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Abstract. Effective deployment and utilisation of limited and constrained intelligence,
surveillance and reconnaissance (ISR) resources is seen asa key issue in modern
network-centric joint-forces operations. In this chapter, we examine the application
of semantic matchmaking and argumentation technologies tothe management of ISR
resources in the context of coalition operations. We show how ontologies and reasoning
can be used to assign sensors and sources to meet the needs of missions, and we show
how argumentation can support the process of gathering and reasoning about uncertain
evidence obtained from various sources.

1. Introduction

Effective deployment and utilisation of limited and constrained intelligence, surveillance
and reconnaissance (ISR) resources is seen as a key issue in modern network-centric joint-
forces operations. For example, the 2004 reportJP 2-01 Joint and National Intelligence
Support to Military Operations states the problem in the following terms: “ISR resources
are typically in high demand and requirements usually exceed platform capabilities and
inventory. . . . The foremost challenge of collection management is to maximise the effec-
tiveness of limited collection resources within the time constraints imposed by operational
requirements.”1

Our work focuses upon the application of Virtual Organisation technologies to man-
age coalition resources. In the past we have shown an agent-based VOs can manage the
deployment and utilisation of network resources in a variety of domains, including e-
business, e-science, and e-response [1, 2]. Two distinguishing features of our work are (1)
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accomplished under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this
document are those of the author(s) and should not be interpreted as representing the official policies, either
expressed or implied, of the US Army Research Laboratory, the US Government, the UK Ministry of Defence
or the UK Government. The US and UK Governments are authorised to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.
1http://www.dtic.mil/doctrine/jel/newpubs/jp201print.pdf, pages III–10–11, accessed April 27, 2007.



2 Preece, Norman, Gomez and Oren

the use of semantically-rich representations of user requirements and resource capabili-
ties, to support matchmaking using ontologies and reasoning, and (2) the use of argumen-
tation to support negotiation over scarce resources, decisions about which resources to
use, and the combining of evidence from information-providing resources (e.g. sensors).

In this chapter, we examine the application of (1) and (2) to the management of ISR
resources in the context of coalition operations. The first part of the chapter describes
an ontology-based approach to the problem of assigning sensors and sources to meet the
needs of missions. The second part then looks at how argumentation and subjective logic
can facilitate the process of gathering uncertain evidencethrough actions collectively re-
ferred to as sensor probes, and combining that evidence intoa set of arguments in support
of, and in opposition to, a particular decision.

Our applications involve agents that must cooperate, but still try to maximise their
individual utilities, possibly to the detriment of other agents in the system. This type of
scenario often appears in military settings, including within coalition operations. Each
member of the coalition requires certain assets — includingphysical assets such as ma-
teriel (personnel, vehicles, equipment, etc), and information assets including various forms
of intelligence — to achieve their mission, but these assetsare oversubscribed. By advanc-
ing arguments as to why they should have the assets, the coalition members may make
their own missions more easy to achieve. However, they mighthave to gather additional
information so as to be able to justify their arguments, thusintroducing some form of
utility cost.

2. Semantic Matchmaking of Sensors and Missions

The assignment of ISR assets to multiple competing missionscan be seen as a process
comprising two main steps: (1) assessing the fitness for purpose of alternative ISR means
to accomplish a mission, and (2) allocating available assets to the missions. Our work
draws upon current military doctrine, specifically the Missions and Means Framework
(MMF) [3] which provides a model for explicitly specifying amission and quantitatively
evaluating the utility of alternative warfighting solutions: themeans.

Figure 1 shows how missions map to ISR means. Starting from the top left the di-
agram sketches the analysis of a mission as a top-down process that breaks a mission
into a collection of operations (e.g. search-and-rescue),each of which is broken down
further into a collection of distinct tasks having specific capability requirements (e.g.
wide-area surveillance). On the right hand side, the diagram depicts the analysis of capa-
bilities as a bottom-up process that builds up from elementary components (e.g. electro-
optical/infrared (EO/IR) camera) into systems (e.g. camera turret), and from systems up
into platforms equipped with or carrying those systems (e.g. an unmanned aerial vehicle
(UAV)).

The way MMF describes the linking between missions and meansnaturally fits the
notion of matchmaking. Matchmaking is basically the process of discovering, based on
a given request (e.g. ISR requirements), promising partners/resources (e.g. sensors) for
some kind of purpose (e.g. accomplishing a mission). Important issues arise when the
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FIGURE 1. Overview of the Mission and Means Framework (MMF)

search is not limited to identity matches but, as in real life, when the objective is find-
ing partners/resources suitable at least to some extent, or(when a single partner cannot
fulfil the request) to find a pool of cooperating partners (a sensor network, or a plat-
form equipped with several sensors) able to accomplish it. As this process may lead to
various possible matches, the notion of ranking becomes central: to provide a list of po-
tential partners ordered according to some criteria. Due tothe diversity of frameworks
of application, several communities have studied matchmaking through perspectives and
techniques. Recently, semantic matchmaking, which is based on the use of ontologies [4]
to specify components, has become a central topic of research in many communities,
including multi-agent Systems, Web services and Grid computing.

