
A Mediator-Based Infrastructure for Virtual Organisations

Alun Preece
University of Aberdeen, Computing Science Department

Aberdeen AB9 2UE, Scotland

apreece@csd.abdn.ac.uk

ABSTRACT
This paper descripbes an open, flexible infrastructure to support vir-
tual organisations using mediator agents. When applied in business-
to-business electronic commerce, the mediators allows partners to
exchange rich business information, and act in an agile and coor-
dinated manner. As an example, we have created a demonstration
application in the domain of telecommunications service provision,
in collaboration with British Telecom. The paper describes how the
mediator-based architecture supports the operation of a virtual or-
ganisation comprised of multiple vendors, and how mediators reg-
ulate the operational marketplace, to ensure that a virtual organisa-
tion complies with the rules of the market.

1. INTRODUCTION AND MOTIVATION
The KRAFT (Knowledge Reuse And Fusion/Transformation) ar-
chitecture provides a generic infrastructure for knowledge manage-
ment applications. One of its intended applications is in business-
to-business electronic commerce, where it is well-suited to sup-
porting the formation and operation of virtual organisations [9]. In
this context, the KRAFT architecture is designed to be used in an
extranet environment where partner organisations exchange busi-
ness knowledge in a constraint-based format, and form dynamic al-
liances by finding a mutually-beneficial solution to their various re-
quirement constraints. In KRAFT, constraints are expressed against
an object data model, and exchanged using a standard agent com-
munication language [10]. The core KRAFT architecture has the
facilities for:

� locating appropriate on-line sources of knowledge;

� transforming heterogeneous knowledge to a homogeneous
constraint interchange format;

� fusing the constraints with associated data to form a dynamically-
composed constraint satisfaction problem (CSP);

� harnessing existing constraint solver engines to compute CSP
solutions.

The KRAFT architecture is agent-based, with a number of pre-
defined agent roles (an individual agent can play one or more of
these roles). In the context of supporting virtual organisations in
B2B e-commerce, the roles are as follows:

� Wrapper agents act as proxies for all participants in the vir-
tual organisation, including vendors and customers.

� Facilitator agents provide directory (yellow pages) and match-
making services for the marketplace.

� Mediator agents are literally middle-agents: they provide
“value adding” services within the marketplace (for exam-
ple, reselling) and also enforce the rules of the marketplace.

Recent work in the study of virtual organisations has lead to a
commonly-accepted life-cycle for these organisations:

1. Needs identification: definition of the services or products
provided by the virtual organisation.

2. Partner selection: composition of the group of partners that,
together, can meet the identified needs.

3. Operation: conduct of the transactions by which the services
or products are provided by the partners.

4. Dissolution: disbanding of the group of partners, including
any final settlement of payment or other closing transactions.

The KRAFT architecture supports this life-cycle as follows:

1. Needs identification: customers’ requirements can be expressed
readily and naturally as a set of constraints; likewise, the ca-
pabilities of service and product providers can be expressed
using constraints. All of these constraints are presented to
the marketplace by the partner’s wrapper agents.

2. Partner selection: by combining and checking the constraints
from customers and service/product providers, a virtual or-
ganisation can be composed that has the potential to meet the
customers’ requirements. Facilitator agents allow partners to
indentify one another, and mediators typically provide the
“glue” to bind the virtual organisation together.

3. Operation: additional constraints will appear during the pro-
cess of working to satisfy a specific customer’s requirements
— these may come from the customer itself, or from any of
the suppliers; the constraint-solving process can easily ac-
commodate these constraints, dynamically. Operation of the
virtual organisation is governed by various mediator agents,
as described in later sections.

4. Dissolution: the constraint solving process will yield a set of
results that include the conditions that must be met when the
virtual organisation is disbanded. Again, it is the responsi-
bility of mediator agents to ensure that a virtual organisation
is properly dissolved.

