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Abstract— When a sensor network is deployed in the field it
is typically required to support multiple simultaneous missions,
which may start and finish at different times. Schemes that match
sensor resources to mission demands thus become necessary.
In this paper, we consider new sensor-assignment problems
motivated by frugality, i.e., the conservation of resources, for both
static and dynamic settings. In general, the problems we study
are NP-hard even to approximate, and so we focus on heuristic
algorithms that perform well in practice. In the static setting, we
propose a greedy centralized solution and a more sophisticated
solution that uses the Generalized Assignment Problem model
and can be implemented in a distributed fashion. In the dynamic
setting, we give heuristic algorithms in which available sensors
propose to nearby missions as they arrive. We find that the overall
performance can be significantly improved if available sensors
sometimes refuse to offer utility to missions they could help based
on the value of the mission, the sensor’s remaining energy, and
(if known) the remaining target lifetime of the network. Finally,
we evaluate our solutions through simulations.

I. INTRODUCTION

A sensor network deployed for monitoring applications
may be tasked with achieving multiple, possibly conflicting,
missions. Although certain types of sensors, such as seismic
sensors, can receive data from their surroundings as a whole,
other sensor types, such as cameras, are directional. In these
cases, the direction of each sensor, and thus the mission it
serves, must be chosen appropriately.

A given sensor may offer different missions varying
amounts of information (because of geometry, obstructions,
or utility requirements), or none at all. Missions, on the other
hand, may vary in importance (or profit), amount of resources
they require (or demand), and duration. In some but not all
applications, it may be preferable to do one thing well than
to do many things badly, that is, to fully satisfy one mission
rather than give a small amount of utility to several. Given
all currently available information, the network should choose
the “best” assignment of the available sensors to the missions.

In this paper, we examine new sensor-assignment problems
motivated by frugality, i.e., the conservation of resources.
We consider two broad classes of environments: static and
dynamic. The static setting is motivated by situations in which
different users are granted control over the sensor network at
different times. During each time period, the current user may
have many simultaneous missions. While the current user will
want to satisfy as many of these as possible, sensing resources
may be limited and expensive, both in terms of equipment and
operational cost. In some environments, replacing batteries

may be difficult, expensive, or dangerous. Furthermore, a
sensor operating in active mode (i.e., assigned to a mission)
may be more visible than a dormant sensor, and so in greater
danger of being destroyed. Therefore, we give each mission in
the static problem a budget so that no single user may overtax
the network and deprive future users of resources. This budget
serves as a constraint in terms of the amount of resources that
can be allocated to a mission regardless of profit.

Our second environment is a dynamic setting in which mis-
sions may start at different times and have different durations.
In these cases explicit budgets may be too restrictive because
we must react to new missions given our current operating
environment, i.e. the condition of the sensors will change over
time. Instead, we use battery lifetime as a metric to capture
network lifetime and evaluate a trade-off between cost in terms
of network lifetime versus mission profit before assignment.

In the dynamic setting we consider two cases. First, we
assume no advanced knowledge of the target network lifetime,
i.e. we do not know for how long the network will be required
to operate. We call this the general dynamic setting. Second,
we consider the case in which we have knowledge of the
target network lifetime, i.e. the network is needed for a finite
duration. We call this the dynamic setting with a time horizon.
By using a trade-off of lifetime versus profit instead of a hard
budget, we can use the knowledge of remaining energy of the
sensors and the target network lifetime, if known, to adjust
the aggressiveness with which sensors accept new missions.

We consider several sensor-assignment problems, in both
budget-constrained static settings and energy-constrained dy-
namic settings. In the static setting, we give an an efficient
greedy algorithm and a multi-round proposal algorithm whose
subroutine solves a Generalized Assignment Problem (GAP).
In the dynamic setting, we develop distributed schemes that
adjust sensors’ eagerness to participate in new missions based
on their current operational status and the target network
lifetime, if known. We find in the static setting that in dense
networks both algorithms perform well, with the GAP-based
algorithm slightly outperforming the greedy. In the dynamic
setting, we find that knowledge of energy level and network
lifetime is an important advantage: the algorithm given both
of these significantly outperforms the algorithm using only the
energy level and the algorithm that uses neither. When both
the energy and target lifetime are used we can achieve profits
17% - 22% higher than if only energy is used.



