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Abstract—Effective deployment of limited and constrained
intelligence, surveillance and reconnaisance (ISR) resources is
seen as a key issue in modern network-centric joint-forces oper-
ations. The aim of our work is to enable proactive and reactive
deployment of sensors and other information sources to best
support the objectives of a task (or mission) being undertaken.
In this paper, we consider one aspect of the deployment problem:
proactive assignment of sensors and sources to mission tasks. We
view this sub-problem as a matchmaking activity: matching the
ISR requirements of tasks to the ISR-providing capabilities of
available sensors and sources, and the platforms that carry them.
A key issue is that of defining sufficiently-rich representations of
these various elements — missions, tasks, ISR requirements, ISR
capabilities, sensors, sources, and platforms — to support the
matchmaking activity. We argue for an approach based on the
use of ontologies: formal models of the various elements that can
be used with deductive reasoning mechanisms to produce matches
that are logically sound. We introduce a new ontology based on
the military Missions and Means Framework (MMF), and show
that the matchmaking activity is necessarily multidimensional
in nature. We indicate how our approach builds on previous
work in representing sensors and sources for various purposes,
and highlight the role of current Web standards in providing an
engineering foundation for our approach.

I. INTRODUCTION AND MOTIVATION

The work described in this paper is part of the International
Technology Alliance project “Task-Oriented Deployment of
Sensor Data Infrastructures”. The overall aim of this project
is to enable proactive and reactive deployment of sensors and
other information sources to best support the objectives of a
task (or mission) being undertaken. Effective deployment of
limited and constrained intelligence, surveillance and recon-
naisance (ISR) resources is seen as a key issue in modern
network-centric joint-forces operations. For example, the 2004
report JP 2-01 Joint and National Intelligence Support to
Military Operations states the problem in the following terms:
“ISR resources are typically in high demand and requirements
usually exceed platform capabilities and inventory. . . . The
foremost challenge of collection management is to maximize
the effectiveness of limited collection resources within the time
constraints imposed by operational requirements.”1

1http://www.dtic.mil/doctrine/jel/new pubs/jp2 01print.pdf, pages III–10–
11, accessed April 27, 2007.

In this paper, we consider one aspect of the deployment
problem: proactive assignment of ISR assets to mission tasks.
We view this sub-problem as a matchmaking activity: matching
the ISR requirements of tasks to the ISR-providing capabilities
of available assets (sensors and the platforms that carry them)
and information sources (e.g. human beings and mass media).
The key issue considered in this paper is that of defining
sufficiently-expressive representations of these various ele-
ments — missions, tasks, ISR requirements, ISR capabilities
and ISR assets — to support the matchmaking activity. We
argue for an approach based on the use of ontologies: formal
models of the various elements that can be used with deductive
reasoning mechanisms to produce matches that are logically
sound. The goal of this paper is to show that such an approach
is plausible: that it can be grounded in current best-practice in
analysing mission requirements and means, that it can draw
on much existing work in representing sensors and platforms
for various purposes, and that current Web standards for
ontology engineering provide a suitable foundation for such
an approach.

II. SEMANTIC MATCHMAKING OF SENSORS AND
MISSIONS

The assignment of ISR assets to multiple competing mis-
sions can be seen as a process comprising two main steps:

1) Assessing the fitness for purpose of alternative ISR
means to accomplish a mission

2) Allocating available assets to multiple competing mis-
sions

We have analyzed current military doctrine to site our work,
and as result we have found a framework that has been
particularly inspiring: the Missions and Means Framework
(MMF) [11] . MMF provides a model for explicitly specifying
a military mission and quantitatively evaluating the mission
utility of alternative warfighting solutions – the means.