The remainder of this paper is organised as follows: the next sec-
tion reviews the KRAFT architecture; then, we present a walk-
through of a demonstration KRAFT application in the domain of
telecommunications service provision (develped with British Tele-
com); finally, we discuss the mediator-based mechanisms for oper-
ating regulated electronic markets within KRAFT.

2. REVIEW OF THE KRAFT ARCHITEC-
TURE

The KRAFT architecture was conceived to support configuration
design applications involving multiple component vendors with
heterogeneous knowledge and data models. This kind of appli-
cation turns out to be very general, covering not only the obvi-
ous manufacturing-type applications (for example, configuration of
personal computers or telecommunications network equipment) but
also service-type applications such as travel planning (for exam-
ple, composing package holidays or business trips involving flights,
ground travel connections, and hotels) and knowledge management
(for example, selecting and combining business rules from multiple
heterogeneous knowledge and databases on a corporate intranet).

2.1 Constraints in KRAFT
The most common modern approach to configuration design prob-
lems is to tackle them as constraint satisfaction problems [5]. Where
components in the design will come from a number of different
vendors, the domains of many of the variables in the CSP are enti-
ties stored in each vendor’s local product database catalogue. Many
of the constraints in the CSP will be on these entity types, defining
how the components can be used in configured designs. Some con-
straints will refer to related instances of other entity types, whose
values must be extracted from some other vendor’s database and
checked for compatibility. Incompatibilities often arise due to the
presence of subtle assumptions in vendor’s product catalogues —
in traditional printed catalogues, these assumptions often appear as
“small print”; hence, we refer to this kind of knowledge in KRAFT
as small print constraints.

As an example, the product catalogue for (fictitious) disk drive ven-
dor, Storage Inc, may have the following small print associated with
each of its range of Zip disk drives: this Zip disk drive requires a
PC with a USB-type port. This kind of small print can readily be
expressed as a constraint which can be exchanged with other ven-
dors and resellers:

constrain each d in disk_drive
such that name(vendor(d))

= "Storage Inc"
and type(d) = "Zip"

at least 1 p in ports(host_pc(d))
to have type(p) = "USB"

Similarly to other knowledge-interchange systems [7], KRAFT re-
quires participating agents to transform their local knowledge to a
well-known format, and use a shared ontology of terms; the above

constraint is expressed in the KRAFT Constraint Interchange For-
mat (CIF), in the terms of a shared ontology for PC system config-
uration. These transformations are implemented within a wrapper
agent for each individual vendor, as part of the setting-up needed
for the vendor to join the KRAFT network. Once transformed, the
small print constraints can be fused together with other constraints
from various sources, as shown in Figure 1.

In a typical configuration design application, some constraints will
be provided by the customer; others will come from the vendors as
discussed above; there will also be constraints coming from the
service-provider who will act as the configurator of the product
or service provided by the application. Typically, the configurator
service-provider will be a value-adding reseller from the point-of-
view of the component vendors. Note that there may be multiple
configurators, each providing a different product or service; also,
the design process may have additional stages, where one reseller
sells to another reseller, each adding their own constraints to the fi-
nal product or service. Details of how the constraint fusion process
operates within the KRAFT architecture are given in [10].

2.2 KRAFT Agents
The KRAFT architecture is agent-based:

� facilitator agents support the description and location of on-
line sources;

� sources are wrapped by agent software to transform local
knowledge to and from the interchange format;

� mediator agents support the querying of sources, and fusion
of knowledge from the sources;

� legacy solver engines are provided with agent wrappers as
front-ends to their services.

An overview of the generic KRAFT architecture is shown in Fig-
ure 2. KRAFT agents are shown as ovals. There are three kinds
of these: wrappers, mediators, and facilitators. All of these are
in some way knowledge-processing entities. External services are
shown as boxes. There are three kinds of these: user agents, re-
sources (typically databases or knowledge bases), and solvers. All
of these external services are producers and consumers of knowl-
edge: users supply their requirements to the network in the form of
constraints via a user agent service, and receive results in the same
way. Resources store, and can be queried for, knowledge and data.
Solvers accept CSPs and return the results of the solving process.

