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Abstract—A sensor network is usually required to support
multiple missions to be accomplished simultaneously. Since
missions might compete for the exclusive usage of the same
sensing resource we need to assign individual sensors to missions.
Missions are characterized by an uncertain demand for sensing
resource capabilities. We model this assignment problem by
introducing the Sensor Utility Maximization (SUM) model. SUM
is NP-Complete and is a special case of the well known Gener-
alized Assignment Problem (GAP). We compare a pre-existing
algorithm developed for GAP with a new greedy algorithm which
appears to offer the best trade-off between quality of solution and
computation cost.1

I. INTRODUCTION AND MOTIVATIONS

A sensor network in the field is usually required to support
multiple sensing tasks or missions to be accomplished simulta-
neously. Since missions might compete for the exclusive usage
of the same sensing resource we need to assign individual
sensors to missions. Missions are usually characterized by an
uncertain demand for sensing resource capabilities. Consider
for example a mission that requires video sensors to identify
a target but the weather conditions and visibility range in
the field are not exactly known: in this case the required
number of sensors and the resolution of their cameras cannot
be precisely determined. We can for example specify only the
highest resolution of the cameras needed by the mission or
the maximum number of video sensors required. If instead
two missions require to identify two different targets that are
located in nearby regions on the map, then these missions
might compete for the exclusive control of a particular video
sensor. Indeed the mission to which the video sensor will be
assigned might decide to point the camera in a direction that
could be completely opposite to where the other mission would
require it.

II. SENSOR UTILITY MAXIMIZATION MODEL

We model this assignment problem by introducing the
Sensor Utility Maximization (SUM) model which can be
represented as a complete weighted bipartite graph as shown
in Figure 1. Each mission Mj is associated with a priority pj
and with a utility demand dj , which represents the maximum

1This research was sponsored by the U.S.Army Research Laboratory and
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utility demand that a mission might require. Furthermore each
sensor-mission pair is associated with a utility offer eij .
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Fig. 1: SUM model as a complete weighted bipartite graph.

We also define the benefit or profit pij that a sensor Si can
bring to a mission Mj as the fraction of mission’s demand
that the sensor is able to satisfy, scaled by the priority of the
mission: simply stated it holds the following equation pij =
eij/dj × pj .

The goal is to find a sensor assignment that maximizes the
total profit, while ensuring that the total utility cumulated by
each mission does not exceed its demand dj .

In the Integer Linear Programming formulation of the model
we use one decision variable called xij , that is 1 if sensor Si
is assigned to mission Mj .

Maximize:
∑m
j=1

∑n
i=1 pijxij , pij = eij/dj × pj .

Such that:
∑n
i=1 xijeij ≤ dj , ∀Mj ∈M ,∑m
j=1 xij ≤ 1, ∀Si ∈ S, and

xij ∈ {0, 1}
For each mission Mj we require that the sum of the utility

received by Mj does not exceed its own max utility demand
dj . This assumption is based on the principle that sensing
resources are in high demand and should not be wasted2.
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This constraint highlights also that the SUM model is a
generalization of the well known Multiple Knapsack Problem
[1] that is NP-Complete. We can therefore conclude that SUM
is an NP-Complete problem too.

III. ALGORITHMS

SUM is a special case of the Generalized Assignment Prob-
lem (GAP) [2], which groups many knapsack-style problems.
We solved SUM using a pre-existing algorithm developed for
GAP, and also a new greedy algorithm that we especially
designed for SUM.

A. Pre-existing algorithm for GAP

We implemented the approximation algorithm in [2] that,
combined with the algorithm in [3], is provably a (2 + ε)-
approximation algorithm. If n is the number of sensors and
m is the number of missions, then the time complexity of
this algorithm is O

(
mn
ε2

)
, where we have to choose a small

ε to obtain a solution close to the optimum3. This leads to
a large multiplicative constant (1/ε2), that is the reason why
the greedy algorithm with a worse time complexity will prove
faster in real case scenarios.

B. Ordered Sensor-side Greedy

Algorithm 1 Ordered Sensor-side Greedy
1: sort the sensors in order of decreasing max{pij}
2: M ← {M1, . . . ,Mm}
3: for each sensor Si do
4: Mk ← maxargMj∈M{pij} (where pij = eij/dj × pj)
5: if eik + total utility cumulated by Mk ≤ dk then
6: assign Si to Mk

7: M ←M − {Mk}
8: end if
9: end for

The greedy algorithm that we developed considers sensors
one by one and assigns them to the mission to which they
can contribute the most. In fact we first sort the sensors in
decreasing order of maximum profit offer, i.e. max{pij}. Fi-
nally starting from the sensor which has the highest maximum
profit, the algorithm assigns it to the mission Mk where that
sensor is of most use, i.e. to the mission that maximizes pij .

If n is O (m logm) then the complexity of this algorithm
is O (nm logm), where “m logm” is given by the fact that
we have to find the mission Mj that maximizes pij . Other-
wise if n is not O (m logm), then the complexity becomes
O (nm logm+ n log n).

IV. SIMULATION AND CONCLUSION

To evaluate the performance of these algorithms we used
the simulation environment implemented in Java that was
developed in [4]. In this simulation, the utility eij of a sensor
to a mission is a function of the geographical distance between

3We chose ε = 0.005 because, in our simulation, this was the smallest
value allowable to obtain a reasonable computational time.

Fig. 2: Ordered Sensor-side and (2+ε)-approximation algo-
rithms (500 sensors): percentage of the optimal fractional
solution vs missions.

them: the closer the sensor to the mission, the higher its utility;
the utility is max if the sensor and the mission lie at the same
location. Sensors and missions are generated in uniformly
random locations in a 400m × 400m field, and when sensors
are deployed we ensure that the network is connected. Since
the algorithms considered here follow a centralized approach,
we create also a base station in the field which represents the
node where all the information about the network is collected
and where all the computation is performed. Each mission
has an exponentially distributed demand and priority, so there
will be many missions with low demand and low priority and
few missions with high demand and high priority. Figure 2
shows the total profits achieved by each different algorithm
as fractions of the upper bound represented by the optimal
fractional solution, which is the solution to the relaxed linear
programming formulation of SUM. Simulation results show
that our greedy algorithm appears to offer a good trade-off
between quality of solution and computation cost. Indeed,
even if the total profit of a solution returned by the greedy
algorithm is smaller than the one given by the GAP algorithm,
the difference between the two is only 1%; moreover, as we
discussed in Section III, the greedy algorithm has a better
running time than the GAP algorithm in real scenarios4.
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