II. RELATED WORK

Assignment problems have received sizable attention, in
both experimental and theoretical communities. In wireless
sensor networks, there has been some work in defining frame-
works for single and multiple mission assignment problems.
For example, [2] defines a framework for modeling the as-
signment problem by using the notions of utility and cost.
The goal is to find a solution that maximizes the utility while
staying under a predefined budget. In [7], a market-based
modeling approach is used, with sensors providing information
or “goods”. The goal is to maximize the amount of goods
delivered without exceeding the sensor’s budget.

The authors of [6], [8], [10], for example, solve the coverage
problem, which is related to the assignment problem. They
try to use the fewest number of sensors in order to conserve
energy. The techniques used range from dividing nodes' in
the network into a number of sets and rotating through them,
activating one set at a time [8], to using Voronoi diagram
properties to ensure that the area of a node’s region is as close
to its sensing area as possible [10]. Sensor selection schemes
have also been proposed to efficiently locate and track targets.
For example, [12] uses the concept of information gain to
select the most informative sensor to track a target. In [4],
the author attempts target localization using acoustic sensors.
The goal is to minimize the mean squared error of the target
location as perceived by the active nodes.

The Generalized Assignment Problem (GAP) [3] is a gen-
eralization of the Multiple Knapsack Problem in which the
weight and value of an item may vary depending on the bin in
which it is placed. There is a classical FPTAS [11] for the core
knapsack problem which performs a dynamic programming
procedure on a discretization of the problem input. If, for
example, the knapsack budget value is not too large, then
the DP can find the optimal solution in polynomial time. A
stricter version of the static sensor-assignment problem was
formalized as Semi-Matching with Demands (SMD) in [1],
[9]. In that formulation, profits are awarded only if a certain
utility threshold is met, but no budgets are considered. The
static problem we study here is a common generalization of
these two previous problems, incorporating both budgets and
a profit threshold.

III. SENSOR-MISSION ASSIGNMENT PROBLEMS

With multiple sensors and multiple missions, sensors should
be assigned in the “best” way. This goal is shared by all the
problem settings we consider. There are a number of attributes,
however, that characterize the nature and difficulty of the
problem. In this section, we briefly enumerate the choices
available in defining a particular sensor-mission assignment
problem. In all settings we assume that a sensor can be
assigned to one mission only, motivated e.g. by directional
sensors such as cameras.

'We use the terms node and sensor interchangeably.

A. Static Setting

First consider the static setting. Given is a set of sensors
S1,...,5, and a set of missions My, ..., M,,. Each mission
is associated with a utility demand d,;, indicating the amount
of sensing resources needed, and a profit p;, indicating the
importance of the mission. Each sensor-mission pair is as-
sociated with a utility value e;; that mission j will receive
if sensor 7 is assigned to it. This can be a measure of the
quality of information that a sensor can provide to a particular
mission. To simplify the problem we assume that the utility
amounts received by a mission (u;) are additive. While this
may be realistic in some settings, in others it is not; we make
this simplifying assumption. Finally, a budgetary restriction
is given in some form, either constraining the entire problem
solution or constraining individual missions as follows: each
mission has a budget b;, and each potential sensor assignment
has cost c;;. All the aforementioned values are positive reals,
except for costs and utility, which could be zero. The most
general problem is defined by the mathematical program (MP)
P shown in Table I.

A sensor can be assigned (z;; = 1) at most once. Profits are
received per mission, based on its satisfaction level (y;). Note
that y,; corresponds to u;/d; within the range [0,1] where
u; = Y., xje;;. With strict profits, a mission receives
exactly profit p; iff u; > d;. With fractional profits, a mission
receives a fraction of p; proportional to its satisfaction level
y; and at most p;. More generally, profits can be awarded
fractionally, but only if a fractional satisfaction threshold 7T’ is
met, i.e.:

Dy, if U, Z dj
pj(uj) = § pj-uj/dj, if T <u;/d;
0, otherwise

When T' = 1, program P is an integer program; when T' =
0, it is a mixed integer program with the decision variables
x;; still integral. The edge values e;; may be arbitrary non-
negative values or may have additional structure. If sensors
and missions lie in a metric space, such as line or plain, then
edge values may be based in some way on the distance D;;
between sensor ¢ and mission j. In the binary sensing model,
e;; is equal to 1 if distance D;; is at most the sensing range,
r, and O otherwise. In another geometric setting, e;; may vary
smoothly based on distance, such as 1/(1 + D,;).

