are antecedents of the rule and have not been defined on the
blackboard.

Reusing our derivation rule to determine expertise (Section 5.1), and continuing
our example, we see that the Blackboard contains a class definition for Person

but no property definitions (or instances of) the other rule antecedents, i.e. the
class Book and the properties authorOf and hasSubject. Therefore, regardless
of instance data, the rule is incapable of firing. Hence, this KS would offer the
following sub-goals, as per (ii):
<ont:Book> <rdf:type> <owl:Class>

<ont:authorOf> <rdf:type> <rdf:Property>

<ont:hasSubject> <rdf:type> <rdf:Property>

Once other KSs have contributed instance data for the antecedents, the rule can
fire and generate a solution instance for the expertOn property (i.e. backward
chaining) that has not been explicitly stated in a KS (as per (i)).

5.5 CSP-solving KS

The final component of the AWB+B system is the CSP solving. The constraints
for the workgroup(s) are expressed using CIF/SWRL [11] – our Constraint In-
terchange Format (CIF), which is an RDF based extension of SWRL that allows
us to express fully quantified constraints. These constraints are placed on the
blackboard by the Human KS when the workgroup is first defined. Since the goal
of the AWB+B is to form workgroups that adhere to these specified constraints,
a CSP KS was created, having the trigger:

i) Try to add a “solution” by using instance data already on the blackboard
to perform CSP solving and assert the appropriate hasMember triples to the
corresponding instance of the Workgroup class.

The triggering mechanism of this KS requires it to continually monitor the black-
board contents and attempt to provide a solution to the CSP. To improve ef-
ficiency, we decided that rather than attempting full blown CSP solving each

5 The reason why this is “any head element” is because SWRL allows the consequent
to contain a conjunction of atoms.



cycle, the solver should perform a faster check of each of the constraints individ-
ually and only if they can all be satisfied, should it attempt the more difficult
task of solving them combinatorially. If no solution can be found then this KS
will simply not offer a contribution.

In our implementation the CSP solver is unique, in that it is the only KS that
can post a solution to the Workgroup goal, initially posted onto the blackboard
by the User KS6. However, there is no restriction on the number of CSP solver
KSs that could be used within the system. In our future work there is also the
possibility of greater user interaction (via the User KS) w.r.t to acceptance or
rejection of a solution. Here the user could ask the CSP Solver KS to contribute
again (provided there are alternate solutions) or accept the current one on the
blackboard.

6 Controlling Content

So far we have talked about the contents of the blackboard as merely contain-
ing data relating to finding a workgroup solution. In actual fact, the AWB+B
blackboard is divided into two panels.

The first panel is the Data Panel which holds the solution-related infor-
mation. In order to inhibit the actions of the KSs accessing this panel, there
are a couple of safeguards in place. The controller will not allow the goal of
<owl:Thing> to be placed onto the blackboard and KS access to the blackboard
is via a restrictive API that allows the underlying graph to be viewed by the
KSs while not allowing it to be modified without the controller’s knowledge.

The second panel is the Tasklist Panel, and is used by the controller to co-
ordinate the actions of each KS by storing information about what each KS can
contribute, based on the current state of the blackboard. Like the Data Panel,
this is visible to all the KSs however, unlike the Data Panel, the KSs are allowed
to add to this panel directly (but not remove items from it), the purpose of
this is to facilitate the controller in directing the solving effort. The KSs add
TasklistItems that describe the nature of any contribution they could offer.
The controller looks at the items on the Tasklist Panel and determines which
KS is allowed to contribute. Once a TasklistItem has been actioned, the con-
troller removes it from the panel. This “request for contribution” and “make
your contribution” sequence is applied using a Java interface, which each regis-
tered KS must implement and consists of the two method calls: canContribute
and makeContribution.