KRAFT agents communicate via messages using a nested proto-
col suite. KRAFT messages are implemented as character strings
transported by a suitable carrier protocol: in the current implemen-
tation, the carrier protocol is TCP via the socket interface; prelimi-
nary work has also been done on an implementation using CORBA
IIOP [8]. A simple message protocol encapsulates each message
with low-level header information including a timestamp and net-
work information.

The body of the message consists of two nested protocols: the outer
protocol is the agent communication language CCQL (Constraint
Command and Query Language) which is a slightly-modified sub-
set of KQML [6].1 Nested within the CCQL message is its content,
expressed in the CIF protocol (Constraint Interchange Format).

�

CCQL deviates from the 1997 specification of KQML as follows:
the default syntax is Prolog term structures, rather than LISP, and

"Small print"
constraints from

1st vendor’s
product catalogue

"Small print"
constraints from

2nd vendor’s
product catalogue

Customer’s
requirements

constraints input
via a user interface

Customer-side Configurator Supplier-side

Product
configuration
constraints -

generic & specific

Constraint
fusion

processor

Figure 1: Fusion of constraints from multiple sources.

UA

R

S

W

M

F

W

UA

i M j

j

R i

S

WR i

WR j

UA = User Agent
M = Mediator
W = Wrapper
F = Facilitator
R = Resource
S = Solver

KRAFT
network

Figure 2: Overview of the generic KRAFT architecture.

In the current implementation, the syntax of KRAFT messages is
Prolog term structures. An example message is shown below. The
outermost kraft msg structure contains a context clause (low-
level header information) and a ccql clause. This sample mes-
sage is from an agent named storage inc to a second agent
named pc configurator. The ccql structure contains, within
its content field, an encoded CIF expression (here, we see a “pretty-
printed” CIF constraint; in the implementation, CIF expressions are
actually transmitted in a compiled internal format).

kraft_msg(
context(1,id(19), pc_configurator, storage_inc,

time_stamp(date(29,9,1999), time(14,45,34))),
ccql(tell, [

sender : storage_inc,
receiver : pc_configurator,
reply_with : id(18),
ontology : shared,
language : cif,
content : [

the advertisement message format allows multiple advertisements
to be carried in the body of a single message. However, no new per-
formatives are introduced, and interactions follow the conversation
rules specified in [6].

constrain each d in disk_drive
such that name(vendor(d))

= "Storage Inc"
and type(d) = "Zip"

at least 1 p in ports(host_pc(d))
to have type(p) = "USB"

])
)

Use of Prolog term structures is chiefly for convenience, as most
of the current knowledge-processing components in the KRAFT
implementation are written in Prolog. However, the Prolog term
structures are easily parsed by non-Prolog KRAFT components;
currently there are several components implemented in Java, for ex-
ample. We are currently working on a new version of the KRAFT
implementation which uses XML instead of Prolog term structures,
as XML retains the ease of parsing, while being a more open inter-
change standard.

2.3 KRAFT Walkthrough
This section presents an operational walkthrough of the generic
KRAFT network shown in Figure 2. The generic network features
a user agent

���
, its wrapper ����� , a facilitator � , two sample me-

diators 	�
 , 	
� , two sample resources ��
 , ��� and their wrappers

����� , ����� , and a solver
�

and it’s wrapper ��� . In general, of
course, there may be multiple user agents, solvers, and any number
of mediators and wrapped resources. There may also be multiple
facilitators.

The walk-through traces the steps involved in solving a single re-
quest, issued by a user to the user agent,

���
. Each numbered step

is from the point-of-view of a particular component, named at the
start of the step. Messages between components are shown in the
form:

CCQL-performative(Message content) � Receiver

1.
���

submits a request 	 ��� in a format local to the user
agent. 	 ��� will typically be some kind of query, and may
include constraints (expressed in the local constraint language).