In particular, we propose the use of ontologies to support the following activities:

• specifying the requirements of a mission;
• specifying the capabilities provided by ISR assets (sensors, platforms and other

sources of intelligence, such as human beings);
• comparing — be a process of automated reasoning —the specification of a mission

against the specification of available assets to either decide whether there is a so-
lution (a single asset or combination of assets) that satisfies the requirements of a
mission, or alternatively providing a ranking of solutionsaccording to their relative
degree of utility to the mission.

2.1. Ontologies for matchmaking

People, organisations and software systems need to communicate and share information,
but due to different needs and background contexts, there can be widely varying view-
points and assumptions regarding what essentially the subject matter is. The lack of shared
understanding leads to poor communication between people and their organisations, se-
verely limits systems interoperability and reduces the potential for reuse and sharing.
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Ontologies2 aim at solving these problems. On the one hand, ontologies facilitate com-
munication and knowledge sharing by providing a unifying framework for parties with
different viewpoints. On the other hand, ontologies can improve interoperation and co-
operation by providing unambiguous semantics in a formal, machine-interpretable way.
Matchmaking can benefit from these general properties as faras the elements of the pro-
cess are distributed or there are several viewpoints; additionally, the use of semantically
rich specifications enable the use of specific forms of reasoning that are not available
when using a syntactic approach, such as for example subsumption and disjunction. Be-
low we provide a simple motivating example to illustrate on such forms of reasoning for
matchmaking.

FIGURE 2. Partial classification of unmanned aerial vehicles (UAVs)

Figure 2 depicts a partial classification of unmanned aerialvehicles (UAVs). The
figure shows six classes of UAV, and the various specialisation (subclass) relationships
among them. At the top of the classification, theUAV class encompasses all kinds of UAV,
which may range in cost from a few thousand dollars to tens of millions of dollars, and
range in capability from Micro Air Vehicles (MAV) weighing less than one pound to
aircrafts weighing over 40,000 pounds. In this example we include just three categories
that are specialisations of theUAV class; these are, from left to right: the Small UAV
(SUAV), designed to perform “over-the-hill” and “around-the-corner” reconnaissance; the
Tactical UAV (TUAV), which focuses on the close battle in direct response to a brigade
commander; and the Endurance UAV (EUAV), which supports a division in deep battle.
Further, we have included two categories that specialise the Endurance UAV class: the
Medium Altitude Long Endurance (MALE) UAV, designed to operate at altitudes between
5000 and 25000 feet, and the High Altitude Long Endurance (HALE) UAV, designed to
function as Low Earth Orbit satellites. The arcs between subclass relationships indicate a
disjoint relationship among subclasses; a disjoint relation among a set of classes entails

2For a modern definition of the term, we refer the reader to [5]:“an ontology is a set of logical axioms designed
to account for the intended meaning of a vocabulary”.
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that an individual cannot belong to more than one of those classes; for example, a UAV
that is classified as a Small UAV, can not be classified as beinga Tactical UAV. Next, we
introduce some basic examples illustrating specific forms of reasoning enabled by the use
of ontologies. Let us suppose that we have the following UAVsavailable for a mission:

• A Pioneer, which is aTUAV
• A Predator, which is aMALE-UAV
• A Global Hawk, which is aHALE-UAV

Now suppose that as part of a given mission apersistent-surveillance task over a
wide area is required to detect any suspicious movement. This kind of task is best served
by an Endurance UAV, since it is able to fly for long periods of time. From just the con-
cept definitions we know that: (1) thePioneer is not an endurance UAV (because of the
disjoint relationship amongEndurance-UAV andTUAV), and (2) both thePredator and
theGlobal Hawk areEndurance-UAVs (because of the subclass relationships)3. Therefore,
the matchmaking process will select both thePredator and theGlobal Hawk as the assets
satisfying the specified mission requirements.

Now, suppose that according to the weather forecast, stormsare very likely to occur
in the area of operations during the surveillance period. Then, the best option would be to
use aHALE-UAV, which has the capability of flying “above the weather”. Consequently,
the matchmaking process would select theGlobal Hawk as the only asset satisfying the
mission requirements.

The UAV examples introduced above refer to a simple form of matching relation-
ships known assubsumption, but it is possible to devise more complex information con-
tainment relationships and even an ordinal ranking scale comprising several degrees of
matching just by using the subclass relationship. Figure 3 represents graphically the main
kinds of matching relations that are found in the literaturein terms of information con-
tainment, using concepts from the ISR domain.Q denotes a query which specifies some
requirements to be met, which in our context are ISR requirements, andS1 − S5 de-
note the specification of components to be matched againstQ, which in our domain are
associated with ISR assets such as UAVs.

