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Abstract—Heterogeneous sensor networks are increasingly be-
ing deployed to support users on the field who require many
different kinds of sensing tasks, such as detecting people who
may need help or monitoring collapsing buildings. Sensors may
be scarce and in high demand. Sensing tasks might compete for
the exclusive usage of available sensors. Such an environment is
highly dynamic with, for example, sensor failures and changing
sets of tasks. First responders usually lack the time and expertise
to manually decide which are the best sensors for each task. We
need therefore to automate the allocation of sensors to tasks.
We formalize this problem, which we call Multi-Sensor Task
Allocation (MSTA). We propose different system architectures to
solve MSTA and we discuss the tradeoffs that each architectural
choice implies. We show a proof-of-concept implementation of
the system interface deployable on mobile devices in the field.

I. INTRODUCTION

Heterogeneous sensor networks are increasingly being de-
ployed to support users on the field who require many different
kinds of sensing tasks. For example, in an emergency response
scenario, tasks will include detecting people who may need
help and monitoring collapsing buildings. Consider the recent
case of Haiti earthquake or also the Hurricane Katrina disaster
in New Orleans. In both of these cases the military used
sensors mounted on Unmanned Aerial Vehicles (UAV) to scan
the disaster areas and organize humanitarian relief operations.1
In the near future such operations will be supported by a
sensor network consisting of a large number of heterogeneous
sensing devices of many different types. These could vary from
very simple sensors with limited capabilities such as motes, to
very complex unmanned platforms such as UAVs. This direc-
tion is seen as the way forward in research to provide sensor
network support to future multinational coalition operations2.

Upon deployment on the field of an emergency response
operation, heterogeneous sensing devices will form an ad hoc
network using wireless links or cables to communicate with
each other. Given that sensing devices can be static or mobile,
and that sensors may fail or be damaged, it is clear that the
network configuration is highly dynamic. This heterogenous
sensor network is required to support multiple sensing tasks of
different types to be accomplished simultaneously in order to

1“Global Hawk collects reconnaissance data during Haiti relief
efforts”, http://www.af.mil/news/story.asp?id=123185754; “Small,
Unmanned Aircraft Search for Survivors in Katrina Wreckage”,
http://www.nsf.gov/news/news summ.jsp?cntn id=104453

2International Technology Alliance in Network & Information Sciences
(ITA), http://www.usukita.org

give support to many different emergency response operations
at the same time. Sensing tasks might share the usage of a
sensing resource, but more often they compete to exclusively
control it. Consider for example a search-and-rescue scenario
as the one in Figure 1, where the sensor network needs to
support the task of detecting people who may need help, and
at the same time to monitor a collapsing building which might
represent threats to the life of other people. Assuming that all
the other sensors in the network are already tasked, if only
one UAV is available and can serve exclusively one of these
two tasks (e.g. because the two tasks are far apart) then the
question becomes, where is it better to send that UAV?

Unmanned Sensor

Earthquake Search & Rescue

Detect 
(injured) people

Monitor 
collapsing building

Fig. 1. Multi-Sensor Task Allocation problem.

A mobile user on the field creating many different sensing
tasks during an emergency response operation would not
have the time to manually decide what is the best set of
sensors to use for each of his own tasks. In addition, he
might not have the expertise to decide what type of sensors
could best match the sensing requirements of each task. Even
assuming that the user was an expert and had enough time
to manually decide which sensors to allocate to his tasks,
they would probably not consider all the pertinent features
of the problem. We need therefore to automatically allocate
individual sensors to the task they best serve, considering all
the relevant parameters (e.g. sensor distance, sensor lifetime,
task priority, task duration, etc). In general we can have
tasks assigned to multiple sensors and sensors assigned to
multiple tasks, but the fundamental question remains, which
sensor should be allocated to which task? This summarizes the



problem that we call Multi-Sensor Task Allocation (MSTA).
The problem is exacerbated in coalition contexts — for
example, a humanitarian relief operation requiring a multi-
agency international response — where users will have little
idea of what sensor assets are available across the coalition,
or what their ownership and access rights might be.

