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Abstract—Sensor networks introduce new resource allocation
problems in which sensors need to be assigned to the tasks
they best help. In the past, such problems have been studied
in simplified models in which utility from multiple sensors is
assumed to combine additively. In this paper we study more
complex utility models, focusing on two particular applications:
event detection and target localization. We develop distributed
algorithms to assign sensing resources of different types to
multiple simultaneous tasks that have different information
needs. We show that our schemes perform well using both exact
location information or fuzzy location information, which may be
desirable to save on computational overhead and/or for privacy
reasons.

I. INTRODUCTION

Mission-centric sensor networks present many research
challenges. One such challenge is how to best assign sensors
to missions, considering that there may be multiple missions,
of different priorities and information needs, running concur-
rently in the network, and sensors of multiple types available
to meet those needs.

A mission comprises a set of tasks, each of which requires
one or more sensors, possibly of different types. In addition,
there may be more than a single combination of sensor types
that will satisfy a task. We refer to a combination of sensors as
a sensor bundle. Likewise, the number of sensors required to
satisfy a task may vary depending on their deployment. Given
this multiplicity of task types and needs, our goal is to assign
specific sensors to the tasks in order to maximize the utility
of the sensor network.

Specifically, we consider event detection and target lo-
calization tasks. The detection tasks can be accommodated
using any type of sensor that detects activity; here we model
acoustic and imaging sensors. The localization tasks can be
accommodated using a pair of acoustic sensors. We propose
a distributed solution for assigning specific sensor instances.
This allows multiple entities to use the sensor network without
coordination, which is an important asset for operations that
include different allies in a coalition, for example.

We consider a case in which the exact location of the
sensors is known, and one in which only an approximation
of the location is disclosed (we term this fuzzy location).
Exact location assignment schemes lead to better solutions
and higher overall performance. In certain cases, however,
such schemes are not feasible, for two reasons. First, exact
location creates a larger problem instance in which each sensor

is considered on its own, which leads to a higher computation
time. This can be impractical due to the limited computational
capabilities of sensors. When fuzzy location is used, however,
nearby sensors can be clustered based on their fuzzy location,
thus coarsening the problem instance, and requiring the con-
sideration of fewer assignment choices. Second, exact location
may not be disclosed for privacy reasons. Consider a scenario
in which a coalition of entities deploy sensors in a field. The
various entities might like to share sensing resources but at the
same time be reluctant to reveal to one another too much or
too precise information about their assets. Different granularity
levels provide trade-offs between performance and privacy. By
accommodating fuzzy location, we enable coalition partners
to share resources without fully disclosing the details of their
respective deployments.

Our main contributions and findings are:
• We provide a formal definition of the abstract problem

of assigning bundles of sensor instances to tasks, as well
as specific problem definitions for event detection and
localization tasks. We show that both of these problems
are NP-hard.

• We propose two distributed schemes, one for the event
detection task, and one for the localization task when
exact sensor locations are disclosed. Through simulation
we show that they achieve close to optimal performance.

• We extend the schemes to cases in which only fuzzy
locations of sensors are used. This entails defining the
notion of fuzzy location with respect to detection and
localization. We show through simulation that, as the
granularity of fuzzy location is refined, performance
improves to a point after which the gain is insignificant.

The remainder of the paper is structured as follows. Section
II provides an overview of the problems. Section III formally
defines the problems. Section IV introduces our algorithms
for assigning sensors to tasks using exact and fuzzy location
information. Section V shows the performance evaluation
results, comparing the different schemes. Section VI discusses
related work. Finally, Section VII concludes the paper.

II. OVERVIEW

In this section we provide an overview of our network
model. Then we discuss the process to determine what sensor
or bundle of sensors are required by a task. Finally, we discuss
the different task types that can be present in the network.



A. Network Model

The network consists of static sensors of different types.
The deployed sensors are directional in nature. Examples of
such sensors include imaging sensors, which can be used for
event detection, and directional acoustic sensor arrays. Thus,
we assume that a sensor or a bundle of sensors can be assigned
to at most one task at a time. We also assume that sensors
know their location.