When a KS’s canContribute method is called it first determines what it
can contribute (as per the steps previously outlined in the KS descriptions) and
then checks, in the following order, if its “current” proposed contribution is not

6 It is possible that an instance-based KS could contain instances of workgroups and
offers to contribute those. In our case, because the user specifies the KSs at the
start, we assume that none of the KSs contain workgroup instances. Similarly, a
workgroup could be formulated based on a rule set within a rule-based KS and
offered as a solution.



on the blackboard already; has not been contributed previously by itself; and is
not already on the Tasklist, i.e. already proposed by another KS. Only if none
of these cases apply is a TasklistItem created by the KS and added to the
Tasklist Panel.

In our current implementation the controller is relatively simple. After all the
KSs have been registered, the system “cycles” over each one asking it to populate
the Tasklist Panel (by calling its canContribute method). Next, the controller
examines the contents of the Tasklist and decides which items to action (by
calling the appropriate makeContribution method of a KS). After actioning
the appropriate TasklistItems on the Tasklist Panel, the controller has the
option of retaining tasks that have not been actioned, or removing any remaining
items from the Tasklist completely. This is purely a housekeeping measure as it
prevents redundant or “out of date” items remaining on the Tasklist Panel. Then
the cycle begins again. If nothing new has been added after a complete cycle, it
is assumed that none of the KSs can contribute further and the CSP Solver KS
is activated and attempts to find a solution.

7 Issues & Future Work

One issue with the blackboard architecture is that the two step canContribute

and makeContribution process is inefficient. The effort involved to determine
whether a contribution can be made is comparable to actually making the con-
tribution itself and even then, depending upon the controller strategy, the con-
tribution my never be asked for. This overhead may be reduced somewhat by
caching the result of the canContribute step so that if the KS is asked to make
its contribution a duplication of effort is not required.

Another important issue is that of contradictory information being placed on
the blackboard. In the current implementation of the AWB+B, contradictions
are just ignored – they remain unresolved with the blackboard containing both
discrepant parts. Should one of these be parts be required in the composition of a
solution then it is just used. One possibility to improve upon this is to have a KS
continually checking the blackboard, prompting the user should an inconsistency
be found. This would enable the user to decide which fact they wish to retain and
remove the remaining inappropriate data. At first glance this might appear to be
a very appropriate course of action, since a human should be able to do a better
job of deciding than a machine. Unfortunately, in the case where a large quantity
of contradictions occur this becomes far from ideal, especially from a usability
viewpoint since this would very quickly become unworkable. The user would
be constantly attending to these notifications, making themselves a bottleneck
and impacting the overall performance of the system (not to mention becoming
increasingly frustrated). Therefore, a more automated approach is desirable and
is an area in which we plan to investigate further.

We have also highlighted the importance of ensuring only relevant items are
placed on the blackboard. Since the blackboard system is attempting to centralise
distributed SW data it does not want all the available data from each of the KSs;



it is only interested in as small a subset of this as is possible in order to solve
the CSP problem. Since it is the job of the controller to ensure that this is the
case, in our future work we plan to investigate possible controller strategies to
improve relevancy, and therefore enhance the system performance.

8 Conclusions

Since reasoning is hard, we deem that reasoning over a dynamically composed
sub-set of all the available data is preferable than just combining all that data en

masse and processing that. To create as small a sub-set as possible it is important
that the collected data is as relevant as possible to the problem at hand. We
believe that the Blackboard Architecture is a suitable paradigm for controlling
this effort since it not only enables a mix of reasoning methods but also allows
them to operate cooperatively. This paradigm also supports the addition and
removal of KSs from the process, even during runtime. For example, consider the
scenario of a KS that starts to perform reasoning that could take hours, or even
days to complete. Normally a system would have to wait until this was resolved
before continuing. The Blackboard Architecture guards against the inefficiency
of KSs (caused by numerous factors, e.g. tractability, network connections, etc) –
the overall process of controlling the problem solving remains with the controller.
Had we implemented an asynchronous version of the application, then a time-
out mechanism can be added, so if a KS takes an inordinate amount of time to
respond it is just ignored. The only adverse effect being on quality of the results.