In this paper we present and analyze a variety of different
system architectures which could solve different MSTA prob-
lem instances inspired by generic emergency response sce-
narios in a coalition context. The novelty of our architectures
consists mainly in a modular approach which solves the MSTA
problem step by step, by integrating a knowledge base module
with an allocation mechanism. Together, these two components
offer flexibility in the automatic choice of sensors while also
hiding the complexity of this choice from the user.

The remainder of the paper is organized as follows. In
Section II we describe and formalize the MSTA problem in
the context of background work on sensor allocation systems.
In Section III we provide an overview of our conceptual
system architecture, including the knowledge base module.
Then in Section IV we describe and analyze the alternative
architectural choices available to support sensor allocation on
the field. Section V concludes the paper with a discussion and
outline of future work.

II. MULTI-SENSOR TASK ALLOCATION PROBLEMS

There are many possible instances of the MSTA problem,
depending on a number of key parameters. For this reason,
we propose a taxonomy of MSTA problems through which we
can classify problem instances, and thus identify more easily
the underlying optimization problem. The MSTA taxonomy
which we propose consists of the following four main axes,
introduced in [12]:

• Single-task sensors (ST) vs multi-task sensors (MT):
in ST each sensor is able to execute at most one task at a
time; in MT a sensor can execute multiple simultaneous
tasks. This is equivalent to what researchers have previ-
ously called exclusive sensors [13] vs shared sensors [10].

• Single-sensor tasks (SS) vs multi-sensor tasks (MS):
SS means that each task needs exactly one sensor to be
accomplished; MS means that some tasks could require
multiple sensors (also referred to as the coalition forma-
tion problem [17]).

• Instantaneous assignment (IA) vs. time-extended as-
signment (TA): IA means that the information concern-
ing the sensors, tasks and the environment does not allow
for planning of future allocation; instead in TA sensors
can be allocated considering the future. For example,
in [6] this dimension corresponds to lifetime-unaware
approach vs lifetime-aware (where it is available a model
of how task are expected to arrive over time).

• Homogeneous sensor network (HO) vs heterogeneous
sensor network (HE): HO means that the network
is composed only by sensors with the same features;
HE represents the case in which the sensor network
consists of sensing devices of different types each with

different sensing capabilities, lifetimes and other unique
characteristics.

To categorize MSTA problem instances we identify the cor-
responding quadruple of two-letter abbreviations which pa-
rameterize our problem scenario. Given that military and
emergency response operations generally use heterogeneous
sensing devices in order to coordinate missions, we focus
on heterogeneous sensor networks (HE); also given that the
dynamic environment does not provide enough information to
plan for future allocation we aim at Instantaneous Allocation
(IA). In the most general case each task usually requires a
group of sensors therefore we consider just Multi-Sensor tasks
(MS) which require a more complex way of evaluating the
joint utilities of sensor bundles, often involving non-additive
joint utility functions (i.e. functions in which the utility coming
from each sensor does not sum-up linearly). For these reasons,
we believe that two specific instances of MSTA are actually
most relevant in our scenario: ST-MS-IA-HE when sensors
can serve exclusively one task at a time and MT-MS-IA-HE
when sensors can be shared among tasks. Below we include a
brief analysis of the optimization problems underlying the two
MSTA instances on which we focus, summarizing and porting
to our scenario some of the work done in [3]. Note that here
we consider tasks as independent (not linked).

A. ST-MS-IA-HE: Single-task sensors
ST-MS-IA-HE considers Single-Task sensors supporting

Multi-Sensor tasks. This is a very common scenario because
often sensors are scarce and in high demand and most im-
portantly sensors cannot always be shared; here therefore
we focus on a restricted type of sensors such as directional
sensors. This problem is referred to as coalition formation in
the multi-agent community and it has been formally studied
in [15] and [17]. Following [3], ST-MS-IA-HE can be modeled
as a Set Partitioning Problem (SPP) [1] in which is given a set
of sensors S and a family F of acceptable subsets of S and a
utility u : F → R. The objective is to find a maximum-utility
family X of elements in F such that X is a partition of S. Note
that F represents the set of all feasible sensor bundle-task pairs
and the utility u represents the utility estimate for each pair.
It is clear that for each different type of sensing task we will
have a different utility function, for example for a localization
task we will have a utility dependent on the angle between
sensors and instead for a video reconnaissance task we will
have a utility based on the distance and resolution of the video
sensors. Finally note that casting the ST-MS-IA-HE problem
as an instance of SPP does not imply that all sensors should
be allocated to at least one task or that all the tasks should
be assigned at least a bundle of sensors, in fact the family F