In our model, a task is specified by a geographic location
and a task type, for example, detecting events occurring at
location (x, y) or accurately localizing a target within a small
area known to contain the target’s estimated location. A larger-
scale mission, such as field coverage or perimeter monitoring,
can be divided into a set of tasks, each having its own location.
We assume a dynamic system in which tasks arrive and depart
over time. When a task arrives in the system, sensing resources
are assigned to it. Because tasks can vary in importance,
we allow a sensor to be reassigned from a task with lower
profit (which is used to represent importance) to a task with a
higher profit. However, since some tasks are more sensitive to
interruption in service, preemption should be limited to tasks
that can tolerate such interruption. For example, localization
is very sensitive to interruption whereas long-term detection
is less so.

B. Sensor Bundles

To determine the types of sensors needed and the way they
need to be bundled to satisfy the information needs of a task,
we use a two-step process. First, we use a Knowledge-Based
System (KBS), such as the one described in [1], to determine
the combinations of sensor types that may be used to satisfy
the task. We refer to these groupings as bundle types1 (BT).

A BT is a set of constraints defining the structure of a
bundle, including the types of sensor a bundle should contain,
and cardinalities. For example: exactly 2 acoustic sensors or at
least one acoustic sensor and one imaging sensor. To generate
these BTs, the KBS uses explicit representations of various
types of sensors and tasks, in the form of sensor and task
ontologies [2]. The KBS is given a set of tasks of known
types and a set of available sensor types; it uses a semantic
matchmaking process [3] to identify combinations of sensor
types that can meet the information requirements of each task
— these combinations of sensor types yield the BTs.

Given the output of the KBS, the goal of the second
step is to determine the best bundle-task assignment that
matches the bundle type description to maximize the benefit
of the sensor network. This is achieved by the sensor-task
assignment algorithms. For each (task type, bundle type) pair,
an appropriate computational model from the knowledge base
is used to choose the exact sensor instances required for each
sensor type within the bundle, and finally evaluate their joint
utility. The joint utility is based on the features of the sensor
instances deployed in the task’s proximity (such as distance

1In [1] they are called “package configurations”.

from the target or angle from a pre-specified axis). The sensor-
task assignment algorithms are the focus of this paper.

Note that we assign a single bundle to each task because a
bundle will satisfy all the information requirements of a task
by construction. Also, we ensure that each individual sensor is
included in at most one bundle since we assume that a sensor
can serve only one task at a time. Together, the two steps
gradually reduce the search space and thus the convergence
time for our sensor-task assignment process, by first restricting
assignments to sensors of appropriate types, and then making
assignment decisions with regard to individual sensors.

C. Task Types
There may be multiple types of tasks present in the net-

work simultaneously, with various characteristics. In many
scenarios, a task will require more than one sensor in order
to satisfy its requirements. For example, a larger number of
sensors given to a detection task will increase the detection
probability, but even a single sensor may provide some help.
For other tasks, such as localization, there may be a minimum
number of sensors required to obtain any benefit.

Some task types may only require that the assigned sensors
are close to the target. Others may require that the collection of
sensors form a specific polygon shape, such as in triangulation
or localization. The bundle type requirements of most tasks
can be modeled using specific characteristics that limit the
number of sensors considered by restricting our attention only
to those applicable to the given task. These characteristics are:
(1) type of data required, (2) distance from the target, and (3)
relative angles between sensors. Together the second and third
properties allow the creation of any polygon shape out of the
selected sensors to satisfy the requirements of complex tasks.

We consider below two types of tasks incorporating the
three requirements. The first task we consider is an event
detection task in which the goal is to detect activity in a
specific location. This task can be accomplished using one
or more sensors. Each sensor has a detection probability that
depends on its type and distance from the target. A collection
of sensors can be combined together to improve the detection
probability. Usually such tasks can use any sensor that can
detect activity, e.g. acoustic, imagery, seismic, etc.

The second task type we consider is a target localization
task. In this task, the goal is to accurately localize a target
within a small area in which it is expected to appear, perhaps
prompted by the detection of an event in this area or by
some prior knowledge. This type of task requires at least two
sensors. In the model of [4], two acoustic sensors perform
optimally if they are separated by a 90◦ angle and as close to
the target as possible. An interesting property of this task type
is that assignment quality depends not only on sensor type and
separating distance but also on the angle between the selected
sensors. For a more accurate localization, more sensors can be
used with different separating angles.