Commencing at the left, our queryQ specifies two basic requirements to be met:
(1) provideinfrared (IR) vision and (2) be able to carry outnight reconnaissance. Going
from left to right and top to bottom, the figure shows the specification for several assets
that verify different types of relation in terms of information containment. Below follows
a description of these matching relations listed in decreasing strength order:

1. ExactMatch(S1, Q) holds when the specification of a component provides exactly
the same type of information described by the query. In the example,S1 describes
an asset that provides IR vision and is designed to perform night reconnaissance
tasks, just as stated inQ. This is represented asS1 = Q.

2. Plugin(S2, Q) holds when the class of information described by the query subsumes
(i.e. is more general than) the class of information specified by the component. In

3Note that we only state minimum explicit information about the UAVs (e.g.Pioneer is-a Tactical-UAV);
everything else is inferred from the concept definitions (e.g. thePioneer is not aHALE-UAV).
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FIGURE 3. Basic matching relationships

the example, the asset described byS2 refers to aCooled FLIR (forward looking
IR), which is a specific type of IR camera. This is representedasQ ⊆ S2.

3. Subsumes (S3, Q) holds when the class of information described by the query is
subsumed by the specification of the component, i.e. when thespecification of the
component is more general than the query. In the example,S3 refers to an asset pro-
viding night vision capability, which is a more general concept thaninfrared vision,
and also provides night reconnaissance. This is represented asS3 ⊇ Q.

4. Overlaps(S4, Q): holds when the query and the specification share some informa-
tion, but neither one subsumes the other entirely. In our example,S4 describes an
asset that provides night reconnaissance as required byQ, but the first requirement
is not satisfied, since it carries a radar (SAR, Synthetic Aperture Radar) instead of
an IR camera, and these two concepts are disjoint. This is represented asS4 ∩ Q.

5. Disjoint(S4, Q): holds when there is no degree of information containment between
the specification of the component and the query. In the example, S5 describes an
asset that provides TV video and is suited to perform day reconnaissance tasks;
radar imagery is disjoint with IR vision, day reconnaissance is disjoint with night
reconnaissance, so there is no intersection or informationcontainment between the
concepts. This is represented asS4⊥Q

The kind of matching relationships introduced above are typically used to discover
software components or services satisfying some specific requirements. Herein we are
proposing to use these kinds of matching relations to discover ISR assets that satisfy
intelligence requirements. Although different matchmaking problems could seem very
similar in term of basic matching relationships used, they could differ when considering
the matching relationship at the component level, rather than at the attribute level.
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2.2. Matchmaking abstract architecture

A matchmaking application is not entirely characterised bythe semantic relationships that
might be established among concepts. An important issue of amatchmaking application
is the distinction between the attribute-level and the component-level: a component may
be described by different attributes, and so different matching schemas could be applied to
each attribute depending on the particular meaning or role it plays within the component.

In our application, we have identified two main kinds of components to be matched
against the ISR requirements of a mission, each one characterised by different attributes
that deserve a separate treatment. Note that the kind of capability requirements that are
relevant to select a specific kind of sensor are quite different from the requirements that
are relevant to select a platform. For example, in order to assess the utility of different sen-
sors it is very important to consider the kind of intelligence to be produced (e.g. Imagery
Intelligence (IMINT), Measurement and Signature Intelligence (MASINT), Signals Intel-
ligence (SIGINT), since each type of sensor provides information that supports a different
kind of intelligence (e.g. infrared cameras support IMINT,while acoustic sensors support
MASINT). Besides, to select a specific UAV for a reconnaissance mission there are other
factors to consider, such as the range to the targets of interest, the presence or absence of
enemy anti-air assets, and so on. In addition, UAVs are limited in the weight and type of
sensors they can carry, and the performance of some sensors may be influenced by con-
ditions that depend on the platform they are attached to, such as the altitude. Therefore,
one cannot select UAVs and sensors independently; instead,the interaction between these
components must also be taken into account.

FIGURE 4. Abstract matching architecture

To address the issues above, we define an abstract architecture based on three types
of components and three kinds of matching relations, as showed in Figure 4. In each case
we build on existing work in defining ontologies for the specific components:
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• Tasks are the actions to be performed in order to accomplish a mission. A task may
have attached environmental conditions (weather, terrain, enemy, etc) that are ex-
pected to impact the performance of a task. We seek to use standardised catalogues
of Tasks and Conditions such as those found in the Universal Joint Task List4

• Sensors are the assets that collect the information required to satisfy the intelligence
requirements of a mission. However, sensors do not operate as independent entities,
they have to be attached to (or carried by) devices that provide them with energy,
protection, mobility, etc. Several ontologies of sensors already exist, e.g. [6, 7].