includes all the subsets of S where for some the utility might
be zero.

B. MT-MS-IA-HE: Multi-task sensors
We can easily imagine cases in which a sensor can be shared

among different tasks, e.g. a UAV surveilling two areas that



are close enough. This can happen much more frequently in
an heterogeneous sensor network and therefore it is important
to consider also the MT-MS-IA-HE problem in which we allow
to assign a sensor to multiple tasks. Of course each sensor will
have a limited maximum number of tasks able to serve, due
to sensory limitations: e.g. a camera will be able to detect
up to a certain number of suspicious objects in a certain
area, given for example that the camera might miss out-of-
focus objects. MT-MS-IA-HE is also well studied by the multi-
agent community and it is referred to as overlapping coalition
formation problem [17]. Such a problem can be cast as a
variant of the Set Covering Problem (SCP) [18] in which is
given a set of sensors S forming the network, a family F

of acceptable subsets of S representing possible overlapping
coalitions, and a utility function u : F → R as an estimate
of the utility of assigning a subset of sensors to a task. The
objective is to find the maximum-utility family X ∈ F such
that X is a cover of S. Note that also in this case casting
the MT-MS-IA-HE problem as an instance of SCP does not
enforce that all sensors should be allocated to at least one
task and viceversa; in fact by definition the family F includes
also subsets of S for which the utility is zero (representing
unassigned sensors or unsupported tasks). If full coverage of
the tasks is required there could be several ways to include
it in the problem formulation, but in our case we allow for
tasks being dropped due to the features of our environment in
which sensing resources are scarce and in high demand.

MSTA is closely related to the Multi-Robot Task Allocation
(MRTA) problem which consists of answering the question:
which robot should execute which task in a generic Multi-
Robot System (MRS). Gerkey et al [3] offered a framework to
categorize different instances of the MRTA problem, proposing
a domain-independent taxonomy of problems. The MSTA
taxonomy is designed as an extension of the MRTA taxonomy,
to include domain specific features of the sensor network envi-
ronment. Most importantly in MRTA the distinction between
a MRS composed by homogeneous devices vs one composed
by heterogeneous devices does not represent one of the main
axes. This distinction is instead extremely important when
developing solutions to MSTA problems [19], [9]: as a matter
of fact in order to correctly allocate sensor assets to tasks
in a heterogenous environment, it is necessary to have more
complex knowledge about the sensing capabilities provided by
each sensor and the sensing requirements requested by each
task.

III. CONCEPTUAL ARCHITECTURE

In both the MSTA problem instances we have to deal with
coalitions of sensors which we call sensor bundles. Given this
common feature we propose a conceptual architecture valid for
both problem instances which highlights the steps necessary
in order to find a solution. The architecture is comprised of
four main components as shown in Figure 2: a mobile user
on the field, a knowledge-based bundle generator (KB bundle
generator), an allocation mechanism, and the sensor network

KB

Bundle 

Generator

Allocation

mechanism

Sensor

Network

Fig. 2. Conceptual system architecture.

itself. The mobile device represents the point of entry of
tasks into the system: basically the mobile user can express
their sensing requirements, including a local area-of-interest,
represented in Figure 2 as a coloured circular area on the
smartphone GUI. Note that we assume that users on the field
are provided with mobile devices (such as smartphones, PDAs
or tablets) to access the system.3