Similarly, the cost values c¢;; could be arbitrary or could
exhibit some structure: the cost could depend on the sensor
involved, or could e.g. correlate directly with distance D;;
to represent the difficulty of moving a sensor to a certain
position. It could also be unit, in which case the budget would
simply constrain the number of sensors. Even if profits are
unit, demands are integers, edge values are (/1 (though not
necessarily depending on distance), and budgets are infinite,
this problem is NP-hard and as hard to approximate as
Maximum Independent Set [1]. If we also add the restriction
that sensors and missions lie in the plane and that 0/1 edge
utility depends on distance (i.e., the edges form a bipartite
unit-disk graph), the problem remains NP-hard [1].



max: 3001 pi(y5)
st: Yo" wijei; > djy;, for each Mj,
E?:l TijCij S bj, for each Mj,
Z;":l xi; < 1, for each S,
Tij € {O, 1} VLE” and
y; € [0,1] Vy;
TABLE T
MP P for static setting

B. Dynamic Setting

In the dynamic setting we have options similar to the above
except that now missions do not have explicit budgets and
sensor assignments do not have explicit costs. What constraints
the assignment problem is the limited energy that sensors have.
We also have an additional time dimension. In this setting,
each sensor has a battery size B, which means that it may
only be used for at most B timeslots over the entire time
horizon. Also, missions may arrive at any point in time and
may last for any duration.

If a sensor network is deployed with no predetermined target
lifetime, then the goal may be to maximize the profit achieved
by each sensor during its own lifetime. However, if there is
a finite target lifetime for the network, the goal becomes to
earn the maximum total profits over the entire time horizon.
We assume that the profit for a mission that lasts for multiple
timeslots is the sum of the profits earned over all timeslots
during the mission’s lifetime. The danger of any particular
sensor assignment is then that the sensor in question might
somehow be better used at a later time. Therefore the challenge
is to find a solution that competes with an algorithm that knows
the characteristics of all future missions before they arrive.
The general dynamic problem is specified by the mathematical
program (MP) P’ shown in Table II.

If preemption is allowed, i.e. a new mission is allowed to
preempt an ongoing mission and grab some of its sensors,
then in each timeslot we are free to reassign currently used
sensors to other missions based on the arrival of new missions
without reassignment costs. In this case, a long mission can
be thought of as a series of unit-time missions, and so the
sensors and missions at each timeslot form an instance of the
NP-hard static (offline) problem. If preemption is forbidden,
then the situation for the online algorithm is in a way sim-
plified. If we assume without loss of generality that no two
missions will arrive at exactly the same time, then the online
algorithm can focus on one mission at a time. Nonetheless,
the dynamic problem remains as hard as the static problem,
since a reduction can be given in which the static missions are
identified with dynamic missions of unit length, each starting
e after the previous one. In fact, we can give a stronger result,
covering settings both with and without preemption.

Proposition 1: There is no constant-competitive algorithm
for the online dynamic problem, even assuming that all
missions are unit-length and non-overlapping.

Proof: First consider the problem with B = 1, i.e.
sensors with a battery lifetime of one timeslot. Suppose at
time 1, there is M; with p; = € requiring S7 (i.e. otherwise
unsatisfiable); we must choose the assignment because there

2t Z;n:l 3 (Yst)
st Yo ijeesj > dyyje, for each M and ¢,
>y Tije < 1, for each S; and time ¢,
> Z;’;l Zi;¢ < B, for each Sj,
Tijt € {O, 1} Va:ijt and
y;t € [0,1] Vy;e

TABLE IT

MP P’ for dynamic setting

may be no further missions, yet at time 2 there may be a M,
with profit po = 1. This yields the negative result for B = 1.
Next suppose B = 2. Then consider the following example:
at time 1, M; with p; = € requires S1, so we must assign
because there may be no future missions; at time 2, Mo with
pe = exp(e) requires Sy, so we must assign for the same
reason; at time 3, M3 with po = exp(exp(e)) requires S, but
it is now empty, and the algorithm fails. This construction can
be extended to arbitrary B. [ ]

As a generalization of the static problem, the offline version
of dynamic problem is again NP-hard to solve optimally;
moreover, the general online version cannot be solved with
a competitiveness guarantee.

IV. STATIC SETTING

In this section we describe two algorithms to solve the
static-assignment problem: Greedy and Multi-round Gener-
alized Assignment Problem (MRGAP). The former requires
global knowledge of all missions to run and hence is consid-
ered to be centralized whereas the latter can be implemented
in both centralized and distributed environments which makes
it more appealing to sensor networks.