• Platforms are the systems to which sensors are attached so as to get energy, protec-
tion, mobility, communication, etc. Platforms include both static and mobile systems
operating on land, in sea and air. Again, some work has already been done to create
ontologies of these, e.g. [8].

The three components involved and the dependencies betweenthem result in three differ-
ent matching relations, as follows:

• Task-Sensor matching: a sensorS matches a taskT , match(T, S), if S provides the
information collecting capabilities required to satisfy the intelligence requirements
of T .

• Task-Platform matching: a platformP matches a task T,match(T, P ), if P provides
the kind of ISR-supporting capabilities (mobility, survivability, communication) re-
quired to performT .

• Platform-Sensor matching: a sensorS matches a platformP , match(P, S), if S can
be carried by and is compatible with the characteristics ofP .

In order to satisfy the ISR requirements of a mission one needs to select both a platform
and a combination of sensors such that the three matching relations of the architecture are
satisfied simultaneously.

2.3. Towards a multidimensional solution

Although one can envisage a single ontology supporting the entire sensor-mission match-
making process, actually we adhere to the Semantic Web vision of multiple interlinking
ontologies covering different aspects of the domain. First, we provide an ontology based
on the Missions and Means Framework (MMF), which is basically a collection of con-
cepts and properties that are essential to reason about the process of analysing a mission
and attaching the means required to accomplish it (mission,task, capability, or asset).
Then we provide a second ontology that refines some of the generic concepts in the MMF
ontology so as to represent the ISR-specific concepts that constitute our particular ap-
plication domain. This second ontology comprises several areas frequently organised as
taxonomies, such as a classification of sensors (acoustic, optical, chemical, radar) and
information sources, a classification of platforms (air, sea, ground and underwater plat-
forms), a classification of mission types, or a classification of capabilities. As noted in
the previous section, there are existing ontologies covering at least part of each of these
domains.

4See http://www.dtic.mil/doctrine/jel/cjcsd/cjcsm/m350004c.pdf and http://www.daml.org/2002/08/untl/



Managing Intelligence Resources 9

FIGURE 5. Main ontological concepts and their relationships

Figure 5 shows a high level view of the main concepts and relationships that support
our semantic matchmaking approach. On the left hand side, wefind the concepts related
to the mission: a mission comprises several tasks that need to be accomplished. On the
right hand side we find the concepts related to the means: a sensor is a system that can be
carried by or constitutes part of a platform; inversely, a platform can accommodate or have
one or more systems, and both platforms and systems are assets; an asset provides one or
more capabilities; a capability can entail a number of more elementary capabilities, and
is required to perform certain type of tasks and inversely, atask is enabled by a number
of capabilities.

In the next section, we focus on the use of argumentation to manage the gathering of
evidence from a set of sensors and sources assigned to a task.

3. Arguing About Evidence in Partially Observable Domains

In this section, we examine how argument may be used to reasonabout sensor assignment
based on evidential and diagnostic reasoning. Informally,we are trying to address situ-
ations where different agents, each with their own goals andviewpoints, are attempting
to reach a shared agreement about the state of a subset of their environment. By reach-
ing agreement, they may take decisions about how their actions should be coordinated.
We further assume that the environment is partially observable, and that any information
about it is obtained through the use of (possibly incorrect)evidence. Finally, we assume
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that the agents are self interested. The argumentation approach has a number of advan-
tages over competing methods, including understandability, improved running time and
ease of knowledge representation.

Without a trusted third party, a centralised solution to this problem is difficult. Our
proposed approach involves the agents engaging in dialoguewith each other, exchanging
arguments, and obtaining evidence (possibly via existing sensors) for additional infor-
mation about the environment. By basing arguments on evidence, a shared world view
can be constructed. To tackle the problem, a representationmechanism for the environ-
ment, agents’ knowledge and arguments is required, as well as a method for determining
which conclusions are justified when opposing arguments interact. A specification is also
needed, detailing how dialogue may take place. Finally, agents must be able to decide
which arguments to advance, and what sensors to probe for evidence.

Prakken [10] identified these as the logical, dialectic, procedural and heuristic lay-
ers of an argument framework. Our logical layer is built around Subjective Logic [11],
allowing us to represent concepts such as likelihood and uncertainty in a concise and el-
egant manner. The way in which arguments are constructed in our framework and used
at the dialectic level is intended to support a rich representation of arguments; we are
able to represent concepts such as accrual of arguments, argument schemes and argument
reinforcement in a natural manner. While the logical and dialectic layers are domain in-
dependent, acting as a general argument framework, the explicit introduction of evidence
at the procedural level allows us to attack our problem.