Figure 1 shows a high level diagram of our current thinking
of how missions map through to ISR means, based on MMF.
Starting from the top left the diagram sketches the analysis
of a mission as a top-down process that breaks a mission
into a collection of operations (e.g. Search and Rescue), each
of which is broken down further into a collection of distinct



tasks having specific capability requirements (e.g. Wide Area
Surveillance). On the right hand side, the diagram depicts the
analysis of capabilities as a bottom-up process that builds up
from elementary components (e.g. EO/IR camera) into systems
(e.g. camera turret), and from systems up into platforms
equipped with or carrying those systems (e.g. a UAV).
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Fig. 1. Mission and Means Framework

The way MMF describes the linking between missions and
means naturally fits the notion of matchmaking. Matchmaking
is basically the process of discovering, based on a given
request (e.g. ISR requirements), promising partners/resources
(e.g. sensors) for some kind of purpose (e.g. accomplishing a
mission). Important issues arise when the search is not limited
to identity matches but, as in real life, when the objective
is finding partners/resources suitable at least to some extent,
or (when a single partner cannot fulfil the request) to find a
pool of cooperating partners (a sensor network, or a platform
equipped with several sensors) able to accomplish it. As this
process may lead to various possible matches, the notion of
ranking becomes central: to provide a list of potential partners
ordered according to some criteria. Due to the diversity of
frameworks of application, several communities have studied
matchmaking through different perspectives and techniques.
Recently, semantic matchmaking, which is based on the use
of ontologies to specify components, has become a central
topic of research in many communities, including Multi-Agent
Systems, Web Services and Grid Computing.

In this paper we advocate the use of a semantic match-
making approach to address the problem of assessing the
fitness for purpose of alternative ISR means, which in turn
supports the effective allocation of available ISR assets to
multiple competing missions. In particular, we propose the
use of ontologies as an expressive and logically-sounded
way of doing knowledge representation and reasoning. More
specifically, our approach uses ontologies in the following
activities:

• Specify the requirements of a mission.
• Specify the capabilities provided by ISR assets (sensors,

platforms and other sources of intelligence, such as
human beings).

• Compare the specification of a mission against the specifi-
cation of available assets to assess the utility or fitness for
purpose of available assets; based on these assessments,
obtain a set of recommended assets for the mission: either
decide whether there is a solution —a single asset or
combination of assets— that satisfies the requirements
of the mission, or alternatively provide a ranking of
solutions according to their relative degree of utility.

There are several approaches to perform matchmaking that
do not make use of ontologies, and a natural question is, “Why
use ontologies?” The next subsection gives a brief account of
what an ontology is and a short motivation for using them to
perform matchmaking.

A. Ontologies for matchmaking

There is no universally-agreed definition for the term on-
tology, probably because ontologies have been addressed in a
number of contexts and fields, but there are some definitions
and authors that are typically referred to. The most cited defini-
tion in Computing Science is probably Gruber’s: “an ontology
is an specification of a conceptualization” [6]. This definition
was later modified and extended by Borst: “an ontology is a
formal specification of a shared conceptualization” [2]. Borst’s
definition covers both the nature and purpose of an ontology:
it is a formal specification, since it aims at being machine-
processable; and it refers to a shared conceptualization, since it
aims at mediating among different people and systems. In this
paper, we use more precise notion that is fairly well captured
by Guarino: “an ontology is a set of logical axioms designed
to account for the intended meaning of a vocabulary” [7].

People, organizations and software systems need to commu-
nicate and share information, but due to different needs and
background contexts, there can be widely varying viewpoints
and assumptions regarding what essentially the subject matter
is. The lack of shared understanding leads to poor communi-
cation between people and their organizations, severely limits
systems interoperability and reduces the potential for reuse
and sharing. Ontologies aim at solving the former problems.
On the one hand, ontologies facilitate communication and
knowledge sharing by providing a unifying framework for
parties with different viewpoints. On the other hand, ontologies
can improve interoperation and cooperation by providing un-
ambiguous semantics in a formal, machine-interpretable way.
Matchmaking can benefit from these general properties as far
as the elements of the process are distributed or there are
several viewpoints; additionally, the use of semantically rich
specifications enable the use of specific forms of reasoning
that are not available when using a syntactic approach, such as
for example subsumption and disjunction. Below we provide
a simple motivating example to illustrate on such forms of
reasoning.