A. Greedy

The first algorithm we consider (Algorithm 1 shown in Table
II) is a greedy algorithm that repeatedly attempts the highest-
potential-profit untried mission. Because fractional profits are
allowed only beyond the threshold percentage 7', this need
not be the mission with maximum p;. For each such mission,
sensors are assigned to it, as long the mission budget is not yet
violated, in decreasing order of cost-effectiveness, i.e. the ratio
of edge utility for that mission and the sensor cost. The running
time of the algorithm is O(mn(m+logn)). No approximation
factor is given for this efficiency-motivated algorithm since,
even for the first mission selected, there is no guarantee that
its feasible solution will be found. This by itself is an NP-hard
0/1 knapsack problem, after all.

B. Multi-round GAP (MRGAP)

The idea of the second algorithm (Algorithm 2 shown in
Table IV) is to treat the missions as knapsacks that together
form an instance of the Generalized Assignment Problem
(GAP). The strategy of this algorithm is to find a good solution
for the problem instance when treated as GAP, and then to
do “postprocessing” to enforce the lower-bound constraint of
the profit threshold, by removing missions whose satisfaction
percentage is too low. Releasing these sensors may make it
possible to satisfy other missions, which suggests a series of



while true do
for each available M
Uj Zsi(unused) €ijs
J « argmax; p;j(u;);
if p;(u;) = 0 break;
u; —0;¢; 0
for each unused S; in decr. order of e;;/c;;
if Uj > d} or e;; = 0
break;
if ¢; +cij < by
assign S; to Mj;
uj  uj + €ij;
Cj < ¢ T+ Cijs
TABLE IIT
Algorithm 1: Greedy

rounds. In effect, missions not making “good” progress to-
wards satisfying their demands are precluded from competing
for sensors in later rounds.

Cohen et al. [3] give an approximation algorithm for GAP
which takes a knapsack algorithm as a parameter. If the
knapsack subroutine has approximation guarantee o > 1, then
the Cohen GAP algorithm offers an approximation guarantee
of 1+ a. We use the standard knapsack FPTAS [11], which
yields a GAP approximation guarantee of 2 + e. Because
GAP does not consider lower bounds on profits for the
individual knapsacks, which is an essential feature of our
sensor-assignment problem, we enforce it in postprocessing.

The algorithm works as follows. The threshold is initialized
to a small value, e.g. 5%. Over a series of rounds, a GAP solu-
tion is found based on the current sensors and missions. After
each round, missions not meeting the threshold are removed,
and their sensors are released. Any sensors assigned to a
mission that has greater than 100% satisfaction, and which can
be released without reducing the percentage below 100%, are
released. We call such sensors superfluous. Sensors assigned
to missions meeting the threshold remain assigned to those
missions. These sensors will not be considered in the next
round, in which the new demands and budgets of each mission
will become the remaining demand and the remaining budget
of each one of them. Finally, the threshold is incremented,
with rounds continuing until all sensors are used, all missions
have succeeded or been removed, or until the actual success
threshold 7 is reached. The GAP instance solved at each round
is defined by the following linear program:

max: 3053 pijij (With pi; = pj - ei5/d;)
S.L: ZSi(unused) xi5¢;; < bj, for each remaining Mj,
M, (remaining) Lii < 1, for each unused S;,

and Tij € {0, 1} VCEij

Here dAj is the remaining demand of M, that is, the demand
minus utility received from sensors assigned to it during
previous rounds. Similarly, bAj is the remaining budget of
M;. The concepts of demand and profit are encoded in the
gap model as p;; = p; - € /d}. This parameter represents
the fraction of demand satisfied by the sensor, scaled by the
priority of the mission. In each GAP computation, we seek an

assignment of sensors that maximizes the total benefit brought

initialize set of missions M — {M; ... M, };
initialize global threshold 7" <+ 0.05;
for t =0 to T step 0.05
run the GAP algorithm of [3] on M and the
unassigned sensors;
in the resulting solution, release any
superfluous sensors;
if M;’s satisfaction level is < ¢, for any j
release all sensors assigned to Mj;
M — M —{M;};
if M; is completely satisfied OR has no
remaining budget, for any j
M — M — {M j};
TABLE IV
Algorithm 2: Multi-Round GAP

to the demands of the remaining mission.

One advantage of MRGAP is that it can be implemented
in a distributed fashion. For each mission there can be a
sensor, close to the location of the mission, that is responsible
for running the assignment algorithm. Missions that do not
contend for the same sensors can run the knapsack algorithm
simultaneously. If two or more missions contend for the same
sensors, i.e. they are within distance 2r of each other, then
synchronization of rounds is required to prevent them from
running the knapsack algorithm at the same time. To do this,
one of the missions (e.g. the one with the lowest id) can be
responsible for broadcasting a synchronization message at the
beginning of each new round. However, since r is typically
small compared to the size of the field, we can expect many
missions to be able to do their computations simultaneously.