III. PROBLEM DEFINITION

In this section, we formulate a generic Bundle-Task As-
signment Problem, and then two special cases of it, all of



which involve attempts to assign sensor bundles to tasks in the
“best” possible way. For simplicity, we consider the state of the
network at an instance of time in which multiple simultaneous
tasks can be ongoing.

A. Abstract Problem

The Bundle-Task Assignment Problem can be modeled as
a tripartite graph whose vertices consist of a set of sensors
S = {S1, . . . , Sn}, a set of tasks T = {T1, . . . , Tm} and a set
of bundles B = {B1, . . . , Bl}.

For each task, we are given a set of sensor bundles, each of
which would at least minimally satisfy the task. Each possible
assignment of a bundle k to a task j is associated with a profit
value pj that the task will thereby achieve, which is based on
the task’s inherent importance, and the amount of utility ekj it
receives. The goal is to maximize the sum of the utilities for
the tasks (weighted by their profits), subject to the constraint
that no sensor or task is used more than once. This problem
is essentially the NP-hard SET PACKING problem [5], and it
can formulated as an integer program (IP) as follows:

max:
∑
kj pjekj · ykj

s.t.:
∑
k ykj ≤ 1, for all j,∑
kj Iikykj ≤ 1, for all i

ykj ∈ {0, 1} for all j, k

We now explain the IP. The decision variables ykj indicate
whether bundle k was assigned to task j. The first set of
constraints prevents more than one bundle from being assigned
to any one task. Matrix I specifies the membership relationship
between sensors and bundles. The second set of constraints
prevents any sensor from being used more than once, in
multiple chosen bundles.

For small instances, optimal solutions can be obtained by
solving this IP. As a generalization of the Semi-Matching with
Demands (SMD) [6], however, the problem is NP-hard, even to
approximate. Larger problem instances of the generic problem
may be solved by heuristics.

Our main interest here, however, is in two particular special
cases of the abstract problem, involving event detection and
target localization. If we know in advance that all the tasks
considered in the problem instance are going to be of only
a single type, then we can use this information to refine the
formulation of the problem. This helps us to develop more
specific solutions as we describe in Section IV, although these
special cases remain NP-hard. We discuss these problems
formally in the subsections that follow.

B. Event Detection Tasks

In [7], a complicated model of sensor assignment is given,
with an objective function based on the probability of detecting
certain kinds of events, conditioned on the events occurring
and the number of sensors assigned to detect the event in
a given location. We extract the kernel of this problem as
follows. Given are collections of sensors and tasks. Each task
is to monitor and detect events, if they occur, in a certain
location. The utility of a sensor to a task is the probability

that it will successfully detect the event if it occurs. Let Si →
Tj indicate that sensor i is assigned to task j. The objective
function is then to maximize the sum of cumulative detection
probabilities for tasks (weighted by task profits), given the
probability eij that a single sensor Si detects an event for Tj :∑

j

pj(1−
∏

Si→Tj

(1− eij)) (1)

We call this the Cumulative Detection Probability maxi-
mization problem (MAXCDP). Here the utilities are mono-
tonic (each sensor potentially raises the detection probability
further) but nonlinear. Implicitly, this model treats the OR
of the n individual detection events as a positive detection;
alternatively, these events could be ANDed together, or more
generally we could require q of n detection events be positive
for detection. We find that already the OR-based problem,
MAXCDP, is NP-hard (see [8]).
C. Target Localization Tasks

For target localization through triangulation of the bearing
measurements, two or more sensors that are not collinear
with the target are necessary to ensure full observability
of the target’s location. The expected mean squared error
when incorporating imperfect bearing measurements is well
understood [9], [10]. Specifically, it can be shown that when
the bearing measurements are modeled as the true bearings
embedded in additive white Gaussian noise (AWGN) of mean
zero and variance σ2, then the error covariance of the (x, y)
location of the target is approximately:

R =

[
n∑
i=1

1
σ2d2

i

(
cos2 θi − cos θi sin θi

− cos θi sin θi sin2 θi

)]−1

where di and θi are the distance and bearing, respectively,
from the target event to the i-th sensor. We choose to model
the uncertainty U as a function of the expected mean squared
error (MSE), which is simply U = trace{R}. Alternatively,
the uncertainty could be U = det{R} as described in [4]. We
prefer the trace because of its physical interpretation as the
MSE and because it bounds the determinant.