Our SW Blackboard system is domain independent. Since the content of the
blackboard is a dynamically generated RDF graph, a by-product of this is that
it contains what is essentially a new sub-ontology representing the relevant parts
of the problem domain too. This may be useful for a system geared more toward
information gathering.

Acknowledgements. This work is supported under the Advanced Knowledge Tech-

nologies (AKT) IRC (EPSRC grant no. GR/N15764/01) comprising Aberdeen, Edin-

burgh, Sheffield, Southampton and the Open Universities. http://www.aktors.org

References

1. R. Brachman, V. Gilbert, and H. Levesque. An Essential Hybrid Reasoning System:
Knowledge and Symbol Level Accounts of KRYPTON. In The Ninth International
Joint Conference on Artificial Intelligence (IJCAI-85), pages 532–539, Los Angeles,
California, USA, 1985.

2. N. Carver and V. Lesser. The Evolution of Blackboard Control Architectures.
CMPSCI Technical Report 92-71, Computer Science Department, Southern Illinois
University, 1992.

3. C. Chweh. Generations ahead: Michael Huhns on cooperative information systems.
IEEE Intelligent Systems, 12(5):82–84, September/October 1997.



4. D. D. Corkill. Collaborating Software: Blackboard and Multi-Agent Systems &
the Future. In Proceedings of the International Lisp Conference, New York, New
York, October 2003.

5. D. D. Corkill. Representation and Contribution-Integration Challenges in Collabo-
rative Situation Assessment. In Proceedings of the Eighth International Conference
on Information Fusion (Fusion 2005), Philadelphia, Pennsylvania, July 2005.

6. R. S. Engelmore and A. J. Morgan, editors. Blackboard Systems. Addison-Wesley,
1988.

7. G. D. Giacomo and M. Lenzerini. Tbox and Abox Reasoning in Expressive De-
scription Logics. In KR-96, pages 316–327, Los Altos, 1996. M. Kaufmann.

8. S. Harris and N. Gibbins. 3store: Efficient Bulk RDF Storage. In 1st International
Workshop on Practical and Scalable Semantic Systems (PSSS’03), pages 1–20,
2003.

9. V. Jagannathan, R. Dodhiawala, and L. Baum, editors. Blackboard Architectures
and Applications. Academic Press, 1989.

10. V. R. Lesser and L. Erman. A Retrospective View of the HEARSAY-II Architec-
ture. In Fifth International Joint Conference on Artificial Intelligence (IJCAI’77),
pages 790–800, Cambridge, Massachusetts, August 1977.

11. C. McKenzie, A. Preece, and P. Gray. Extending SWRL to Express Fully-
Quantified Constraints. In G. Antoniou and H. Boley, editors, Rules and Rule
Markup Languages for the Semantic Web (RuleML 2004), LNCS 3323, pages 139–
154, Hiroshima, Japan, November 2004. Springer.

12. J. Myplopoulos and M. Papazoglu. Cooperative Information Systems, Guest Ed-
itors’ Introduction. IEEE Intelligent Systems, 12(5):28–31, September/October
1997.

13. H. P. Nii. Blackboard Systems: The Blackboard Model of Problem Solving and
the Evolution of Blackboard Architectures. AI Magazine, 7(2):38–53, 1986.

14. A. Preece, S. Chalmers, C. McKenzie, J. Pan, and P. Gray. Handling Soft Con-
straints in the Semantic Web Architecture. In Reasoning on the Web Workshop
(RoW2006), in the World Wide Web Conference (WWW2006), Edinburgh, UK,
2006.

15. N. Shadbolt, N. Gibbins, H. Glaser, S. Harris, and m. schraefel. CS AKTive
Space, or How We Learned to Stop Worrying and Love the Semantic Web. IEEE
Intelligent Systems, 19(3):41–47, 2004.

16. D. Tsarkov and I. Horrocks. DL Reasoner vs. First-Order Prover. In 2003 Descrip-
tion Logic Workshop (DL 2003), volume 81, pages 152–159. CEUR (http://ceur-
ws.org/), 2003.

17. M. Wooldridge. An Introduction To MultiAgent Systems. Wiley, 2002.