Evidence is gathered via sensors, where a sensor refers to anything that can deter-
mine the state of a portion of the environment. Multiple sensors may exist for certain parts
of the environment, and some of these sensors may be more accurate than others. Finally,
sensors may not perform their services for free. Thus, sensors capture an abstract notion
of a source of evidence within our framework.

At the procedural level, agents engaging in dialogue, taking turns to advance argu-
ments and probe sensors in an attempt to achieve their goals.In this context, an agent’s
goal involves showing that a certain environment state holds. We assume that an agent
associates a utility with various goal states. Our heuristic layer guides an agent and tells
it what arguments to advance, and which sensors to probe during its turn in the dialogue
game.

The logic of our framework is built on Subjective Logic [11],which, in turn, is based
on Dempster-Schafer theory. We may assign anopinion to predicates representing por-
tions of the environment. These opinions are〈belief, disbelief, uncertainty〉 triples5.

Jøsang defined a large number of operators that are used to combine opinions, some
of which are familiar such as conjunction and disjunction, and some less so such as ab-
duction. We look at three operators, namely negation, discounting, and consensus.

The propositional negation operator calculates the opinion that a proposition does
not hold. A negated opinion’s belief is equal to the originalopinion’s disbelief, while the
original disbelief becomes the opinion’s belief. Uncertainty remains constant.

5This is in fact a simplification, Subjective Logic ordinarily uses 4-tuples, with the forth element representing
atomicity.
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Discounting is used to model hearsay. That is, given that an agent has an opinion
a about agentβ’s reliability, and thatβ has an opinionx about something, without any
additional information,α will have an opiniona⊗x, where⊗ is the discounting operator.

The independent consensus operator gives the opinion an imaginary agent would
have aboutx if it had to assign equal weighting to different opinionsx1, x2 about a state
of the worldx. It is represented asx1 ⊕ x2.

3.1. The Framework
Following Prakken’s model[10], we build our framework in layers, starting at the logical
layer, where we describe how an argument is constructed. In the dialectic layer, we look
at how arguments interact, and then show how agents may engage in dialogue in the
procedural layer. Finally, in the heuristic layer, we show how agents can decide which
lines of argument should be advanced in a dialogue.

Facts in our model are represented as grounded predicates, and have an associated
opinion. An argument is an instantiated argument scheme [12] linking facts to other facts.
Argument schemes are common, stereotypical patterns of reasoning, often taking on a
non-deductive or non-monotonic form. A simple argument scheme (Modus Ponens) could
be represented as follows:

(ModusPonens , {holds(A), implies(A, B)}, {holds(B))}, F, true)

Here,F is:

ω(holds(B)) =















〈0, 0, 1〉 b(holds(A)) < 0.5 or
b(implies(A, B)) < 0.5

ω(holds(A)) b(holds(A) < b(implies(A, B))
ω(implies(A, B) otherwise

whereholds(A) andimplies(A, B) are the premises of the argument scheme (i.e.
these facts must hold for the argument scheme to be instantiated into an argument).
holds(B) is the conclusion of the argument scheme (i.e. this fact may be instantiated
if the argument scheme is applicable),F is a function allowing us to compute the opinion
for the conclusion based on the opinions associated with thepremises, and finallytrue

is anapplicability function, stating any restrictions on the application of the argument
scheme. We make use of first order unification to transform an argument scheme into a
concrete argument. any symbols in capital letters are unified with facts, as done in prolog,
so as to instantiate the scheme.

Until now, we have described what individual arguments looklike. However, ar-
guments do not exist in isolation. Instead, they interact with each other, reinforcing or
weakening opinions about predicates in the process. Unlikemost other argumentation
frameworks, we do not explicitly model rebutting and undercutting attacks to show how
arguments interact. Instead, we use the concept of accrual of arguments to allow for both
argument strengthening and weakening. To represent interactions between arguments, we
must be able to answer the following question: what happens when two different argu-
ments have opinions about a (partially shared) set of predicates in their conclusions?

The independent consensus operator gives us a default technique for applying ac-
crual. Thus, given a set of arguments for and against a certain conclusion, and given no
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extra information, we apply the consensus operator based onthe opinions garnered from
the arguments to arrive at a final opinion for the conclusion.

While some researchers have suggested that accrual of arguments is an argument
scheme and can be treated as such (arguably, for example [13]), Prakken’s view, in our
understanding, is that the best way to handle accrual of arguments is by following a two
stage process. First, determine what arguments may enter into an accrual, and second
compute the effects of the accrual. We agree that accrual of arguments cannot be treated
as “just another” argument scheme due to its role and nature.We believe, however, that in
certain situations (usually obeying principle 1), accrualof evidence can be treated as an
argument scheme. The way in which our framework aligns thesetwo views is one of its
most unique aspects.