2. ����� transforms 	 ��� into a KRAFT request 	�
 , in CIF
expressed against the shared ontology. Again, 	
 may in-
clude constraints (now expressed in CIF).

3. If � � � already holds an advertisement
advertise � ��
�� ��� , where:

�
is a named KRAFT agent� � is a capability of

�
� � matches 	�

Then goto step 5.
Else send message to facilitator � :

recommend * ��	
 ��� �
4. � searches it’s directory for an advertisement

advertise � ��
�� � � , where
� � matches 	
 , and sends:2

forward � advertise � ��
�� � ����� � � �
5. ����� sends 	�
 to the agent identified in the advertisement:

ask ��	�
���� �

6.
�

processes 	
 according to the kind of agent it is:

� If
�

is a wrapped resource, ����� :
����� transforms 	�
 into a local query 	���� , in the
local ontology, which it submits to the Resource �
 ;
when � � � receives the response data � � � , it trans-
forms ����� to a KRAFT result data object ��
 , in CIF/
shared ontology:
tell ����
���� �����

� If
�

is a mediator, 	�
 :
	
 decomposes 	�
 into subtasks 	�
�������� 	�
�! ; then,
in parallel, serially, or in some combination thereof,

�

recursively performs steps 3–6 with:

each 	�
�� substituting for 	�

	
 substituting for �����

	
 receives responses, and fuses them into a unified
KRAFT result data object, �
 , in CIF/shared ontol-
ogy:
tell ���
 ��� � ���"

This walk-through assumes that the agents are using
“recommend-style” facilitation [6]. KRAFT facilitators also
support “broker-style” facilitation, where the facilitator will relay
the request 	
 directly to the advertising agent

�
on � ��� ’s

behalf.

� If
�

is a wrapped solver, �#� :
� � transforms 	
 into statements in the solver’s local
language, which it submits to

�
.

(*) If the Solver’s response is a request for more data,
��� , then ��� :

transforms � � to a KRAFT request, 	
�$
recursively performs steps 3–6 with:

	�
�$ substituting for 	�

��� substituting for �����

receives response(s), transforms them,
submits them to the solver,
and goes to (*).

Else � � :

transforms response to a KRAFT
result data object, �
 ,
in CIF/shared ontology:
tell ���
 ��� � ���

If ��� needs to recursively perform steps 3–6 as noted
above, then in performing step 3 it is possible that the
solver’s wrapper will consult the facilitator to find an
agent that can handle its data request; however, it is
likely that the solver’s wrapper will direct it’s requests
for more data back to the originator of 	�
 (probably a
mediator). This is because the mediator will likely be
constructing variable domains on behalf of the solver.

7. � ��� receives the KRAFT result object, transforms it into
the local format, and passes it to

���
for display.

3. KRAFT DEMONSTRATION
The KRAFT architecture has been instantiated with a realistic ap-
plication in the domain of telecommunications network data ser-
vices design; this application was specified by the KRAFT project’s
industrial partner, BT. The network data services design problem
considered by KRAFT is in the phase of network configuration
from the viewpoint of a customer at a single site, allowing a BT
network designer to select services and equipment to meet the cus-
tomers’ requirements:

� A suitable Point of Presence (POP) at which to connect to
the BT network.

� Suitable Customer Premises Equipment (CPE) with which to
service the connection; types of CPE include routers, bridges,
and FRADs, though it was decided to focus initially solely on
router products.

A conceptual view of the application architecture is shown in Fig-
ure 3(a). This application maps onto the generic architecture shown
in Figure 2 as follows:

� A single wrapped User Agent, designed by BT, provides a
user interface for the two kinds of request listed above. Cou-
pled to this user agent is a database of designer knowledge,
which will be accessed during the network data services con-
figuration design process. The User Agent Wrapper provides
network access to and from both the user agent and the De-
signer’s DB.