The KB bundle generator recommends bundles of sensors
that are known to be “fit-for-purpose” for that particular type
of task specified by the user. Then, the allocation mecha-
nism finds a solution either to the ST-MS-IA-HE or to the
MT-MS-IA-HE problem depending on the scenario. The alloca-
tion mechanism considers the output of the KB bundle genera-
tor for each task generated; this consists of a set of coalitions of
sensors that, if allocated to the task, would satisfy the sensing
requirements demanded by the user. Note that a single sensor
bundle recommended by the KB bundle generator is enough
to satisfy the sensing requirements of the task; therefore we
may have a one-to-one (in ST-MS-IA-HE) or a one-to-many
(in ST-MS-IA-HE) relationship between sensor bundles and
tasks. Finally, the sensor network is configured according to
the output of the allocation mechanism, and begins serving the
tasks by delivering sensor data to the user.

The functionality of the knowledge-based bundle generator
is independent of the architectural choices we will present in
Section IV so we discuss it in further detail here, including
implementation options.

A. Knowledge-Based Bundle Generator

Task allocation in heterogeneous sensor networks requires
knowledge of which sensor types are applicable to which kinds
of task. For example, certain kinds of object localisation tasks
can be achieved through acoustic sensing (provided that there
are sufficient sensors to triangulate the signals and determine
object location) or visual sensing (provided that the image is of
sufficient quality to determine the presence of an object). We
separate two issues: whether a type (or combination of types)

3As an illustration-of-concept, we prototyped the interface to the system
on the Apple iPhone (http://www.apple.com/iphone/) motivated mainly by its
popularity and the quality of the development tools provided.



Fig. 3. Reasoning procedure.

of sensor can potentially satisfy a task, and how well might
particular sensor instances perform on a given task. Addressing
these issues requires knowledge from the literature, and we
encode this knowledge in a knowledge base (KB). The KB
stores, for each kind of task, each type (or combination of
types) of sensor that can theoretically achieve that task, and
a joint utility function that allows us to compute the utility of
particular sensor instances for that task. For example, based
on [14] we define a 2D-localization function that returns a
utility based on the locations of two sensors of the same type
(in order to triangulate signals in two dimensions) where the
theoretical utility is derived from the spread of the sensors.
This function can be used with, for example, acoustic or
seismic sensors. We refer to the types of applicable sensors
as bundle types (because they determine the types of sensors
that form our allocated bundles). These types may be defined
using a sensor ontology, such as the one described in [4].

Figure 3 shows the reasoning process enabled by the KB
in more detail. For each newly created task Tj at time step
t the KB recommends a Joint Utility Model composed by a
Bundle Type and a Joint Utility Function. This identification
of Bundle Types was originally implemented as described
in [4], by dynamically matching the sensing capabilities
provided by each single sensor and the capabilities required
by each task type. Sensor and task features were defined
using ontologies expressed with the Web Ontology Language
(OWL); the matching process was implemented using the
Pellet open source OWL reasoner4. The output of this step
is a set of Bundle Types (BT), where each of the entry is
composed by a set of sensor types which altogether would
satisfy the information requirements of the sensing task. The
BTs recommended at this stage are just sets of sensor types,
and they do not contain any kind of information regarding the
number of instances to choose for each sensor type in the BT.

This is of crucial importance for the generation of bundles
of sensors to be assigned to a task in order to satisfy it and it is
solved through the matching with a Joint Utility Model (JUM).
Such a model consists of a suggested maximum, minimum or

4http://pellet.owldl.com/

exact number of sensor instances for each of the sensor types
forming a BT. Moreover it includes a Joint Utility Function
(JUF) which is used to compute the estimated value (ekj) for
a group of sensor instances implementing the recommended
BT. The KB indicates which JUMs are appropriate for each
task type. Each JUF is only compatible with certain sensors, so
the final step in the reasoning procedure is to match applicable
JUMs with BTs.