In this paper we consider the case in which only two sensors
are used for localization, which in most cases provide enough
accuracy. For the case of two sensors, the uncertainty is given
by:

U = σ

√
d2
1 + d2

2

| sin(θ1 − θ2)|
(2)

Note that σ is simply a scaling constant that without loss of
generality we ignore by setting it to a value of one.

For this definition of U , the quality will be maximized when
θ is 90◦ and the distances are as small as possible. Overall,
the problem of determining the best pair of sensors is NP-hard
(see [8]).

IV. DISTRIBUTED ASSIGNMENT ALGORITHMS

In this section we introduce our algorithms for assigning
sensors to tasks. We discuss how to solve the detection and
localization problems when the exact sensor locations are
known and when only fuzzy locations are known.



A. Exact Location Algorithms
In this subsection we propose algorithms to solve the sensor-

task assignment problems, for detection and localization, when
the exact locations of sensors are known.

Event Detection Tasks
In order to conserve energy we limit the number of sensors
that can be assigned to a task to N , which is an application
parameter. A higher value of N may yield a higher cumulative
detection probability for an individual task. Between tasks,
however, there will also be greater contention for sensors.

Due to the competition that can occur between tasks we
propose a scheme that runs in rounds to allow sensors to
be assigned to their best match. When a task arrives to the
network, the task leader (which is a node close the to location
of the task) announces the presence of the task and its profit
to nearby sensors. The announcement message is propagated
to ensure that all tasks that are within twice the sensing range
receive it. Since these tasks compete for the same sensors with
the arriving task their leaders need to participate in the process.

In the first round, each leader informs the nearby sensors
of the details of its task (location and profit). A sensor, which
may hear announcement messages from one or more tasks,
proposes to its current best match. This is the task for which
it provides the highest detection probability weighted by the
profit. More formally, Si proposes to task Tj that maximizes
eijpj . From the set of proposing sensors, each task leader
selects the sensor with the maximum detection probability and
updates its current cumulative detection probability.

In the next round, each leader sends out an update on the
status of its task’s CDP after taking into account the currently
assigned sensors. Sensors that were not selected in the first
round recalculate e′ij , the amount by which they can increase
the current CDP of the different remaining tasks (shown in
the step before last in Algorithm 1). Again each unassigned
sensor proposes to its best fit. This process continues for R
rounds until all tasks have N assigned sensors or there are
no more sensors available. R is an application parameter and
should be set to be equal to at least N to give tasks a chance
to assign enough sensors. Algorithm 1 summarizes the steps
followed. Note that all the competing leaders will go through
the steps shown for the task leader.

Target Localization Tasks
We propose a simple distributed solution to the exact location
localization problem. The goal in the localization task is to
minimize the achieved uncertainty of the assigned sensor pair.
Because localization tasks are sensitive to preemption, only
nearby sensors that are not assigned to any other localization
task propose to the leader with their exact location. If a sensor
is assigned to a task that is less sensitive to preemption, such as
detection in our case, it will also propose to the task. Among
the proposing sensors, the leader chooses the pair of sensors
that provides the lowest uncertainty according to Eq. 2.

A task’s number of neighboring sensors (of the needed type)
will typically be limited and so considering all sensor pairs
should be feasible. If there are many proposing sensors, the

Algorithm 1 Exact location algorithm for event detection
initialize each e′

ij = eij , the detection probability of Si for Ti

initialize each task cumulative detection probability uj ← 0
initialize number of assigned sensors to Tj , nj ← 0

For Task Leader (Tj):
advertise presence of Tj to each neighboring sensor Si
for round = 0 to R do

if nj ≤ N then
among responding sensors G, choose
i← arg maxi{e′ij : Si ∈ G}

update uj ← uj + e′ij
send accept messages and advertise new uj

else done

For Sensor (Si):
wait for task requests
among requesting tasks Q, choose
j ← arg maxj{e′ijpj : Tj ∈ Q}

send proposal to Tj including exact location
if accepted then Si is assigned to Tj ; done
else

listen to current uj values for requesting tasks;
if no more tasks then done
update detection probability based on new uj’s:
e′ij ← 1− (1− uj)(1− eij)− uj

repeat

leader can set a distance threshold and ignore any sensors
beyond this point. After making the assignment decision, the
leader sends messages to the selected sensors. If they were
previously assigned to other tasks, the leaders of those tasks
are informed that they should search for replacements. Table
2 shows the steps taken by the task leader and nearby sensors.