The total running time of the algorithm depends on the
threshold 7" and step value chosen as well as the density of
the problem instance, which will determine to what extent the
knapsack computations in each round can be parallelized.

V. DYNAMIC SETTING

We have shown in Section III-B that the dynamic problem
is NP-hard to solve and that without assuming any additional
constraints there are no competitive solutions that can provide
guaranteed performance. In this section, we therefore propose
heuristic-based schemes to solve the dynamic sensor-mission
assignment problem. These schemes are similar in their oper-
ation to the dynamic proposal scheme that we have proposed
in [9] but with a new focus. Rather than maximizing profit
by trying to satisfy all available missions, we focus here on
maximizing the profit over network lifetime by allowing the
sensors to refuse the participation in missions they deem not
worthwhile.

We deal with missions as they arrive. A mission leader,
a node that is close to the mission’s location, is selected
for each mission. Finding the leader can be done using a
geographic-based routing techniques [S]. The mission leaders
are informed about their missions’ demands and profits by a
base station. Then they run a local protocol to match nearby
sensors to their respective missions. Since the utility a sensor
can provide to a mission is limited by a sensing range, only
nearby nodes are considered. The leader advertises its mission
information (demand and profit) to the nearby nodes (e.g.



two-hop neighbors). The number of hops the advertisement
message is sent over depends on the relation between the
communication range and the sensing range of sensors.

When a nearby sensor hears such an advertisement message,
it makes a decision either to propose to the mission and
become eligible for selection by the leader or to ignore the
advertisement. The decision is based on the current state
of the sensor (and the network if known) and on potential
contribution to mission profit that the sensor would be provid-
ing. We assume knowledge of the (independent) distributions
of the various mission properties (namely, demand, profit
and lifetime), which can be learned from historical data. To
determine whether a mission is worthwhile, a sensor considers
a number of factors: (1) the mission’s profit, relative to the
maximum profit, (2) the sensor’s utility to the mission, relative
to the mission’s demand, (3) the sensor’s remaining battery
level, (4) the remaining target network lifetime, if known.

After gathering proposals from nearby sensors, the leader
selects sensors based on their utility offers until it is fully
satisfied or there are no more sensor offers. The mission
(partially) succeeds if it reaches the success threshold; if not,
it releases all sensors.

Since we assume all distributions are known, the share of
mission profit potentially contributed by the sensor (i.e. if its
proposal is accepted) can be compared to the expectation of
this value. Based on previous samples, we can estimate the
expected mission profit E[p] and demand F[d]. Also, knowing
the relationship between sensor-mission distance and edge
utility, and assuming a uniform distribution on the locations
of sensors and missions, we can compute the expected utility
contribution E[u] that a sensor can make to a typical mission
in its sensing range. We use the following expression to
characterize the expected partial profit a sensor provides to a
typical mission (P is the maximum profit missions can have):

E[Z} X E?[m (1)

We consider two scenarios. In the first, the target network
lifetime is unknown, i.e. we do not know for how long
will the network be needed. In this case, sensors choose
missions that provide higher profit than the expected value
and hence try to last longer in anticipation of future high
profit missions. In the second, the target network lifetime
is known, i.e. we know the duration for which the network
will be required. Sensors, in this case, take the remaining
target network lifetime into account along with their expected
lifetime when deciding whether to propose to a mission. In
the following two subsections we describe solutions to these
two settings.

A. Energy-aware Scheme

In this scheme, the target lifetime of the sensor network is
unknown. For a particular sensor and mission, the situation is
characterized by the actual values of mission profit (p) and
demand (d) and by the utility offer (u), as well as the fraction

of the sensor’s remaining energy (f). For the current mission,
a sensor computes the following value:

u _p

75 p " f 2

Each time a sensor becomes aware of a mission, it evaluates

expression (2). It makes an offer to the mission only if the
value computed is greater than expression (1). By weighting
the actual profit of a sensor in (2) by the fraction of its
remaining battery value, the sensors start out eager to propose
to missions but become increasingly selective and cautious
over time, as their battery levels decrease. The lower a sensor’s
battery gets, the higher relative profit it will require before
proposing to a mission. Since different sensors’ batteries will
fall at different rates, in a dense network we expect that
most feasible missions will still receive enough proposals to
succeed.