To illustrate the above, consider the example mentioned
in the previous section, in which an emergency responder
creates a task on the field in the coordinates (lat1, long1)
and the type of the task is Detection of Injured People. The
reasoner suggests to use either BT1 = �{AcousticArray} or
BT2 = �{UAV,Camera}�, as result of the first reasoning
stage. Later on it associates one or more JUMs to each
recommended BT by searching the knowledge base. In this
case, we could assume that in the knowledge base there are
just two utility models JUM1 and JUM2, like the ones pro-
posed in [14], compatible with these two BTs. Therefore we
obtain the following output from the reasoner (BT1, JUM1),
(BT1, JUM2), (BT2, JUM1), (BT2, JUM2). This allows us
to be very flexible in terms of allocation as it is clear that the
same task can be satisfied using different Bundle Types, and
therefore increasing the chances of satisfying that task.

B. Lightweight KB Bundle Generator

The original implementation of the reasoning process is
computationally expensive [4] due to the exponential-time
complexity of the classification algorithm used by the Pellet
reasoner. However, because the task types and sensor types
are relatively stable (it is rare for new kinds of sensor or task
to become available) it is feasible to pre-compute the results
of the reasoner and store these in a look up table; such an
implementation is more suitable for deployment on a mobile
device, to avoid wasting battery life on expensive computation
(allowing us to save the device battery for more important
things such as the delivery of the information from the sensor
network). Note that all the reasoning operations using a lookup
table will be O(1). The only assumption that this approach
makes is that the device will have a sufficiently large storage
capacity, which is reasonable for modern smartphones. The
structure of the look up table is represented in Figure 4. Note
that each row of the table is a tuple composed by a task type
(represented as an ID), a Bundle Type and a Joint Utility
Function.

Our initial experiments show that memory requirements and
lookup performance on the mobile device are acceptable. A
realistic knowledge base (including around 4000 different task
types with 5 different BT+JUM on average per task type, i.e.
around 20,000 table entries) occupies 12 megabytes of the
flash memory of an iPhone. Its size grows linearly with the
number of entries in the table. The time required to retrieve
an entry from this lookup table on the iPhone is around 20
milliseconds, which increases logarithmically with the number
of entries.
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Fig. 4. Knowledge Base: lookup table on user device.
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Fig. 5. Centralized system architecture.

IV. ALLOCATION MECHANISMS

Unlike the KB bundle generator, which is independent from
architectural choices, the allocation mechanism varies greatly
depending on whether we use a centralized or a distributed ar-
chitecture. In this section we describe three architectures: one
fully centralized, one fully distributed, and another partially
distributed (or hybrid). Note that all of them can support both
ST-MS-IA-HE (i.e. exclusive sensor assignment to tasks) and
MT-MS-IA-HE (i.e. sensors sharable between tasks).

A. Centralized architecture
Currently many mobile applications are cloud-based, which

means there is a centralized cloud server able to cope with all
the mobile requests coming from different user’s devices. In
many emergency response and military operations, we might
assume the presence of one or more base stations collecting
information about the environment, thereby having a global
view of the ongoing tasks. The mobile devices used on the field
are usually provided with cellular/GPRS/3G connection and
therefore could use these technologies to remotely communi-
cate with a base station. As a consequence we might be able
to implement both the KB bundle generator and the allocation
mechanism on a central server and use mobile devices only to
create new tasks and push them to the central server, which
will then run periodically a centralized algorithm to find a
feasible allocation, and also to receive data from the sensors.

Describing in more detail this architecture, shown in Figure
5: during a certain timestep, we have a set of mobile users
requesting different sensing tasks in the field. These newly cre-
ated tasks are then posted to a central server which passes each