B. Fuzzy Location Algorithms

In the previous subsection we proposed algorithms to assign
sensors to tasks based on their exact locations. However, in
some situations these schemes might not be feasible, either
due to computational cost or due to privacy concerns. In this
section, we propose algorithms to assign sensors based only
on their fuzzy locations. Instead of having the assignment
algorithms to consider each sensor on its own, fuzzy location
allows sensors to be classified into classes bases on their fuzzy
location. We consider the distance and angle requirements
introduced in Section II-C to make the assignment based on
different granularities.

Event Detection - Fuzzy Distance
In event detection, the probability that a sensor detects an event
depends heavily on the distance between them. So, here we
define fuzzy distance based on different distance granularities
as a measure of a sensor’s location. Clearly, only sensors that
are within the sensing range from the task’s location should be
considered. This area can be represented as a circle with radius
Rs centered at the task location. If no distance granularity



Algorithm 2 Exact location algorithm for target localization
For Task Leader (Tj):

advertise presence of Tj
receive sensor proposals
among responding sensors G

choose (i, k)← arg mini,k{(
√
d21+d

2
2

| sin θ| ) : (Si, Sk) ∈ G2}
send accept messages

For Sensor (Si):
receive task request
if (Si not assigned to localization task) then

send proposal to Tj including the exact location
else ignore request
if accepted then Si is assigned to Tj ; done

(DG) is specified (DG = 0) then all sensors within this circle
are considered equal (i.e. in the same class). A solution based
on DG = 0 will provide almost no guarantee on the solution
quality. When DG is increased to 1, the distance from the
target to the edge of the circle is divided to create two rings
or annuli of equal areas. This partitions the sensors into two
classes. In Fig. 1(a) we see an example of fuzzy distance based
on DG = 1. A sensor of class 1 will provide higher detection
probability than a sensor of class 2. DG = 2 divides the circle
into three rings of equal sizes and, so on.

The algorithm used for detection is similar to Algorithm 1
above, with the change that sensors report back their classes
rather than their exact detection probability. After the task
leader sends out the task announcement message, nearby
sensors hear the message and classify themselves into different
classes based on the distance granularity specified in the
leader’s message. If a sensor is currently assigned to another
task, it can decide, based on the rules discussed above, to offer
itself to the new task. After that, it replies back to the leader
with its class. The leader then chooses the best sensors for its
task which in this case are the ones that lie within the closest
rings. The detection probability of a sensor is determined
based on the expected distance from a point in the ring in
which the sensor lies to the center of the circle.

This process not only provides privacy but also reduces the
computation time required to choose the assignments. The
leader needs to consider only DG + 1 classes of sensors,
instead of individual ones. Clearly, the higher the value of
DG is, the better the selection becomes, which leads to a
higher cumulative detection probability. The tradeoff is that
this also leads to having more sensor classes and requires
providing more precise location information that may com-
promise privacy. The decision on the level of fineness in the
granularity is a system parameter which we study below. We
find in our experiments that although an increase in fineness
leads to better detection probability, the difference between
two granularity levels becomes negligible at some point.

We note that even if the exact distance from the sensor to
the target is known, that task leader cannot accurately locate
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the sensor since it can be anywhere around a circle. Therefore,
fuzzy distance is less susceptible to divulging the location of
a sensor compared to the angle, which we consider next.

Target Localization - Fuzzy Angle
To accurately localize a target, the task leader should not only
pick sensors that are close to the target but also sensors that
have a separating degree that is as close as possible to 90◦.
This suggests another form of fuzzy location which is based on
the angle from which the sensors view the target. The angle
of a sensor can be measured from the y-axis that passes at
the estimated target position. For two sensors, the separating
angle (θ) can then be determined by calculating the absolute
difference between their respective sensor angles.