B. Energy and Lifetime-aware Scheme

If the target lifetime of the network is known, then sensors
can take it into account when making their proposal decisions.
To do this, a sensor needs to compute what we call the
expected occupancy time, denoted by t,, i.e. the amount of
time a sensor expects to be assigned to a mission during the
remaining target network lifetime. To find this value we need
to determine how many missions a given sensor is expected
to see. Using the distribution of mission locations, we can
compute the probability that a random mission is within a
given sensor’s range. If we combined this with the remaining
target network lifetime and arrival rate of missions we can find
the expected number of missions to which a given sensor will
have the opportunity to propose. So, if the arrival rate and the
(independent) distributions of the various mission properties
are known, we can compute ¢, as follows:

ta =T XAXgxyxE][]

where 7 is the remaining target network lifetime, which is
the initial target network lifetime minus current elapsed time,
A is the mission arrival rate, g = 7r2/A is the probability
that a given mission is within sensing range (assumes uniform
distribution on missions), 7 is the sensing range and A is
the area of the field in which sensors are deployed, E[l] is
the expected mission lifetime, and ~ is the probability that a
sensor’s offer is accepted. (Computing this value would imply
a circular dependency. It was chosen a priori to be 0.25).
For each possible mission, the sensor now evaluates an
expression which is modified from (2). The sensor considers
the ratio between its remaining lifetime and its expected
occupancy time. So, if ¢, is the amount of time a sensor can be
actively sensing, given its current energy level, the expression
becomes:
u p ty
RV N
d P t,
If the value of expression (4) is greater than that of
expression (1), then the sensor proposes to the mission. If the
remaining target lifetime is greater than the sensor’s expected
occupancy time, the sensor proposes to any mission since in

3)



this case it expects to survive until the end of the target time.
The effect on the sensor’s decision of weighting the mission
profit by the ration (¢;/t,) is similar to the effect weighting
the fraction of remaining energy (f) had in expression (2); less
remaining energy, all things being equal, make a sensor more
reluctant to propose to a mission. As the network approaches
the end of its target lifetime, however, this ratio will actually
increase, making a sensor more willing to choose missions
with profits less than what it “deserves” in expectation; after
all, there is no profit at all for energy conserved past that point.

VI. PERFORMANCE EVALUATION

In this section we discuss the result of different experiments
used to evaluate our schemes. We implemented the schemes
in Java and tested them on randomly generated problem
instances. We report the results of two sets of experiments.
In the first set, we test the static setting, in which all missions
occur simultaneously. In the second set, we consider the
dynamic setting, in which missions arrive over time and depart
after spending a certain amount of time being active.

A. Simulation Setup

Each mission has a demand, which is an abstract value of
the amount of sensing resources it requires, and a profit value,
which measures its importance (the higher the profit the more
important). The profit obtained from a successful mission M
is equal to p;(u;) as defined in Section III. Each sensor can
only be assigned to a single mission. Once assigned, the full
utility of the sensor is allocated to support the mission. We
consider a mission to be successful if it receives at least 50%
of its demanded utility from allocated sensors (i.e. T' = 0.5).

We assume that mission demands are exponentially dis-
tributed with an average of 2 and a minimum of 0.5. Profits
for the different missions are also exponentially distributed
with an average of 10 and a maximum of 100. This simulates
realistic scenarios in which many missions demand few sens-
ing resources and a smaller number demand more resources.
The same applies to profit. The simulator filters out any
mission that is not individually satisfiable, i.e. satisfiable in the
absence of all other missions. For a sufficiently dense network,
however, we can expect there to be few such missions.

The utility of a sensor S; to a mission M is defined as
a function of the distance, D;;, between them. In order for
sensors to evaluate their utilities to missions, we assume that
all sensors know their geographical locations. Formally the
utility is:

1+D?j/c, lf Dz] S T

0, otherwise

eij

where r is the global sensing range. This follows typical signal
attenuation models in which signal strength depends inversely
on distance squared. In our experiments, we set ¢ = 60 and
r = 30m.

Nodes are deployed in uniformly random locations in a
400m x 400m field. Missions are created in uniformly random
locations in the field. The communication range of sensors is

set to 40m. When sensors are deployed we ensure that the
network is connected (that is any sensor can communicate
with any other sensor possibly over multiple hops). If a
randomly created instance is not connected, it is ignored by the
simulator. We do not consider communication overhead other
than noting the fact that distributed schemes will typically
have lower communication cost than centralized schemes and
hence are preferable in that sense. We have actually studied
the communication overhead of similar schemes in [9].