Figure 2 depicts a partial classification of military Un-
manned Aerial Vehicles (UAV). The image shows 6 concepts
referring to common UAV categories and specialization (“sub-
class”) relationships among them, represented by arrows. At
the top of the classification, the UAV concept encompasses
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Fig. 2. Partial Classification of Unmanned Aerial Vehicles (UAV)

all kinds of UAV, which may range in cost from a few
thousand dollars to tens of millions of dollars, and ranging
in capability from Micro Air Vehicles (MAV) weighing less
than one pound to aircrafts weighing over 40,000 pounds.
In this example we include just three categories that are
specializations of the UAV class; these are, from left to right:
Small UAV (SUAV), designed to perform “over-the-hill” and
“around-the-corner” reconnaissance; Tactical UAV (TUAV),
which focuses on the close battle, providing targeting, situation
development and battle damage assessment in direct response
to the brigade/Task Force commander; and Endurance UAV,
aimed at the deep battle, supporting the division to 150 Km
and the Corps battle to 300 Km. Further, we have included
two categories that specialize the Endurance UAV concept:
Medium Altitude Long Endurance (MALE) UAV, designed to
operate at altitudes between 5000 and 25000 feet, and High
Altitude Long Endurance (HALE) UAV, which are designed
to function as Low Earth Orbit satellites. The arcs between
subclass relationships indicate a disjoint relationship among
subclasses; a disjoint relation among a set of classes entails
that an individual cannot belong to more than one of those
classes; for example, a UAV that is classified as a Small
UAV, can not be classified as being a Tactical UAV. Next,
we introduce some basic examples illustrating specific forms
of reasoning enabled by the use of ontologies. Let us suppose
that we have the following UAVs available for a mission:

• A Pioneer, which is a TUAV
• A Predator, which is a MALE-UAV
• A Global Hawk, which is a HALE-UAV

Now suppose that as part of a given mission a Persistent
Surveillance task over a wide area is required to detect any
suspicious movement. This kind of tasks is best served by an
Endurance-UAV, since it is able to fly for long periods of time.
From just the concept definitions we know that: (1) the Pioneer
is not an endurance UAV (because of the disjoint relationship
among Endurance-UAV and TUAV), and (2) both the Predator
and the Global Hawk are Endurance-UAVs (because of the

subclass relationships)2. Therefore, the matchmaking process
will select both the Predator and the Global Hawk as the
assets satisfying the specified mission requirements.

Now, suppose that according to the weather forecast, storms
are very likely to occur in the area of operations during
the surveillance period. Then, the best option would be to
use a HALE-UAV, which has the capability of flying “above
the weather”. Consequently, the matchmaking process would
retrieve the Global Hawk as the only asset satisfying the
mission requirements.

The UAV examples introduced above refer to a simple
form of matching relationships known as subsumption, but it
is possible to devise more complex information containment
relationships and even an ordinal ranking scale comprising
several degrees of matching. Figure 3 represents graphically
the main types of matching that can be established using
information containment relationships, using examples from
the ISR domain. Q denotes a query which specifies some
intelligence requirements to be met, and S1 − S5 denote the
specification of ISR assets (sensors and sensor platforms) to
be matched against Q.

Commencing at the left, our query specifies two basic
requirements to be met:

• Provide Infrared (IR) Imagery
• Carry out a Night Reconnaissance task
Going from left to right and up to down, the figure shows

the specification for several assets that verify different types of
relation in terms of information containment. Below follows
a description of these matching relations listed in decreasing
strength order:

1) ExactMatch(S1, Q): holds when the specification of a
component provides exactly the same type of informa-
tion described by the query. In the example, S1 describes
an asset that provides IR vision and is designed to
perform night reconnaissance tasks, just as stated in Q.
This is represented as S1 = Q.

2) Plugin(S2, Q): holds when the class of information de-
scribed by the query subsumes (i.e. is more general than)
the class of information specified by the component. In
the example, the asset described by S2 refers to a Cooled
FLIR (forward looking IR), which is a specific type of
IR camera. This is represented as S2 ⊆ Q.

3) Subsumes (S3, Q): holds when the class of information
described by the query is subsumed by the specifica-
tion of the component, i.e. when the specification of
the component is more general than the query. In the
example, S3 refers to an asset providing night vision
capability, which is a more general concept than Infrared
Vision, and provides also night reconnaissance. This is
represented as S3 ⊇ Q.

4) Overlaps(S4, Q): holds when the query and the specifi-
cation share some information, but neither one subsumes

2Note that we only state minimum explicit information about the UAVs (e.g.
the Pioneer is-a Tactical-UAV); everything else is inferred from the concept
definitions (e.g. the Pioneer is not a HALE-UAV).



the other entirely. In our example, S4 describes an asset
that provides night reconnaissance as required by Q, but
the first requirement is not satisfied, since it carries a
radar (SAR stands for Synthetic Aperture Radar) instead
of an IR camera, and these two concepts are disjoint.
This is represented as S4 ∩Q.