To use fuzzy location, a sensor needs to determine its fuzzy
angle. This is done based on the angle granularity (AG),
which is indicated by the sector angle (given a circle centered
at the estimated target location with radius Rs). For example,
when AG = 360◦, all sensors within circle are placed in
the same class regardless of angle. If AG = 90◦, then the
circle is partitioned into four quadrants, each of whose sensors
are placed in the same class. When a sensor hears a task
advertisement message, it determines its actual angle which
then determines in which sector it lies. Note that since we
only need to calculate | sin θ| and not use the angle itself to
determine the uncertainty of a sensor pair, sensors in opposite
sectors are considered to be in the same class. Fig. 1(b) shows
a circle divided into eight 45◦ sectors, i.e. AG = 45◦.

The algorithm used for localization in this case is similar to
Algorithm 2 above. The difference is the proposal that a sensor
sends to the leader now contains the sensor’s sector informa-
tion rather than its location. The leader runs the algorithms on
all sensor classes (using the expected distance and expected
angle for each) to determine the best pair of classes using
Eq. 2. From each class a sensor is chosen arbitrarily. Note
that with finer granularities, some sectors might be empty and
hence their respective classes need not be considered.

Since the target localization uncertainty model that we use
depends on both the angle that separates the two sensors
and the distance, the fuzzy location comprises both the fuzzy
distance and fuzzy angle. After dividing the circle into sectors,
we divide it into rings based on the distance granularity. Fig.
1(c) shows an example of such a division.

The number of sensor classes in this case is a function
of both DG and AG. Assuming for simplicity that in each
increment of granularity we divide AG by two, then the
number of classes becomes (DG + 1)(180/AG). Note the



special case when AG = 360◦ in which we will have
one class. Also, note that AG = 180◦ is not used in our
experiments as sensors from the two sectors will be equivalent.
As with fuzzy distance, finer location granularity leads to more
sensor classes and hence higher computational overhead. Also,
with finer granularity the task leader gains more information
about a sensor’s location, which decreases privacy.

V. PERFORMANCE EVALUATION

In this section we discuss the result of the experiments used
to evaluate our algorithms. We implemented a simulator in
Java and tested our algorithms on randomly generated problem
instances. We compare the results achieved by both the exact
and fuzzy location algorithms. We also study the effects of
changing the maximum number of sensors that can be assigned
to a detection task on the detection quality.

A. Simulation Setup

There are two types of deployed sensors: directional acous-
tic sensors and imaging sensors. We also have tasks of two
types: detection and localization. The localization task can
only utilize acoustic sensors, which must be assigned in pairs.
Detection tasks can utilize both sensor types but to varying
effect.The sensors need not be positioned to provide precise
triangulation of the target. On the other hand, localization
requires the sensors to be positioned so that the triangulation
error for the target location is within given bounds as dictated
by the utility function. The uncertainty of target location of a
pair of sensors to a task is found using Eq. 2.

The detection probability with sensor Si assigned to task
Tj is defined as follows:

eij = exp
(

log(PFA)
(
1 +

SNR1

D2
ij

)−1
)

(3)

where Dij is the distance between the sensor and the task
location, PFA is the false alarm probability (a user-chosen
parameter), and SNR1 is the normalized signal-to-noise ratio
at a distance of one meter from the source signal. This
expression results from analyzing a fluctuating source model
embedded in AWGN when the square law detector is em-
ployed [11]. For computational and analytic convenience, we
simply approximate eij as zero when Dij exceeds an effective
sensing range of the sensor Rs = 40m. SNR1 was set to
60dB for acoustic sensors and to 66dB for imaging sensors.
(Imaging sensors are assumed to have higher SNR due to
their higher fidelity and zooming capabilities.) For both types,
we set PFA = 0.001. These functions are only used for testing
in our experiments and are not properties of our schemes; they
are not meant to model the exact behavior of these two types
of sensors. In our experiments, 30% of the sensors are imaging
and 70% acoustic.

Our goal is to maximize the achieved profits from all
available tasks, i.e. max

∑
j pjuj where uj the the utility

received by task Tj and pj is its profit. The utility achieved
by a detection task is the cumulative detection probability
(CDP), which is naturally in [0,1]. The utility that a pair

of acoustic sensors provide to a localization task depends
on the uncertainty level (Eq. 2). We normalize this value to
[0,1] by treating acceptable uncertainty value (an application-
specific parameter) as full utility. In our experiments we set
this value to 16, which represents an error area of 4m in width.
Any selected pair with uncertainty under 16 has 100% utility.
Higher uncertainty means less utility; for example, uncertainty
of 64 indicates 25% utility.