of the task to the KB bundle generator. Using different joint
utility models for each task, this component computes for each
task a set of feasible sensor bundles, each of which satisfies
the task’s sensing requirements. Then a centralized allocation
algorithm is run to find a solution. Both the ST-MS-IA-HE and
the MT-MS-IA-HE are NP-hard, therefore considering the size
of our scenario which usually is in the order of hundreds of
sensors and dozens of tasks the problem instance is in general
too large to find an optimal solution, as stated in [7] and [3].
In Section II we analyzed how the ST-MS-IA-HE problem
(where sensors can be part of exclusively one bundle) can
be cast as a Set Partitioning Problem (SPP), so we could use
centralized SPP approximation algorithms like the one in [5].
To apply this algorithm we have to be able to enumerate a
set of feasible bundle-task combinations, which in our system
is the output of the KB bundle generator. Another reasonable
way of modeling this problem is as a combinatorial auction
in which the bidders are the users who bid for bundles of
sensors, basically combinations of items for which we can
express just a joint utility value in the auction. In practice,
each user generates a set of tasks, and then places a bid for the
highest utility sensor bundles which could potentially satisfy
the information requirements of the newly created tasks. Note
that the value of the bid can easily coincide with the joint
utility value computed by the KB bundle generator. There
are many approximation and anytime algorithms developed to
solve a combinatorial auction, among these the most relevant
are CABOB [16] and CASS [2].

Considering the MT-MS-IA-HE problem (i.e. when tasks
can share sensors), we can apply Set Covering Problem
(SCP) approximation algorithms such as the one proposed
in [8] since, as we explained in Section II, we can cast
this problem as an instance of SCP. As highlighted in [3],
many approximation algorithms have been proposed, most
requiring a set of feasible bundles of sensors for each task as
in the previous problem. More importantly, the general trend is
that they perform poorly when the number of allowed sensor
bundle for each task is large, that is when it is almost equal to
the number of all possible subsets of sensors (2|S|). This means
that these algorithm actually behave better in a heterogeneous
environment where the natural diversity of sensors limits the
number of possible bundles for each task.

The key benefit of a centralized architecture for sensor-
task allocation is that usually it is able to provide a better
overall allocation than a distributed allocation, by virtue of
having a global rather than local view of the situation [7].
A secondary benefit of this architecture is that there is no
“heavy” computation happening on the mobile devices nor on
the sensor nodes — these need only to communicate to the
base station their tasks and current status (location, battery life,
whether they are serving a task or served by a sensor bundle,
etc). This improves the lifetime of the sensor network and of
the user devices.

Implementing a centralized architecture relies on (1) the
Hub having an up-to-date picture of the status of the sensor
network and tasks on the field and (2) users having con-



nectivity with the Hub. We would argue that (1) needs to
happen anyway in order to monitor what is happening on
the field for mission command and control purposes. (2) is
particularly problematic if a certain area becomes “hot”, e.g.
there is an explosion and/or a building collapses, and sud-
denly many mobile users (military or emergency responders)
may occupy the same area, leading to an overload of the
mobile telecommunication network. We need to ensure that
our system supports sensing tasks requested by mobile users
also when there is no connectivity with the base station. Note
that messages posted on/sent from the server can travel both
via the “conventional” telecommunication network or via the
sensor network. However, while we might be able to reroute
the traffic on the sensor network if the telecommunication
network crashes due to network overload, this would reduce
the lifetime and capacity of the sensor network.

B. Distributed architecture
In this section we describe a fully distributed allocation sys-

tem, shown in Figure 6, which is able to work autonomously
without the presence of a base station, thus addressing the
main problem with the centralized approach. This architecture
moves the KB bundle generator and the allocation mechanism
onto the users’ mobile devices and the sensors composing
the network. This is based on the idea that nowadays the
computational power and storage on a mobile device, such
as a smartphone, is comparable to that of an average personal
computer, albeit with more limited running time due to the
limited battery life. Therefore, in each of the mobile devices
we include a light version of the KB bundle generator as
described in Section III-B.

The users’ devices communicate directly (e.g. using WiFi
or Bluetooth) the tasks created to the sensors composing the
network; then the sensors are able to autonomously negotiate
through an allocation protocol which is the best task to serve as
part of a bundle. Well known efficient allocation protocols for
ST-MS-IA-HE and MT-MS-IA-HE have been proposed in [17]
for the coalition formation and overlapping coalition forma-
tion problems. Note that these protocols were designed for
generic multi-agent systems, so we need to adapt them in order
to include the mobile device as a “task entry point” and as the
only entity able to generate a list of sensor bundle candidates
for each task. Note also that since these are dynamic protocols
they are much more flexible and able to deal with the dynamic
nature of our environment. For example, there is no need to
synchronize events into timesteps, unlike in the centralized
approach where we need to run the algorithm on all tasks
created during a certain timestep and, while doing so, to queue
any other newly-created tasks for the next timestep.