Informally, given multiple arguments for a conclusion, we apply the standard con-
sensus rule. However, if an argument is advanced which subsumes (some of the) argu-
ments which take part in the consensus, the subsumed argument’s conclusions are ig-
nored, and the subsuming rule is used instead. If any of thosearguments are attacked and
defeated, then our accrual rule is itself defeated, allowing all its undefeated (and previ-
ously subsumed) members to act again. If some of the newly activated sub-members were,
in turn, part of accruals, those accruals would enter into force again.

Given these underpinnings, it is possible to provide an algorithm for evaluating how
sets of instantiated arguments interact. Such an algorithmoperates in a way similar to
the way reasoning occurs in probabilistic networks, and is best explained by thinking of
our sets of arguments and predicates as a graph. Both predicates and arguments can be
thought of as nodes, with a directed edge between the two if the predicate appears in the
premises or conclusions of an argument. The edge enters the argument in the case of the
predicate being a premise, and exits the argument otherwise.

To operate, our algorithm requires an argument graph, as well as a starting set of
opinions. We assume that these opinions are not under dispute, and the associated nodes
must, therefore, have no edges leading into them. Our algorithm then propagates these
opinions forward through the graph, until all applicable arguments in the graph have been
taken into account. The specific details of the algorithm appear in [14].

At this point, we have a way of determining which conclusionshold given a set
of arguments. It is now possible to define a procedure for how the set of arguments is
generated. This can be done in two phases. In the first, a dialogue between agents may be
defined. This states when an agent may make an utterance, and what form these utterances
should take. We assume that agents take turns to speak, and that the game ends when both
agents pass (i.e. say nothing) during their turn.

Since we are interested in arguing about evidence in partially observable domains,
we assume that the environment holds a number of sensors. These sensors may be probed
to obtain opinions about the value of various relations. In practise, sensors may be agents,
static parts of the environment, or some other entity capable of providing an opinion
about the environment. We assume that multiple sensors can give opinions about the same
relations, and that some sensors are more reliable than others.
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During their turn, an agent may advance a connected set of arguments, and probe a
number of sensors. These sensor probings are one way to associate an opinion with a fact.
The other way is to have the fact be the conclusion of an argument.

At each step in the dialogue, an opinion is calculated for every fact. When partici-
pating in the game, an agent must decide which utterance to make. We associate a cost to
probing actions, and a utility gain to the showing that certain facts hold in the world. Then
the agent selects the utterance that maximises their utility. In effect, the agents perform
one step lookahead during their turn. Increasing the level of lookahead requires some form
of opponent modelling.

3.2. An example scenario

In this section, we describe a dialogue in a hypothetical sensor assignment scenario. A
commander, fronted by an agentα, has a mission (labelledmission(m)) to accomplish.
To successfully execute the mission, he requires the use of asensor package that can be
deployed on either a Predator UAV, or a Sentry UGV (with deployment on the UAV pre-
ferred by the commander). Another agentβ, is also present in the system. Both agents
share some knowledge, but both also have private beliefs.β could represent another com-
mander, a member of a coalition, or, though not explicitly examined in this scenario,
someone with their own goals, some of which may not be compatible with α’s mission.
We assume that certain sensors have already been deployed inthe field, and that the agents
have access to these and other sources of information such asGIS systems.α must argue
with β in an attempt to allocate resources for its mission. In the interests of clarity, the
description of the dialogue that follows is semi-formal.

Assume the agents have the following argument schemes available to them:
Name Premises Conclusions
ModPon A, B, implies(A, B, C) C

HumInt atLocation(E, L), claims(E, A), A

inArea(A, L)
MisAss capable(T, R), available(R), assigned(M, R)

hasTask(M, T )
M1 higherPriority(M ,N ), uses(N ,R) reassignReq(N ,M ,R)
M2 reassignReq(N, M, R), assigned(M, R)

reassign(M, R)
D1 ugv(U ), taskLocated(T ,L), capable(U )

hasRoad(L)
D2 ugv(U ), taskLocated(T ,L),mud(L) capable(U )
D3 ugv(U ), taskLocated(T ,L),mud(L), capable(U )

hasRoad(L)
We do not show the admissibility and mapping functions in this table, but assume

that they are unique to their associated argument scheme.
Some arguments here are very general, for example,ModPon represents standard

two premise Modus Ponens. Others, such asHumInt andMisAss, are specific to the
military domain. The former, similar to Walton’s argument from expert opinion [12], rep-
resents an argument based on information from “expert” human intelligence. The latter
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argument scheme allows agents to reason about when a resource may be assigned to a
task.M1 andM2 are very specific to the military domain, and represent how agents may
reason about task assignments, while the remaining argument schemes are used to reason
about the applicability of aUGV to different types of domains. Note thatD3 is able to
handle more specific cases thanD1 andD2.