5) Disjoint(S4, Q): holds when there is no degree of in-
formation containment between the specification of the
component and the query. In the example, S5 describes
an asset that provides TV video and is suited to perform
day reconnaissance tasks; radar imagery is disjoint with
IR vision, day reconnaissance is disjoint with night
reconnaisance, so there is no intersection or information
containment between the concepts. This is represented
as S4⊥Q
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Fig. 3. Basic Matching Relationships

The kind of matching relationships introduced above are
typically used to discover software components or services
satisfying some specific requirements. Herein we propose to
use these kinds of matching relations to discover ISR assets
satisfying specific intelligence requirements.

B. Matchmaking abstract architecture

A matchmaking application is not completely characterized
by the basic semantic relationships that can be established
among the concepts that represent the application domain. An
important issue of a matchmaking application is the distinction
between the attribute-level and the component-level: a compo-
nent may be described by different attributes, and so different
matching schemas could be applied to each attribute depending
on the particular role it plays within the component.

In our application, we have detected two main kinds of
components to be matched against the ISR requirements of
a mission, each one characterized by different attributes that
deserve a separate treatment. Note that the kind of capability
requirements that are relevant to select a specific kind of sensor
are quite different from the requirements that are relevant to
select a platform. For example, in order to assess the utility of
different sensors it is very important to consider the kind of

intelligence to be produced (IMINT, MASINT, SIGINT3, etc.),
since each type of sensors provide information that supports
a different kind of intelligence (eg. infrared cameras support
IMINT, while acoustic sensors support MASINT). Besides,
to select a specific UAV for a reconnaissance mission there
are other factors to consider, such as the range to the targets
of interest, the presence or absence of enemy anti-air assets,
and so on. In addition, UAVs are limited in the weight and
type of sensors they can carry, and the performance of some
sensors may be influenced by conditions that depend on the
platform they are attached to, such as the altitude. Therefore,
one cannot select UAVs and sensors independently; instead,
the interaction between these components must also be taken
into account.

To address the issues above, we propose an abstract archi-
tecture based on three types of components and three kinds of
matching relations, as showed in Figure 4.

TASK match(T,P) PLATFORM

SENSOR

match(P,S)match(T,S)

ONTOLOG
Y

ONTOLOGY

Fig. 4. Abstract Matching Architecture

The three components involved are the following, namely:

• Tasks: define the actions to be performed in order to
accomplish a mission. A task may have attached envi-
ronmental conditions (weather, terrain, enemy, etc.) that
are expected to impact the performance of a task4.

• Sensors: these are the assets that collect the information
required to satisfy the intelligence requirements of a
mission. However, sensors do not operate as independent
entities, they have to be attached to (or carried by) devices
that provide them with energy, protection, mobility, etc.

• Platforms: these are the systems to which sensors are
attached so as to get energy, protection, mobility, com-
munication, etc. Platforms include both static and mobile
systems operating on land, in sea and air.

The three components involved and the dependencies be-
tween them result in three different matching relations, as
follows:

3IMINT stands for Imagery Intelligence, MASINT stands for Measurement
and Signature Intelligence, and SIGINT stands for Signals Intelligence

4We seek to use standardized catalogues of Tasks and Conditions such as
those found in the Universal Joint Task List.



• Task-Sensor matching: a sensor S matches a task T ,
match(T, S), if S provides the information collecting ca-
pabilities required to satisfy the intelligence requirements
of T .

• Task-Platform matching: a platform P matches a task T,
match(T, P ), if P provides the kind of ISR-supporting
capabilities (mobility, survivability, communication) re-
quired to perform T .

• Platform-Sensor matching: a sensor S matches a platform
P , match(P, S), if S can be carried by and is compatible
with the characteristics of P .

In order to satisfy the ISR requirements of a mission one
needs to select both a platform and a combination of sensors
such that the three matching relations of the architecture
are satisfied simultaneously. As a proof of concept, we have
developed a first software prototype that uses this architecture
and the kind of matching relations described in the previous
subsection (§II-A).