� As the two kinds of request are independent (it is possible
to select a CPE on the basis of a customer’s LAN and WAN
requirements, without knowing which POP will be used, and
vice versa), it was decided to provide a separate mediator for
each task: the POP request is handled by the POP Mediator,
and the CPE request is handled by the CPE Mediator.

� There is a single Facilitator which is not specific to the ap-
plication domain, except that it has access to the shared on-
tology.

� There are four wrapped resources:

– POP Database, a database of POPs (based on BT’s own
POP database);

– Vendor 1 DB, a product catalogue database for a CPE
vendor (based on the actual product catalogue of 3Com);

– Vendor 2 DB, a product catalogue database for a second
CPE vendor (based on the actual product catalogue of
Cisco).

– Designer’s DB, a source of network data services de-
sign constraints (based on knowledge acquired from
BT network data services designers).

� There is a single wrapped legacy constraint Solver engine.

All the agents (mediators, facilitators, and wrappers) are imple-
mented in Prolog. The user interfaces (user agent and a message
monitor) are Java applications. The database resources are man-
aged by independent instances of the P/FDM DBMS3, each with its
own local schema. The constraint solver is ECLiPSe. Inter-agent
communication is implemented by asynchronous message passing
using the Linda model [3].

The four wrapped resources are considered to be pre-existing legacy
databases. For the purposes of the prototype, simplified versions of
these databases were created; however, care was taken to ensure
that the databases of CPE information were created independently,
so as to ensure realistic heterogeneity. Each of the databases was
populated with data and constraints; for example, a vendor database
was populated with data on the vendor’s CPE products, and con-
straints defining the valid usage of each product. The main aim of
creating the four resources was to demonstrate the feasibility of cre-
ating wrapper agents to transform between the internal knowledge
representation (data and constraints) and the KRAFT CIF language.

When the various service-providing agents come on-line, each sends
an appropriate advertise message to the faciliator:

� POP DB Wrapper advertises that it can supply POP data ob-
jects;

� Vendor 1 Wrapper advertises that it can supply router data
objects where the manufacturer is “Vendor 1”;

� Vendor 2 Wrapper advertises that it can supply router data
objects where the manufacturer is “Vendor 2”;

� Solver Wrapper advertises that it can process finite domain
CSPs;

� POP Mediator advertises that it can supply information on
POPs that are closest to a given location;

�

http://www.csd.abdn.ac.uk/ � pfdm

� CPE Mediator advertises that it can supply CPE data ob-
jects from multiple vendors that meet given customer re-
quirements.

� User Agent Wrapper advertises that it can supply network
data services design constraints.

3.1 Handling POP Requests
A POP request issued by the user agent results in the following
sequence of actions, summarised in Figure 3(b):

1. Via the User Agent, the user specifies the location of the cus-
tomer’s site, and the customer’s required wide-area network
(WAN) services (for example, Frame Relay and ISDN).

2. The User Agent Wrapper formulates the POP query as a
KRAFT message, and attempts to locate an agent that can an-
swer the query by contacting the Facilitator through a rec-
ommend CCQL message, indicating that it needs to find a
POP closest to a given location.

3. The Facilitator matches the User Agent Wrapper’s request to
the advertisement from the POP Mediator, and forwards
the matching advertisement back to the User Agent Wrapper.

4. The User Agent Wrapper sends an ask-onemessage to the
POP Mediator, requesting a POP that meets the user’s re-
quirement constraints (location and services).

5. The POP Mediator contacts the Facilitator to find a source
of POP data, and is forwarded the advertisment from the
POP DB Wrapper. It then sends an ask-all message to
the POP DB Wrapper, requesting all POP data objects with
the required services.

6. Assuming that the POP DB Wrapper’s reply was non-empty,
the POP Mediator computes which POPs are nearest the cus-
tomer’s site, and sends these data objects in a tell mes-
sage to the User Agent Wrapper. This computation is simple
enough that the POP Mediator performs it itself, and does
not need to invoke the Solver.