α would like to assign either a UGV or a UAV to his mission (preferring a UAV),
and thus has the goals

assigned(mission(m), uav(predator)), assigned(mission(m), ugv(sentry))

With a higher utility being given to the former goal.
Both agents are aware of the following facts:
hasTask(mission(m), task(t)) higherPriority(mission(m), mission(n))
capable(t, uav(predator)) implies(recentRain(l), sand(l), mud(l))
ugv(sentry) taskLocated(t, l)
atLocation(h, l)

Agent α also believes thatavailable(uav(predator)), hasRoad(l) and, believes
there is a good chance that, if necessaryreassign(mission(m), uav(predator)) would
work. It also believes that no rain has fallen atl, and that the human intelligence assets
would agree with it, i.e.claim(h,¬recentRain(l)) andinArea(l,¬recentRain(l)).

Agents can probe a GIS system to determine the status ofhasRoad(l) at very little
utility cost, whilerecentRain(l) andsand(l) would costα more utility. Probing whether
the UAV is available can be done at very little cost by lookingat different inventory
databases. We also define two expensive sensors for the reassignment request and the
reassignment itself. These represent the cost of going up the chain of command to ask for
the UAV/UGV to be reassigned. Finally, it is possible to probe the opinion of the human
intelligence for details such as theclaim() predicate, but this is very expensive as the
location of the assets might be compromised.

Agentα begins the conversation by making the utterance

((MisAss, {hasTask(mission(m), task(t)), capable(t, uav(predator)),

available(uav(predator))}, {assigned(mission(m), uav(predator))}),

{available(uav(predator))})

In other words, it attempts to check that the predator UAV is available for the mis-
sion, and assign it (if possible). We assume that the probe succeeds.

β responds with its own sensor probe(, {available(uav(predator))}), as it be-
lieves the UAV is not available.

When this returns an opinion of〈0.1, 0.9, 0〉, α’s argument is nullified.α now has
two options. It may either ask to get the UAV reassigned to it (which would involve a large
cost in utility), or may attempt to use the UGV. Since low costsensor probes are available
to it, it will get a greater utility gain by attempting to use the UGV than by following the
former route. It thus makes the utterance:
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({(D1 , {hasRoad(l), taskLocated(t , l), ugv(sentry)}, {capable(t , ugv(sentry)}),

(MisAss, {hasTask(mission(m), task(t)), capable(t, ugv(sentry)),

available(ugv(sentry)))}, {assigned(mission(m), ugv(sentry))})},

{available(ugv(sentry)), hasRoad(l)})

In other words, it claims that since there are roads at the location, and since the UGV
is available, it can use it for its mission.

β believes that (due to rain and sand), mud exists at the location. This leads to the
utterance:

(({ModPon, {recentRain(l), sand(l), implies(recentRain(l), sand(l),mud(l))},

{mud(l)}), (D3, {ugv(sentry), taskLocated(t, l), mud(l), hasRoad(l)},

{capable(t, ugv(sentry))}), {recentRain(l), sand(l)})

ArgumentD3 subsumesD1, meaning thatcapable(t, ugv(sentry)) is no longer
believed.

α can now either probe human intelligence to check for the presence of mud, or
attempt to get the mission’s resources reassigned (we assume that the UAV was assigned
to mission(n)). The latter option yields it more utility, and it makes an utterance using
argument schemesM1 andM2, while probingreassign andreassignReq.

β has no more responses, and thus passes, as doesα, meaning that the UAV will be
assigned to the mission.

Obviously, the dialogue described here is simplified. In a realistic scenario, the
agents would have access to more information and many more argument schemes. Figure
6 illustrates the argument graph that resulted from this dialogue, though for clarity, part
of the graph is omitted.

While α has managed to get the UAV assigned, it paid a steep utility cost.α would
have preferred to get the UGV assigned to it without having tohave asked for the reas-
signment of resources, but would then not have been able to complete its mission (due to
β’s criticism).

Once the dialogue terminates, predicates are associated with opinions. Depending
on the form of the admissibility function, they, or their negation may be judged to be ad-
missible. Thus, for example, ifassigned(mission(m), uav(predator)) exceeds a cer-
tain threshold, it is assumed to be assigned to mission m.