III. TOWARDS A MULTIDIMENSIONAL SOLUTION

In the last section we introduced and briefly discussed
the benefits of a semantic matchmaking approach to address
the sensor-mission assignment problem. In this section we
describe some issues concerning the development of the on-
tologies to support matchmaking, and discuss further on the
problems faced and the kind of solutions we propose.

Although one can think of a single ontology, actually we
adhere to the Semantic Web vision of multiple interlinking
ontologies covering different aspects of the domain. On the
one hand, we provide an ontology based on the Missions
and Means Framework (MMF), which is basically a collection
of concepts and properties to reason about the requirements
of a mission and the means required to accomplish it (e.g.
mission, task, capability, asset, etc.). On the other hand, we
provide another ontology that refines some of the generic
concepts in the MMF ontology so as to represent the ISR
concepts that constitute our particular application domain. This
second ontology comprises several areas frequently organized
as taxonomies, such as a classification of sensors (acoustic,
optical, chemical, radar), a classification of platforms (air, sea,
ground and underwater platforms), a classification of mission
types, and a classification of ISR capabilities (reconnaissance,
surveillance, target acquisition, damage assessment, etc.). Fig-
ure 5 sketches an integrated view of the main concepts that are
defined in our ontologies. On the left hand side, we have the
concepts related to the mission: a mission comprises several
tasks that need to be accomplished. On the right hand side
we have the concepts related to the means: a sensor is a
system that can be carried by or constitute part of a platform;
and inversely, a platform can accommodate or have one or
more systems; both platforms and systems are assets; an asset
provides one or more capabilities; a capability can entail a
number of more elementary capabilities, and is required to
perform certain type of tasks; and inversely, a task is enabled
by a number of capabilities.
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comprises toAccomplish
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Fig. 5. Main ontological concepts and their relationships

When modelling the ISR domain, we have found several
problems that make it difficult to formulate a single taxonomy
of concepts. A subset of the problems encountered includes:

• Some issues related to the classification of things:
– The absence of standardized taxonomies, and the

existence of alternative, some times inconsistent clas-
sifications for the same concepts.

– Existing attempts to conceptualize the domain are
based on different dimensions, and more usually,
several dimensions are mixed: for example, UAV
classifications tend to mix dimensions such as size or
weight (eg. Micro and Mini UAV), performance (e.g.
MALE and HALE UAV), mission type, or certain ad-
hoc features such as having VTOL (Vertical Take-
off and Landing) capabilities, or carrying weapons
(Combat UAV)

• There are some fuzzy concepts that are difficult to classify
as a single category, for example a LIDAR (LIght Detec-
tion and Ranging) is an optical remote sensing technology
which measures the time delay between transmission of
a light pulse and detection of the reflected signal to find
range, so it has properties of both optical sensors and
radars (sometimes it is called LADAR, for Laser Radar).

• Some concepts that are supposed to refer to the same
aspect of the domain are described at quite different
levels of abstraction. Closely related to this issue is the
tension between considering a concept as primitive, or
as a composition of more basic elements; for example,
a reconnaissance capability might be seen as implying a
combination of mobility and sensing capabilities.

In order to deal with the challenges introduced above, we
propose a compositional and multidimensional approach to
conceptualize the ISR domain. Such an approach is well suited
to Description Logics (DL) languages such as OWL5. One

5http://www.w3.org/TR/owl-guide. OWL comprises three sublanguages:
Lite, DL, and Full. Herein we are implicitly referring to OWL-DL



of the most powerful features of DL resides in the ability to
define classes in terms of sufficient and necessary conditions.
New concepts are defined by specifying constraints on existing
concepts and properties. As an example, consider the following
definitions:

• An Aircraft is-a Platform & has Realm Atmosphere
• An UnmannedVehicle: is-a Platform & has Quality

Without-crew-mobility
• A UAV is-a Aircraft & is-a UnmannedVehicle
• Combat UAV: is-a UAV & has Capability Firepower
• A MediumAltitudeLongEndurance (MALE) UAV: is-a