We give a sketch of how we may adapt the protocol for the
disjoint coalition formation problem [17] to our scenario. The
adapted protocol runs on the two main entities composing our
distributed system: sensors and user devices. When the user
creates a task (e.g. using the iPhone interface illustrated in
Figure 2) the user device computes feasible sensor bundles
and their joint utilities using the KB Bundle Generator, we
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Fig. 6. Fully distributed system architecture.

call these pairs bids. These are then sent to the sensors which
choose greedily the task to serve based on the average utility
per sensor until there are no more bids. The modification of the
protocol has also to take into account multi-hop communica-
tion channels between nodes and unreliable message delivery
(due to package loss, congestion, delays, etc).

In more detail, the protocol is as follows:

• At time t the users create tasks on their devices
which then generate bids of the type bidα = �Uα :
(Tj , Bk, vα,t)�, where Uα is a user, Tj is a task gen-
erated by Uα, and Bk is the bundle of sensors with
highest utility value vα,t generated as an output of the
KB Bundle Generator.

• The user device sends to all the sensors included in each
of the bundles Bk the bids bidα.

• Each sensor node keeps a list of bids in which it is
involved sorted by decreasing average utility value, and
chooses the one to which it can contribute the most.

• The sensor then sends an ACCEPT message to the sensors
that are present in this bid.

• The sensor clears this bid (i.e. it officially commit to that
task) only when it receives an ACCEPT message from all
the sensors in this bid. This ensures that a bid is cleared
if and only if all the sensors in the bid agree to clear it.

• When a sensor node clears a bid, it sends a CLEARED to
all its neighbors — the set of sensors with which it shares
some bids and the users who were in competition for it
— telling them that it has cleared and all bids including
the sensor should be dropped from consideration.

• The sensors that receive a CLEARED message from
another sensor, delete the bids in which the sender sensor
is included. The sensors stop execution when they clear
a bid or their list of bids is empty.

• The users that receive a CLEARED message from a sensor
assigned to another user’s task, delete the sensor from the
set of neighbor sensors and recompute a new bid with
the remaining sensors. The users stop execution when
they obtain an ACCEPT message or when a convergence



timeout is expired since the beginning of the negotiation.
It is clear from the protocol description that also in this

case the KB bundle generator is crucial in the enumeration
of the feasible sensor bundles and in the evaluation of their
utility. By including this component on the user’s mobile
device it is also possible to easily extend the system by simply
extending the KB with new types of tasks/sensors and new
joint utility functions. This is very different from previous
approaches in sensor networks where if a new task/sensor type
had to be supported a new protocol has to be uploaded to the
sensors in the network, which is usually referred to as wireless
reprogramming of sensors as in [11]. In this case we would
just need to update the KB of the device which can be easily
done offline when recharging it, as opposed to the expensive
operation of uploading a new protocol to the sensors.

The procedure for each sensor implementing the protocol
has a computational complexity of order O(nk · |T |) to arrive
at a decision during each timestep (as proved in [17]), where n

is the number of sensors in the network, k is the maximum size
allowed for a sensor bundle and |T | is the number of current
tasks. Based on this result and on [7], we hypothesize that
the traffic generated by this architecture should be less then
the traffic generated by the centralized architecture described
in the previous section; part of our future work is to confirm
this by running experiments and analyzing the network traffic
generated by the two architectures. As noted above, we would
expect the centralized architecture to perform better than
this distributed architecture with respect to quality of the
allocation in terms of total welfare (calculated as the sum
of the utilities of all the allocated bundle-task pairs at each
timestep). Nonetheless, we anticipate the solution to MSTA
found by an allocation protocol to be comparable to the
centralized solution.