We deploy 1000 nodes in uniformly random locations in a
400m × 400m field. The communication range of sensors is
set to 40m. Tasks are created in uniformly random locations in
the field. Localization tasks profits vary uniformly in [0.1,1];
detection task profits vary uniformly in [0,0.1], on average,
an order of magnitude lower. We assume that these profits
are awarded per unit of time for which a task is active. The
maximum possible profit in time step is the sum of profits of
all active tasks at that time step.

Task lifetimes are uniformly distributed. Detection tasks, by
their nature, last much longer than localization tasks, which
are discrete computations typically prompted by particular
detected events. Localization task lifetimes vary uniformly
between 5 and 30 minutes, whereas detection task lifetimes
vary uniformly between 1 and 5 hours. Tasks arrive based
on a Poisson process, with an average arrival rate of 10
tasks/hour. Mirroring the sensor distribution, 30% of tasks are
for localization and 70% are for detection.

To test our algorithms, we compare their performance with
an upper bound on the optimal solution quality. For each
currently active task separately, we find optimal achievable
profit for it, assuming there are no other tasks in the network,
i.e. no competition. The sum of these values provides a (loose)
upper bound.

In our experiments, we show the average performance of the
network for a period of 50 hours; we take the measurements
at steady state after running the algorithms for 10 hours. Each
point in the graph represents the average achieved profit per
unit of time as a fraction of the maximum possible profit. The
results are averaged over 20 runs.

B. Simulation Results

In Fig. 2, we observe the average performance of the
detection tasks. We limit the number of sensors that a task
can have to 5 (i.e. N = 5). For Algorithm 1 we set the
number of rounds R = N . We compare the results achieved
by the exact location and fuzzy location schemes. The optimal
upper bound is included for comparison. We vary the distance
granularity (DG) from 0 to 7 and observe its effect on the
fuzzy location performance. The achieved profits increase
rapidly as DG increases, but once it reaches 4 there is little
further increase. This suggests that the benefit gained from the
increased granularity may not justify the loss in privacy and
the increase in the computation cost. By the time DG reaches
7, the fuzzy location scheme performance is within less than
1% of the exact location scheme, which itself is near-optimal.

Fig. 3 shows corresponding results for the localization tasks.
We vary both DG and the angle granularity (AG). When AG
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Fig. 2. Detection Performance
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Fig. 3. Localization Performance

0 1 2 3 4 5 6 7
Distance Granularity

0.5

0.6

0.7

0.8

0.9

Pr
ofi

ts
 (f

rc
at

io
n 

of
 m

ax
)

Bound on Optimal
Exact Location
Fuzzy - AG = 22.5
Fuzzy - AG = 45
Fuzzy - AG = 90
Fuzzy - AG = 360o

o
o

o

Fig. 4. Overall Performance
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Fig. 5. Effect of Varying N
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Fig. 7. Privacy

= 360◦, i.e. when all sensors within range are placed in the
same class regardless of angle, the performance is lowest, as
expected. Achieved profits increase with AG but this increase
becomes negligible (less than 1%) when we make AG finer
than 22.5◦. We note that the performance of the exact location
scheme within 6% of the optimal bound which is worse than
the case of detection. This is mainly due to contention between
tasks for the same sensing resources; localization is more
sensitive to which sensors are selected compared to detection
as it is affected by both the distance and the angle. If the
optimal sensors for a task are already assigned to another
localization task they will not be available and hence the task
will select less than optimal ones. Combining the results of
both schemes (Fig. 4), we find that the total network profits
are affected by both previous results.

In Fig. 5, the performance of the detection algorithms is
measured (in a similar setup) as N increases from 1 to 10.
Note that a higher value of N means that more sensors can
be assigned to each detection task, which will increase the
cumulative detection probability. As expected, the profits of
the detection tasks increase as N increases. The behavior is
similar for the exact solution and the upper bound on the
optimal solution. The increase is rapid in the beginning but
slows down due to the submodular nature of our cumulative
detection function.