UAV & has Capability Endurance & has Capability
MediumAltitude

Thus, it is very easy to characterize the same individuals
across several conditions that will qualify the same individual
as a member of different classes. Having this in mind, OWL
enables the use of alternative taxonomies to characterize the
same objects across multiple dimensions, and to use those
alternative classifications for different purposes. For example
at some point, one may be interested in selecting a platform in
terms of the type of tasks that it can perform (reconnaissance,
surveillance, battle damage assessment, etc.), but in other
circumstances one may be interested in selecting a platform
according to their takeoff and landing capabilities (catapult,
runaway, VTOL, etc.). Below follows a short account of a
number of these dimensions:

• For platforms: mobility, realm, performance (range, en-
durance/dwell time, altitude, speed, etc.), application or
mission type (surveillance, reconnaissance, Target acqui-
sition, BDA, decoy, etc.), firepower, landing and takeoff,
communications, vulnerability and survivability, avail-
ability.

• For missions: target characteristics (e.g. collectable vs
observable), range to the target, timeliness, battlespace
factors, threat, terrain, contamination, weather.

• For sensors: phenomena detected (type and spec-
trum), performance (quality of data, accuracy, etc),
weather/terrain/contamination influence, vulnerability,
availability

Figure 6, adapted from [8], sketches the process followed
by intelligence experts to assess and select the intelligence
discipline (IMINT, MASINT, SIGINT, etc.) and/or the assets
that are more suited to met the intelligence requirements of a
mission. On the left hand side, the figure shows some of the
key elements resulting from the analysis of the information
requirements of a mission, such as range to the mission,
geography, weather, or adversary activity. On the right hand
side, we can see some features used to characterize the
capabilities provided by the available ISR assets, such as
range, limitations to weather and terrain masking, or threats
the asset survivability. The arrows between the left and right
axes represent the matching relations to be established between
requirements (left) and asset capabilities (right), so as to
select a discipline (IMINT, SIGINT, etc.) and/or a specific
system (sensors and platforms). Note that according to this

doctrine, there are two main activities to perform: correlate
and compare. Correlate implies there are numeric variables
involved which require a quantitative treatment, such as range
and time, while compare indicates that the variables involved
are qualitative.

The kind of ontology-based matchmaking that we have
described so far is based on the semantic relationships between
classes, which are inherently qualitative descriptions of the
world. In order to tackle the quantitative elements involved in
this process we will extend the matchmaking algorithms as
part of our future work.
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Fig. 6. Dimensions involved in the matchmaking process between informa-
tion requirements and ISR assets

IV. RELATED WORK

So far we have motivated the use of ontologies to support
the assignment of ISR means to missions. There is already
a sizeable amount of work in providing descriptive schemas
for sensors, sensor platforms, and their properties, for example
the OpenGeospatial Consortium (OGC)6 suite of Sensor Web
Enablement (SWE)7 specifications. There are also a number
of prototype ontologies for sensors and sensor platforms in-
cluding OntoSensor [5], [10], CIMA [9], the Marine Platforms
Ontology [1], and an ontology for level 1 sensor fusion [4].

One of our goals for this task is to avoid reinventing the
wheel, and to build on these existing representations. We
believe that the existing sensor and source representations
partly cover what we need to model, namely platforms
(described in the MMI platforms ontology) and sensors

6http://www.opengeospatial.org
7http://www.opengeospatial.org/projects/groups/sensorweb



(OntoSensor and CIMA). However, these attempts
lack the part that is central to our work, that is the
linking of missions and means. In the rest of this
section we discuss some aspects from aforementioned
schemas and ontologies that are relevant to our work.

SensorML8 started as a standalone XML-based sensor
model language for describing the geometric, dynamic, and
radiometric properties of dynamic remote sensors, and has now
become an integral part of the SWE initiative of the OGC.
The OGC is an international consortium of more than 330
companies, government agencies and universities participating
in a consensus process to develop publicly available standards
for geospatial and location-based services.

In the SWE approach, sensors are self-describing Web
components, which are discoverable and accessible in real
time by Web services [3]. Also, sensor information and their
observations are made accessible in real-time through Web
services, thus enabling sensor systems to find phenomena of
immediate interest autonomously. SensorMLs role in SWE is
to provide XML Schemas for describing sensor systems and
processes, information needed for the discovery of sensors,
location of sensor observations, and processing of low-level
sensor observations.