3.3. Discussion

Our framework was designed to allow for complex argument to take place, particularly in
the domain of evidential reasoning. Uncertainty is a key feature of such domains, hence
our decision to base our framework on Subjective Logic. Catering for uncertainty in ar-
gumentation frameworks is by no means new. Pollock [13] madeprobability a central
feature of his OSCAR architecture. We disagree with his extensive use of the “weakest



16 Preece, Norman, Gomez and Orenh a s T a s k ( m i s s i o n ( m ) , t a s k ( t ) )c a p a b l e ( t , u a v ( p r e d a t o r ) )a s s i g n e d ( m i s s i o n ( m ) , u a v ( p r e d a t o r ) ) )a v a i l a b l e ( u a v ( p r e d a t o r ) ) c a p a b l e ( T , R ) , a v a i l a b l e ( R ) ,h a s T a s k ( M , t a s k ( T ) ) � > a s s i g n e d ( M , R )

u g v ( s e n t r y )h a s R o a d ( l )t a s k L o c a t e d ( t , l )c a p a b l e ( t , u g v ( s e n t r y ) )
u g v ( U ) , t a s k L o c a t e d ( T , L ) ,h a s R o a d ( L ) � > c a p a b l e ( T , u g v ( U ) )
u g v ( U ) , t a s k L o c a t e d ( T , L ) , m u d ( L )h a s R o a d ( L ) � > c a p a b l e ( T , u g v ( U ) )r e c e n t R a i n ( l )s a n d ( l )i m p l i e s ( r e c e n t R a i n ( l ) , s a n d ( l ) , m u d ( l ) )m u d ( l ) A , B , i m p l i e s ( A , B , C ) � > C

h i g h e r P r i o r i t y ( m i s s i o n ( m ) , m i s s i o n ( n ) )r e a s s i g n R e q ( m i s s i o n ( n ) , m i s s i o n ( m ) ,u a v ( p r e d a t o r ) )
h i g h e r P r i o r i t y ( M , N ) � > r e a s s i g n R e q ( N , M , R )
r e a s s i g n R e q u e s t ( N , M , R ) ,r e a s s i g n ( M , R ) � > a s s i g n e d ( M , R )r e a s s i g n ( m i s s i o n ( m ) , u a v ( p r e d a t o r ) )

FIGURE 6. The argument graph for the dialogue. The second use of
theMisAss argument scheme is omitted. Solid arrows indicate support
for an argument or predicate, while dashed lines represent an attack or
weakening. Arrows with no source indicate sensor probes.

link” principle, however, believing that, while it may holdin general, it is not always ap-
plicable (as mentioned in [15]. His use of probability, rather than uncertainty is another
point at which our approaches diverge.

Our use of Subjective Logic as the basis of the framework provides us with a large
amount of representational richness. Not only are we able torepresent probability (via
belief), but we are also able to speak about ignorance (via uncertainty). Differentiating
between these two concepts lets us represent defaults in a natural, and elegant way. A
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default can be represented by specifying, within theA function, that a conclusion may
hold as long as the disbelief for a premise remains below a certain threshold. By requiring
that belief remain above some threshold, normal premises can also be represented. A
simple example of this was provided in the previous section,where everyone, by default,
is assumed to be an expert. Burden of proof [16] is very closely related to defaults, and
we model it in the same way.

Argument schemes have been extensively discussed in the literature (see for exam-
ple [17, 12]). A small, but growing number of argumentation frameworks provide explicit
support for argument schemes (e.g. [18]). We believe that supporting argument schemes
in our framework not only enhances argument understanding,but that such support also
provides clear practical advantages, including the separation of domain and argument
knowledge, re-usability, and a possible reduction in computational complexity when de-
ciding what arguments to advance. The separation between arguments and agent knowl-
edge created by argument schemes raises the intriguing possibility of the modification
and dynamic creation of argument schemes during a dialogue.

The interplay between sensors and arguments is an area in which little formal work
has been done [19]. While our model is very simple, it elegantly captures the fact that
sensor data is inherently unreliable in many situations. Enriching our model of sensors is
one area in which we plan to do future work.

4. Conclusions

In this chapter, we have described how two aspects of our workon managing resources
in Virtual Organisations can be applied to the problem of deploying and utilising intel-
ligence assets in coalition operations. We have shown how modern military doctrine, in
the form of the Missions and Means Framework, can be capturedin a semantically for-
mal representation, allowing sensors and other ISR resources to be assigned to a mission
through matchmaking reasoning. This approach has the advantages that the MMF con-
cepts are familiar and transparent to users (e.g. commanders) and the assignments are
logically sound.

We have also shown how argumentation can be used to manage theprocess of gath-
ering and reasoning about evidence from sensors and sources. Because such sources are
fallible, and the military domain typically involves environments that are only partially
observable, we needed to devise a novel framework for argumentation in domains con-
taining uncertainty. The concept of argument schemes is built into the framework, al-
lowing for a rich set of primitives to be utilised in the argumentation process. We have
also attempted to cater for other important concepts in argument such as accrual of argu-
ments, defaults, and burden of proof. While the lowest levels of the framework are general
enough to be applied to almost any area in which argument is used, the higher levels are
aimed at evidential reasoning, incorporating abstract models of sensors and the notion of
obtaining information from the environment.
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