B. Static Setting

In this experiment, all missions occur simultaneously. We
fix the number of sensors in the field and vary the number of
missions from 10 to 100. Each sensor has a uniformly random
cost in [0, 1], which is the same no matter to which mission it
is assigned. The associated cost can represent the actual cost
in real money or a value that represents the risk of the sensor
being discovered in hostile environments if it is activated, etc.
Each mission has a budget, drawn from a uniform distribution
with an average of 3 in the first experiment and varies from
1 to 10 in the second. In the following results we show the
average of 20 runs.

The first series of results shows the fraction of the maximum
mission profits achieved by the different schemes. The max-
imum profit is the sum of all missions profits. We show the
profits for the greedy algorithm, Multi-Round GAP (MRGAP),
and an estimate of the optimal value, running on two classes of
sensor networks, sparse (250 nodes), and dense (500 nodes).
In Figure 1(a) we show results for a network with 250 nodes.
The estimate on the optimal bound is obtained by solving the
LP relaxation of program P, in which all decision variables
are allowed to take on fractional values in the range [0, 1], and
the profit is simply fractional based on satisfaction fraction, i.e.
D;jyy for mission M; with no attention paid to the threshold
T. The MRGAP scheme, which recall can be implemented
in a distributed fashion, achieves higher profits in all cases
than does the greedy scheme which is strictly centralized
(because missions have to be ordered in terms of profit). The
difference, however, is not very large. Similar trends are seen
for a network with 500 nodes but the profits are higher due to
the availability of more nodes.

Figure 1(b) shows the fraction of the total budget each
scheme spent to acquire the sensing resources it did in a
network with 250 nodes. The MRGAP scheme achieves more
profits than the greedy algorithm and spends a modest amount
of additional resources. The fraction of remaining budget is
significant (more than 60% in all cases), which suggests that
either successful missions had higher budgets than they could
spend on available sensors or that unsuccessful missions had
lower budgets than necessary and hence they were not able to
reach the success threshold and their budgets were not spent.
When the number of missions is large this can be attributed
to the fact that there simply were not enough sensors due to
high competition between missions. We performed another set
of experiments, in which the number of missions was fixed at
50 and average budget given to missions was varied between
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1 and 10. Figure 1(c) shows the results for a network with
250 nodes. We see that the achieved profit increases rapidly
in the beginning with the budget but slows down as the issue
then becomes not the limited budget but rather the competition
between missions.

C. Dynamic Setting

In the dynamic problem, missions arrive without warning
over time and the sensors used to satisfy them have limited
battery lives. The goal is to maximize the total profit achieved
by missions over the entire duration of the network. In this
section, we test the dynamic heuristic algorithms on randomly
generated semsor network histories in order to gauge the
algorithms’ real-world performance.

In addition to the assumptions made in Section VI-A, here
we also assume the following. Missions arrive according to
a Poisson distribution with an average arrival rate of 4 mis-
sions/hour or 8 missions/hour depending on the experiment.
Each sensor starts with a battery that will last for 2 hours of
continuous sensing (i.e., B = 7200 in seconds). We assume
that this battery is used solely for sensing purposes and is
different than the the sensor’s main battery which it uses for
communication and maintaining its own operation. Mission
lifetimes are exponentially distributed with an average of 1
hour. We limit the minimum lifetime to 5 minutes and the
maximum to 4 hours. The number of nodes used in the
following experiments is set to 500 nodes.

We test the performance of the dynamic schemes described
in Section V. We compare the energy-aware (E-aware) and the
energy and lifetime-aware (E/L-aware) schemes with a basic
scheme that does not take energy or network lifetime into
account when making the decision on to which mission to
propose (i.e. sensors propose to any mission in their range).
For comparison purposes, we also show the performance of
the network if we assume that sensors have infinite energy
(i.e. B > simulation time).

Of course, finding the true optimal performance value is
NP-hard, so we cannot do an exact comparison. Even the LP
relaxation of program P’ above may be infeasible because of
the number of decision variables. To provide some basis of
comparison, therefore, we define a further relaxation which
is feasible to solve and provides an upper-bound of the
optimal. This formulation condenses the entire history into
a single timeslot. The profits and demands are multiplied by
the duration of the mission. Since time is elided, the sensor
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Performance of the static setting schemes in a network with 250 nodes.

constraint now asserts only that a sensor be used (fractionally)
for at most B timeslots, over the entire history, where B is
the battery lifetime. Note that the solution value provided is
the total profits over the entire history, not a time-series. We
indicate its value in the results by a straight line drawn at the
average profit corresponding to this total.