7. Upon receipt of the data from the POP Mediator, the User
Agent Wrapper transforms it to the local format for presen-
tation to the user via the User Agent itself.

3.2 Handling CPE Requests
A CPE request issued by the user agent results in the following
sequence of actions, summarised in Figure 3(c):

1. Via the User Agent, the user specifies additional constraints
on the type of equipment needed, including support for vari-
ous LAN protocols used within the customer’s site (TCP/IP,
AppleTalk, 10 base T Ethernet, etc) and support for the re-
quired WAN services that determined the choice of POP (Frame
Relay, ISDN, etc).

2. The User Agent Wrapper interacts with the Facilitator as
above, this time looking for vendor-independent CPE data
objects. It is forwarded the CPE Mediator’s advertise-
ment.

3. The CPE Mediator receives an ask-all request from the
User Agent Wrapper, specifying all the customer’s require-
ment constraints. It sends a recommend-all message to
the Facilitator to discover all CPE vendors currently on-line.

(c) KRAFT Network DataServices application interaction 2: choose CPE

(b) KRAFT Network DataServices application interaction 1: locate a POP

F

POP
DB

W
Vendor 1

DB

W Vendor 2
DB

Solver

WUA

Designer’s
DB

POP
Mediator

CPE
Mediator

(a) KRAFT Network DataServices application architecture

W

W

F

POP
DB

W
Vendor 1

DB

W Vendor 2
DB

Solver

WUA

Designer’s
DB

POP
Mediator

CPE
Mediator

W

W

F

POP
DB

W
Vendor 1

DB

W Vendor 2
DB

Solver

WUA

Designer’s
DB

POP
Mediator

CPE
Mediator

W

W

NOTE In (b) and (c), interactions with the facilitator are not shown.

Figure 3: A conceptual view of the KRAFT demonstration application.

4. The Facilitator finds no CPE vendors have advertised but,
knowing from the shared ontology that router is a kind of
CPE, it is able to forward CPE Mediator the advertise-
ments from Vendor 1 Wrapper and Vendor 2 Wrapper.

5. The CPE Mediator uses some of the customer’s requirement
constraints to formulate ask-all requests to each vendor’s
wrapper. Each wrapper responds, telling the CPE Media-
tor the router data objects that meet the given requirements,
and any attached “small print” constraints on these router
data objects.

6. The CPE Mediator formulates a CSP by fusing the constraints
it now has:

� all the customer requirement constraints;
� all the “small print” constraints on router data objects

from both vendors;
� network data services design constraints which it ob-

tains by sending an ask-all message to the User
Agent Wrapper, having discovered its location from the
Facilitator.

7. The CSP is formulated as a finite domains CSP, so the CPE
Mediator interacts with the Facilitator to discover a finite
domain solver. It then sends the Solver Wrapper the CSP.

8. Assuming there is at least one solution to the CSP, the Solver
Wrapper tells the solution set to the CPE Mediator, which
then returns these results to the User Agent Wrapper.

9. The user can examine the solutions (if any) via the User
Agent and, if necessary, refine the constraints and invoke fur-
ther requests to the KRAFT network.

The application has been constructed and experiments conducted
with it. Background details are available in [4]. The application
shows the feasibility of the KRAFT approach to supporting dis-
tributed configuration design systems where vendors are able to
advertise their product catalogues to resellers, who in turn offer
value-adding services to customers via customised user agents.

4. ADDING MARKETPLACE SUPPORT TO
KRAFT

The current version of the KRAFT architecture lacks some im-
portant mechanisms needed to support virtual organisations fully:
there is nothing to ensure that a transaction between partners is
properly conducted, and closed. To date, we have assumed that
all partners are fully cooperative and trustworthy. This is clearly
a naive assumption, so we are now extending the KRAFT archi-
tecture with mechanisms to enforce good behaviour among partic-
ipating agents. At the same time, we are working to make the ar-
chitecture more open and robust. This work-in-progress is outlined
below. A future paper will report on the final results.