The ability of a sensor or a sensor system to represent
its capabilities is key to our work. SensorML allows us to
represent the capabilities of such systems within an XML
element named capabilities. Figure 7 shows a code snippet
representing sensor capabilities in SensorML.

<sml:capabilities>
<swe:DataRecord>
<swe:field name="Depth Capability"
xlink:role="urn:x-ogc:def:property:operationalLimit">
<swe:Quantity
definition="urn:x-ogc:def:classifier:SBE:depthCapability">
<swe:uom code="m"/>
<swe:value>7000</swe:value>

</swe:Quantity>
</swe:field>

...
</swe:DataRecord>
</sml:capabilities>

Fig. 7. “Depth Capability” description of a MicroCAT CTP Recorder in
SensorML

SensorML uses a definition attribute (which is used through-
out the SWE Common data types Quantity, Category, Count,
DataRecord, DataArray, etc) to uniquely identify terms by
pointing to a Uniform Resource Name (URN)9. It is impor-
tant to have a common representation for these definitions;
otherwise there will not be any mechanism to guarantee
the interoperability of different SensorML descriptions from
different organisations.

Currently SensorML’s mechanisms to resolve the URNs
are not finalised yet. This is where an ontology could be very
useful: the definition attribute could point to a term in an

8http://vast.uah.edu/SensorML
9http://www.w3.org/TR/uri-clarification/#urn-namespaces

ontology. So if there is a well-defined ontology for capabilities
of sensors and platforms, then one could use these terms in
SensorML definition attributes to allow that sensor system to
be discovered and/or evaluated. There are several activities
in public domain to create common vocabularies to address
this issue. For example, Marine Metadata Interoperability
(MMI)10 has defined vocabularies for sensor platforms in the
marine operations context, and Semantic Web for Earth and
Environmental Terminology (SWEET)11 has defined a list of
vocabularies to express Earth science data and information.

OntoSensor aims to create a prototype sensor knowledge
repository, which is compatible with the evolving Semantic
Web infrastructure [5], [10]. It has been used to mark-up
live data from sensors in a network to achieve efficient
data fusion. The design approach of OntoSensor has been a
compositional one. OntoSensor includes some concepts from
SensorML and refers to ISO 19115 for definitions regarding
geographic information. Also it has extended IEEE Suggested
Upper Merged Ontology (SUMO) upper-level ontology (e.g.
Sensor and Platform concepts of OntoSensor extend Measure-
mentDevice and TransportationDevice concepts of the IEEE
SUMO ontology.

Though OntoSensor is developed for data fusion some of
the concepts and relationships identified by it have influenced
our own ontology development efforts.

Sensor
Asset

Platform

Component CapabilitiesDescription

Measurand Phenomenon

hasCapabilities

measures

observable

is-a

is-a
attachedTo carries

GenericProperty

supportedApplication

Fig. 8. Selected concepts and relationships from OntoSensor

As Figure 8 shows Sensors and Platforms are assets, which
are of type Component. A sensor could be attached to a plat-
form (or platform could carry a sensor) and this is represented
by properties carries and attachedTo, respectively. A sensor
can measure multiple measurands; a particular measurand is
considered to be an observable instance of some phenomenon.
Components (i.e. sensors and platforms) have capabilities
(hasCapabilities), which are described (CapabilitiesDescrip-
tion) in terms of applications that they support (supportAppli-
cation). These applications are based on the generic properties
(field-of-view (FoV), radio frequency, zero-G output) of the
sensors and sensor platforms. Sensors are classified under the
energies that they observe (acoustic, chemical, magnetic etc.).

10http://marinemetadata.org
11http://sweet.jpl.nasa.gov/ontology



OntoSensor does not meet our own needs because,
under the requirements that it was created, a great
deal of emphasis has been put on modelling the data
from sensors, but not their functional aspects. We are
interested in the functional aspects of sensors and
sensor systems so that we can reason about them to
match sensing systems to the requirements of missions.

The various initiatives described above are relevant to
our work in different ways. SensorML and the other SWE
components provide a Service Oriented Architecture (SOA)
framework for deploying Web-enabled sensor systems; by
annotating SensorML descriptions using our ontology, we can
use the ontology to reason about which sensors to deploy, and
then use SWE to implement the deployment. OntoSensor and
CIMA have features compatible with our approach but they
do not satisfy our matchmaking requirements. This is perhaps
unsurprising, because these ontologies were both designed to
satisfy a different need: data fusion from a sensor / instrument
network. They lack the definitions of higher-level capabilities
needed to match assets to tasks (Figure 5). However, we expect
that it will be possible to align our ontology with OntoSensor,
and partially reuse instance data between them.