In both the E-aware and the E/L-aware schemes, we need
to compute the expected profit of a mission (Expression 1
above), to determine whether the sensor should propose to the
mission. Because we cap the distributions — limit the minimum
demand and profit for missions and cap them by the available
resources in the first case and by 100 in the second — the
actual averages are not equal to the a priori averages of the
distributions. We found an empirical average demand of d’ =
1.2 and an average profit of p’ = 10.9. The empirical average
duration, which is used to evaluate expression (3) above, was
found to be 3827.8 seconds (roughly an hour).

Figure 2 shows the achieved profit (as a fraction of maxi-
mum possible) per-timeslot. We assume the network is consid-
ered to be of use as long as this value stays above 50% (shown
with a fine horizontal line). The target network lifetime is 3
days (shown as a fine vertical line) and the simulations are run
for one week of time. Knowledge of the target network lifetime
is used by the E/L-aware and in the LP. The other schemes
assume that network will potentially have infinite duration.

From Figure 2 we see that the profits of all schemes stay
above the 50% threshold for the target lifetime. The basic
scheme achieves most of its profits in the beginning and then
profits go down (almost linearly) as time progresses. The E-
aware scheme tries to conserve its resources for high profit
missions. Because it ignores the fact that we care more about
the first 3 days than anytime after that it, becomes overly
conservative and ignores many missions. Such a scheme is
better suited to the case when there is no known target lifetime
for the network and we want the network to last as long as
possible. We see that the profit for E-aware does not fall below
the 50% threshold until the end of the sixth day.

In the E/L-aware scheme, nodes will initially be aggressive
in accepting missions that might not provide their expected
value but become more cautious as their energy is used. How-
ever, unlike E-aware, as their remaining expected occupancy
time approaches their remaining lifetime, sensors will again
accept missions with lower and lower profits. The curves for
E-aware and E/L-aware cross by the middle of the fourth day,
at which point the E-aware becomes better. When compared to
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the average LP solution, we see that E/L-aware is very close
with a difference (on the average) of few percentage points.
We also found that in terms of the sum of all profits during
the target network lifetime (i.e. the area under the curve for
the first 3 days), the E/L-aware achieves about 84% of the
profits compared to 72% for the E-aware. This means that
E/L-aware achieves close to 17% higher profits. If the sensors
battery lifetime is increased from 2 to 3 hours the percentage
increase becomes about 22%.

The fraction of remaining alive sensors over time is shown
in Figure 3. Because in the basic scheme sensors propose to
any mission within their range no matter how low the profit is,
nodes start dying rapidly. By the the end of the third day, only
half the nodes can be used for sensing and by the end of the
7 days this falls below 15%. In E-aware, nodes become very
cautious as their energy run low, which helps the network to
last for longer without significant sacrifice of achieved profits
per timeslot. By the end of the 7 days, about 72% of the nodes
remain living. For E/L-aware, sensors accept more missions,
and hence are used at a higher rate, as the target lifetime of the
network approaches. In the figure, we can see this happening
by the second day, when the curve of E/L-aware diverges from
that of E-aware. By the end of the seventh day, it has used
nearly as much energy as the basic scheme.

One thing to note is that we assume E/L-aware acts like
the basic scheme once the target lifetime of the network has
passed, i.e. sensors propose to all nearby missions. If this
behavior were changed to emulate the E-aware, we expect
the energy usage to slow down which would conserve a larger
fraction of alive nodes. A similar effect is expected to happen
to profit. As the fraction of alive nodes will be higher, the
decrease in profit after target network lifetime will slow down.

We omit figures showing the fraction of achieved profit and
fraction of alive nodes over time, with twice the previous
arrival rate (8 missions/hour). Due to the increased number
of missions, sensors are used more rapidly and hence both
the profit and fraction of alive nodes decrease quickly. The
basic scheme passes the 50% profit line by the middle of
the second day and both E-aware and E/L-aware pass that
point in the beginning of the fourth day. But by that point,
E/L-aware achieves significantly higher profits than E-aware.
Similar effects are seen on the fraction of alive nodes.

VII. CONCLUSION

In this paper, we defined new sensor-assignment problems
motivated by frugality and conservation of resources, in both
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Fig. 3. Fraction of alive nodes (arrival rate = 4)

static and dynamic settings. We proposed schemes to match
sensing resources to missions in both settings and evaluated
our these schemes through simulations. In the static case,
we found that the multi-round GAP scheme, which can be
implemented in a distributed fashion, outperformed a cen-
tralized greedy solution. In the dynamic setting, we found
that overall performance can be significantly improved if
sensors are allowed to sometimes refuse to offer utility to
“weak” missions. Performance improves when sensors make
this decision based both on their remaining energy level and
the remaining target network lifetime.
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