4.1 Marketplace Mediation Services
A distinct type of mediator — the Marketplace Mediator — has
responsibility for enforcing the rules and policies of the market-
place among all participating agents. Interactions between agents
are separated into two kinds:

� Information-seeking operations are essentially just for “brows-
ing” or “window shopping”. There are no guarantees being

made in these interactions, and no agent can be held account-
able for inaccuracy, incompleteness, or impermanence of in-
formation obtained. These are essentially the current type
of interaction in KRAFT systems; no marketplace mediator
is involved in these operations. Agents typically use these
operations to explore provisional solutions, before deciding
whether to initiate a business transaction.

� Business transactions are governed by well-defined (but flex-
ible) interaction protocols that result in committed deals be-
tween agents. These operations must be conducted through a
marketplace mediator. Each participant in a business transac-
tion sacrifices some of its autonomy to the marketplace me-
diator, which runs the interaction protocol on behalf of the
marketplace.

When an agent wishes to initiate a business transaction with one or
more other agents, it uses the facilitation services to find a market-
place mediator that will run the desired interaction protocol. We
have built three interaction protocols to date:

� Fixed-price buy/sell: This is the simplest form of deal, where
the seller states a price which the buyer either accepts or re-
jects. Upon stating its price, the seller will be committed to
that price if the buyer accepts it. Upon accepting the price,
the buyer is committed to paying. If either party breaks its
committment, the marketplace mediator will record this be-
haviour in a reputation database so that it will have bearing
on future deals. (In the extreme case, the offending agent
will be banned from future dealing in the marketplace.)

� Negotiated-price buy/sell: This protocol is an extension of
the above simple case, to allow the buyer and seller to “hag-
gle” over price. Either side may agree to suggest the initial
price. Stated prices are binding as before.

� English-auction buy/sell: This protocol implements an En-
glish auction with multiple buyers and a single seller. Here,
the marketplace mediator is performing the role of an auction
house and auctioneer.

These interaction protocols form the links in electronic supply chains.
For example, in the telecommunications service provision scenario,
the following links are possible:

� the customer enters into a negotiated-price buy/sell with the
service reseller;

� the service reseller enters into a negotiated-price buy/sell with
the POP operator;

� the service reseller enters into a fixed-price buy/sell with the
CPE vendor.

We have implemented a generic marketplace mediator which is ca-
pable of being instantiated with interaction protocols. This infras-
tructure has been built in Java over the Jini framework, to allow
runtime discovery of marketplace services, and fully dynamic bind-
ing/rebinding between agents.

4.2 Related Work
The design of the KRAFT architecture builds upon recent work
in agent-based distributed information systems [12]. In particular,

the roles identified for KRAFT agents are similar to those in the
InfoSleuth system [2]; however, while InfoSleuth is primarily con-
cerned with the retrieval of data objects, the focus of KRAFT is
on the combination of data and constraints. KRAFT also builds
upon the work of the Knowledge Sharing Effort [7], in that some of
the facilitation and brokerage methods are employed, along with a
subset of the 1997 KQML specification [6]. Unlike the KSE work,
however, which attempted to support agents communicating in a di-
verse range of knowledge representation languages (with attendant
translational problems), KRAFT takes the view that constraints are
a good compromise between expressivity and tractability.

In its emphasis on constraints, KRAFT is similar to the Xerox
Constraint Based Knowledge Brokers project [1]; the difference
is that the Xerox work focusses upon the use of constraints to sup-
port querying of distributed data sources, rather than the extraction
of constraints from distributed sources, and the use of these con-
straints in configuration design problem-solving.