C. Analysis of Computational Overhead and Privacy

To analyze the computational overhead we plot (in Fig.
6) the number of sensor classes as the granularity of angle
and distance becomes finer. As expected, when we increase
the granularity the number of classes increases as well. The
tradeoff between performance and efficiency depends on the
number of the nodes that are within the sensing range of the

task’s location. In our experiments there are on average 31
sensors in that range. For a localization task, if we were to
use DG = 3 and a AG = 22.5◦, we will end up with 32
classes which is greater than the expected number of sensors
surrounding the task. For lower granularities, however, fuzzy
location can lead to savings in computational cost. Also, in
many cases the generated classes will have no sensors in
them (due to their small size) which will make the number of
classes to be considered be smaller than the number of possible
classes. Note that for tasks that only depends on distance,
such as detection, the savings in computational overhead is
significant.

Fig. 7 shows a privacy metric for the different fuzzy location
granularities. Let Ns be the number of nodes that are within
sensing range from the task’s location. We use the fraction of
Ns which lies in a sector to determine the level of privacy
a certain fuzzy granularity can provide. For example, if this
fraction is equal to 1 then a proposing sensor could be anyone
of the Ns sensors which provides the highest anonymity. If
this fraction is 1/Ns the task leader can be almost certain
of the identity of the proposing sensor since there are no
other sensors in that sector. We see that although the privacy
level stays relatively high when only distance granularity is
increased, it decreases rapidly as we start dividing the circle
surrounding the task location into more sectors. Note that the
level of privacy is also affected by the density of the network.
The more sensors are deployed the higher the value of NS
and hence the better the privacy.

VI. RELATED WORK

In the past sensor-task assignment problems in wireless sen-
sor networks have been studied mainly using simplified models
in which utility from multiple sensors is assumed to combine



additively [6], [12], [13]. [12] uses distributed approaches
assign individual sensors to tasks, assuming additive utility and
no competition for the same sensing resources between tasks.
A problem variant motivated by frugality and conservation of
resources is addressed in [13]. In this paper, we consider more
complex models to evaluate the utility of a bundle of sensors,
and show how such problems can be solved, even based on
inexact sensor location information.

Directional sensors with tunable orientations have recently
be addressed for coverage [14] and target tracking [15] prob-
lems separately. For non-directional sensors, both [16] and [17]
propose algorithms to provide a certain level of (cumulative)
detection probability over an area using. Target localization
problems have also been previously considered, e.g. in [18],
which develops a solution using a prior distribution of target
location and exact sensor locations. Their solution, however, is
centralized. A distributed solution for the localization problem
is proposed in [19], but it does not consider competition on
resources between multiple simultaneous tasks.

Our problem is analogous to the well known Multi-Robot
Task Allocation (MRTA) problem described in [20]. A sensor
can be seen as a resource-constrained robot as suggested in
[21], specifically the problem ST-MR-IA of [20], i.e. Single-
Task robots (ST) performing Multi-Robot tasks (MR) using
Instantaneous Assignment (IA). The MRTA taxonomy solu-
tions, however, do not scale well to large numbers of sensors
and tasks.

To our knowledge, we are the first to introduce the concept
of fuzzy sensor location for sensor-task assignment problems.
Related works in this area include [22], which addresses the
issue of privacy when fusing data coming from sensors that
are assigned to multiple event detection tasks, and [23], which
describes a data dissemination technique to ensure that the
locations of sensors in the network are not learned by an
enemy.

VII. CONCLUSION AND FUTURE WORK

Although in this paper we limited sensors to performing one
task at a time, this limitation is not applicable to all domains.
For some sensing data types, e.g. ambient temperature, a
sensor may be able to serve many tasks at once. In a sensor
network, there may, in fact, be sensors of both types. In
this paper, however, we focused on the restricted type of
sensor such as directional sensors since it is the more difficult
problem. In future work, we will consider settings in which
sensors of both types are present.

In terms of location privacy, we note that with repeated
requests by tasks in the surrounding area of a sensor, an entity
can gain more precise information about the sensor’s location.
This can be learned by considering the intersections of the
circles with radius Rs around each task’s location. We intend
to study such issues in the future.
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