V. FIRST SOFTWARE PROTOTYPE

As a proof-of-concept of the proposed approach to sensor-
mission assignment, we have built a prototype version of
matchmaking software that utilizes both the mission scripts
and sensor ontology representations. This software allows a
commander to specify the information needs of a mission,
and obtain recommended assets to accomplish the mission.
The prototype is based on a preliminary ontology (Figure 5)
that accounts for many of the concepts in MMF.

To support the specification of intelligence requirements we
have included three types of requirements:

• Operational requirements: refer to the kind of ISR tasks
to be performed as part of an operation. These re-
quirements include five main categories (Reconnaissance,
Surveillance and Target Acquisition, Damage Assessment
and Artillery Adjustment) and more than twenty subcate-
gories (e.g. Maritime Reconnaissance, Constant Surveil-
lance, etc.). This integrates basic knowledge acquired
from relevant literature and a more detailed conceptu-
alization based on the CALL Thesaurus12.

• Intelligence disciplines: we include a taxonomy of intel-
ligence disciplines (IMINT, SIGINT, MASINT, etc.) that
is based on the Joint Capability Areas13 terminology and
the CALL Thesaurus)

• Some platform specific capabilities that allow the com-
mander to further constrain the kind of assets required (or
preferred) to accomplish a given mission. This knowledge
represents attributes that are specific to certain platform
types, such as the altitude and range of an UAV.

12http://call.army.mil/products/thesaur-frame.asp
13http://www.dtic.mil/futurejointwarfare/cap areas.htm

Fig. 9. Example of a platform specification: UAV Predator

In the current prototype we have focused on the UAV
domain; the resulting knowledge base includes instances rep-
resenting a dozen types of UAV and around 20 sensing devices
such as microphones and cameras. Figure 9 shows a platform
specification example; in particular, we show the specification
of a Predator, which is an instance of the MALE-UAV class.
It should be noted that some properties asserted for a given
individual are a logical consequence of the class definition;
for example, the property of providing constant surveillance
capability holds for the Predator because the MALE-UAV
class is a subclass of the EnduranceUAV class, which is
defined as providing constant surveillance.

Figure 10 shows an screenshot of the software prototype
that gives an idea of the kind of requirements used to specify
the ISR requirements of a mission. In the example the user has
selected IMINT and constant surveillance as the requirements
to be met. Figure 11 shows the set of recommended assets sug-
gested by the system to satisfy the former requirements. First,
the system recovers all the platforms that provide constant
surveillance; second, it retrieves all the sensors that support the
production of IMINT; and third, using the results of the former
steps, the the system selects valid platform configurations.
For example, an E-Hunter is UAV that can provide constant
surveillance and IMINT because it can carry both a TV camera
and also an infrared camera.

VI. CONCLUSIONS

In this paper we have argued for an approach to the
sensor-mission assignment problem grounded on the use of
ontologies: we have shown that this approach can be used
with deductive reasoning mechanisms to produce matches that
are logically sound. We have built on current best-practice in
analysing mission requirements and means by creating an on-
tology based on the military Missions and Means Framework.
In addition, we have created an ontology that refines the MMF
ontology deal with the ISR domain. We have reviewed existing
work in representing sensors and sources, and discussed why
these approaches are complementary, rather than alternatives to
our work. Finally, we have described a prototype software tool



Fig. 10. Example of requirements

Fig. 11. Example of recommended assets

that is an initial proof-of-concept of our proposed approach.
The current paper has focussed on pre-assignment of sensors

and sources to missions: we have not considered real-time
and dynamic aspects of the problem here. Future work will
expand the approach to consider these issues. Our ontology for
sensors and sources can easily be extended to include real-time
properties of the sensor, source, and platform instances (for
example, power levels, damage sustained, etc); in fact, many
of these properties are already defined in ontologies such as
those surveyed in the previous section. By incorporating such
properties we can reason about the real-time state of a sensor,
source, or platform, and consider re-assignment at mission run-
time.
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