C. Hybrid architecture
In view of the relative strengths and weaknesses of the fully

centralized and fully distributed architectures, a third option is
to combine aspects of both into a hybrid architecture, shown
in Figure 7. This is essentially the distributed architecture
connected with a base station having a central allocation
engine as described in Section IV-A. The motivation behind
this architecture is that when there is a connection to the
base station users can post new tasks directly to the central
server and wait for an allocation decided by the central
allocation engine, and instead when the connectivity to the
base station is interrupted (e.g. because of telecommunication
network overload or physical damage) the system is able to
find autonomously a feasible allocation using the KB bundle
generator and allocation protocol on their mobile device.

This approach is prone to race conditions where the central
and distributed mechanisms interfere with each other. For
example, consider the case where a mobile device A loses
connection to the base station while a neighbour’s device B

remains connected. In this case device A will start to run the
local allocation protocol (after having found a set of feasible
sensor bundles through its local KB bundle Generator, while
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Fig. 7. Hybrid system architecture.

B will post its newly-created task to the central server. The
central server would need to know that the sensors in the sur-
roundings of the disconnected user (A) are currently running
a local allocation protocol to avoid allocating sensors twice
to different tasks. We would therefore need a synchronisation
protocol to prevent such race conditions, which comes at a
cost in terms of increasing network traffic. Moreover, such
conditions undermine the advantage of partial centralization:
the better solution obtainable from the centralised system is not
guaranteed given that the central and distributed mechanisms
would be working in potential conflict.

A more desirable hybrid architecture is shown in Figure
8. The basic idea is to provide the base station with the big
picture of what is happening on the field leaving the allocation
to the autonomous distributed system composed by sensors
and mobile user devices. To allow this, either the mobile
devices or the sensors should send an update on the current
situation to the base station when something changes in the
network. A few examples are: when a bundle of sensors is
allocated to a task created by a user, either the sensors in
the bundle or the mobile device of the owner of the task
should notify the central server of the new allocation; the
same thing should happen if either a sensor or a user is
out of communication range with the sensor network maybe
due to hardware failure or battery depletion. This approach
would generate more traffic in the sensor network which would
shorten its lifetime, but implementing this would allow for the
base station to collect relatively live data which could also
then be used for command and control, and subsequent replay
and analysis of the entire operation.

V. DISCUSSION AND CONCLUSION

The previous section considered the various architectural
options largely from a technical point-of-view. We can also
consider them in terms of their fit to coalition command
and control structures, and levels of command. In a mili-
tary context, for example, the centralized approach fits well
with a high-echelon command centre, where decisions are
made on the deployment or intelligence, surveillance, and
reconnaissance (ISR) assets across a whole coalition. Here,
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tasks are submitted in the form of “requests for information”
from local commanders on the field, and the ISR command
centre attempts to assign assets for the good of the coalition
operation as a whole. The command centre is typically staffed
by ISR experts who have knowledge of all appropriate means
to satisfy particular kinds of task. In our approach, much
of this knowledge is encoded in the KB bundle generator.
The aim here is not to replace human expertise, but to assist
commanders when the number of tasks and assets is large,
and demand (tasks) exceeds supply (assets) requiring trade-
offs to be made in terms of utility, and the allocation problem
therefore requires automated assistance.

In contrast, the fully distributed approach most obviously
resembles a case where a local commander has a number of
ISR assets in their vicinity, and aims to choose between these
to satisfy the task at hand. For example, this could be a platoon
commander with a small UAV or ground vehicle at their
disposal. However, the local commander does not usually have
knowledge of all the ways a particular task can be satisfied. In
this case, having the KB bundle generator available locally to
the commander offsets their lack of knowledge. The obvious
disadvantage of the distributed approach from a coalition
command and control point-of-view is its lack of a “big
picture” — an overview of assets and tasks — which is part
of our motivation for proposing the hybrid architecture.

We have evidence from our previous work [14] that a
distributed mechanism can handle sensor allocation among
heterogeneous tasks effectively. In that work, the association
between task types and utility models was hard-coded, rather
than being given by an extensible knowledge base. We are
currently conducting experiments to compare solution quality
between the fully centralized architecture and the fully dis-
tributed approach, using the lightweight implementation of the
KB bundle generator deployable on mobile devices.
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