The Smart Clients project [13] is related to KRAFT in the way
they conduct problem-solving on a CSP dynamically specified by
the customer, using data extracted from remote databases. Their
approach differs from KRAFT in that only data is extracted from
the remote databases, no small print constraints come attached to
the data; also, all the problem-solving is done on the client, rather
than by mediator agents. No constraints are therefore transmitted
across the network; conversely, it is the constraint solver that is
transmitted to the client’s computer, to work with the constraints
specified locally by the customer.

Finally, ongoing work at IBM’s T. J. Watson Research Center is
similar in concept to KRAFT’s use of small print constraints [11].
The difference is that this work uses a rule-based formalism to spec-
ify contractual “fine print” in the form of business rules. Logic
programming techniques are then used to reason with the rules.

5. CONCLUSION
This paper has described the KRAFT agent-based architecture for
supporting virtual organisations. The generic framework of the ar-
chitecture is reusable across a wide range of knowledge processing
systems, including applications in electronic commerce and knowl-
edge management, where various partners ally themselves together
because they wish to interact by exchanging constraints. The pro-
totype network data services application has proven the concept of
supporting virtual organisations by constraint fusion.

6. ACKNOWLEDGEMENTS
KRAFT is a collaborative research project between the Universities
of Aberdeen, Cardiff and Liverpool, and BT. The project is funded
by EPSRC and BT.

7. REFERENCES
[1] J. Andreoli, U. Borghoff, and R. Pareschi. Constraint agents

for the information age. Journal of Universal Computer
Science, 1:762–789, 1995.

[2] R. Bayardo. InfoSleuth: agent-based semantic integration of
information in open and dynamic environments. In Proc.
SIGMOD’97, 1997.

[3] N. Carriero and D. Gelernter. Linda in context.
Communications of the ACM, 32:444–458, 1989.

[4] N. J. Fiddian, P. Marti, J-C. Pazzaglia, K. Hui, A. Preece,
D. M. Jones, and Z. Cui. A knowledge processing system for
data service network design. BT Technology Journal,
14:117–130, 1999.

[5] E. Freuder and B. Faltings, editors. Configuration: Papers
from the AAAI-99 Workshop. AAAI Press, Menlo Park, CA,
1999.

[6] Y. Labrou. Semantics for an Agent Communication
Language. PhD thesis, University of Maryland, Baltimore
MD, USA, 1996.

[7] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator,
and W.R. Swartout. Enabling technology for knowledge
sharing. AI Magazine, 12(3):36–56, Fall 1991.

[8] A. Preece, A. Borrowman, and T. Francis. Reusable
components for KB and DB integration. In Proc. ECAI’98
Workshop on Intelligent Information Integration, pages
157–168. ECCAI, 1998.

[9] A. Preece, P. Gray, and K. Hui. Supporting virtual
organisations through knowledge fusion. In Artificial
Intelligence for Electronic Commerce: Papers from the
AAAI-99 Workshop, Menlo Park, CA, 1999. AAAI Press.

[10] A. Preece, K. Hui, W. A. Gray, P. Marti, T. Bench-Capon,
D. Jones, and Z. Cui. The kraft architecture for knowledge
fusion and transformation. In Research and Development in
Intelligent Systems XVI (Proc ES99), pages 23–38. Springer,
1999.

[11] D. Reeves, B. Grosof, M. Wellman, and H. Chan. Toward a
declarative language for negotiating executable contracts. In
Artificial Intelligence for Electronic Commerce: Papers from
the AAAI-99 Workshop, Menlo Park, CA, 1999. AAAI Press.

[12] K. Sycara, K. Decker, and M. Williamson. Middle-agents for
the internet. In Proc. IJCAI-97, 1997.

[13] M. Torrens and B. Faltings. Smart clients: constraint
satisfaction as a paradigm for scaleable intelligent
information systems. In Artificial Intelligence for Electronic
Commerce: Papers from the AAAI-99 Workshop, Menlo
Park, CA, 1999. AAAI Press.

