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Abstract. Effective deployment and utilisation of limited and coasteed intelligence,
surveillance and reconnaissance (ISR) resources is seankag issue in modern
network-centric joint-forces operations. In this chaptee examine the application
of semantic matchmaking and argumentation technologidisetonanagement of ISR
resources in the context of coalition operations. We shawdrttologies and reasoning
can be used to assign sensors and sources to meet the neddsiofispand we show
how argumentation can support the process of gatheringeastning about uncertain
evidence obtained from various sources.

1. Introduction

Effective deployment and utilisation of limited and coastied intelligence, surveillance
and reconnaissance (ISR) resources is seen as a key issadénmmetwork-centric joint-
forces operations. For example, the 2004 regBr2-01 Joint and National Intelligence
Support to Military Operations states the problem in the following terms: “ISR resources
are typically in high demand and requirements usually exqaatform capabilities and
inventory. ... The foremost challenge of collection mamaget is to maximise the effec-
tiveness of limited collection resources within the timestraints imposed by operational
requirements?

Our work focuses upon the application of Virtual Organsatechnologies to man-
age coalition resources. In the past we have shown an ageetib/yOs can manage the
deployment and utilisation of network resources in a vgradtdomains, including e-
business, e-science, and e-response [1, 2]. Two distiniggigeatures of our work are (1)
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Government purposes notwithstanding any copyright radiereon.
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the use of semantically-rich representations of user reménts and resource capabili-
ties, to support matchmaking using ontologies and reagoaimd (2) the use of argumen-
tation to support negotiation over scarce resources, idasigbout which resources to
use, and the combining of evidence from information-pringdesources (e.g. sensors).

In this chapter, we examine the application of (1) and (2htorhanagement of ISR
resources in the context of coalition operations. The fiest pf the chapter describes
an ontology-based approach to the problem of assigningseasd sources to meet the
needs of missions. The second part then looks at how argati@nand subjective logic
can facilitate the process of gathering uncertain evidémwaigh actions collectively re-
ferred to as sensor probes, and combining that evidenca sgbof arguments in support
of, and in opposition to, a particular decision.

Our applications involve agents that must cooperate, dutrgtto maximise their
individual utilities, possibly to the detriment of othereags in the system. This type of
scenario often appears in military settings, includinghimitcoalition operations. Each
member of the coalition requires certain assets — inclugimgsical assets such as ma-
teriel (personnel, vehicles, equipment, etc), and infaimnassets including various forms
of intelligence — to achieve their mission, but these ass®t®versubscribed. By advanc-
ing arguments as to why they should have the assets, thaiaoatiembers may make
their own missions more easy to achieve. However, they niighé to gather additional
information so as to be able to justify their arguments, timioducing some form of
utility cost.

2. Semantic Matchmaking of Sensorsand Missions

The assignment of ISR assets to multiple competing misstansbe seen as a process
comprising two main steps: (1) assessing the fitness forgserpf alternative ISR means
to accomplish a mission, and (2) allocating available astethe missions. Our work
draws upon current military doctrine, specifically the Ntiss and Means Framework
(MMF) [3] which provides a model for explicitly specifyingraission and quantitatively
evaluating the utility of alternative warfighting solut&rthemeans.

Figure 1 shows how missions map to ISR means. Starting frenah left the di-
agram sketches the analysis of a mission as a top-down préltasbreaks a mission
into a collection of operations (e.g. search-and-resasgh of which is broken down
further into a collection of distinct tasks having specifapability requirements (e.g.
wide-area surveillance). On the right hand side, the diagtapicts the analysis of capa-
bilities as a bottom-up process that builds up from elenrgrdamponents (e.g. electro-
optical/infrared (EO/IR) camera) into systems (e.g. camerret), and from systems up
into platforms equipped with or carrying those systems. @gunmanned aerial vehicle
(VAV)).

The way MMF describes the linking between missions and meansally fits the
notion of matchmaking. Matchmaking is basically the precefsdiscovering, based on
a given request (e.g. ISR requirements), promising pasfresources (e.g. sensors) for
some kind of purpose (e.g. accomplishing a mission). Ingmrissues arise when the
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FIGURE 1. Overview of the Mission and Means Framework (MMF)

search is not limited to identity matches but, as in real kfben the objective is find-
ing partners/resources suitable at least to some extefWwhmn a single partner cannot
fulfil the request) to find a pool of cooperating partners (asse network, or a plat-
form equipped with several sensors) able to accomplishstthds process may lead to
various possible matches, the notion of ranking becomeisateto provide a list of po-
tential partners ordered according to some criteria. Duiheodiversity of frameworks
of application, several communities have studied matchmgethrough perspectives and
techniques. Recently, semantic matchmaking, which isthasehe use of ontologies [4]
to specify components, has become a central topic of rdséarmany communities,
including multi-agent Systems, Web services and Grid camgu
In particular, we propose the use of ontologies to supperfahowing activities:

o specifying the requirements of a mission;

e specifying the capabilities provided by ISR assets (senguatforms and other
sources of intelligence, such as human beings);

e comparing — be a process of automated reasoning —the spicifiof a mission
against the specification of available assets to eitheiddeshether there is a so-
lution (a single asset or combination of assets) that sagisfie requirements of a
mission, or alternatively providing a ranking of soluticacording to their relative
degree of utility to the mission.

2.1. Ontologiesfor matchmaking

People, organisations and software systems need to coroateaind share information,
but due to different needs and background contexts, theréeavidely varying view-

points and assumptions regarding what essentially thestujatter is. The lack of shared
understanding leads to poor communication between peopléheir organisations, se-
verely limits systems interoperability and reduces thesptial for reuse and sharing.
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Ontologieg aim at solving these problems. On the one hand, ontolog@tdite com-
munication and knowledge sharing by providing a unifyingnfiework for parties with
different viewpoints. On the other hand, ontologies canromp interoperation and co-
operation by providing unambiguous semantics in a formalhme-interpretable way.
Matchmaking can benefit from these general properties assftire elements of the pro-
cess are distributed or there are several viewpoints;iaddity, the use of semantically
rich specifications enable the use of specific forms of reagotihat are not available
when using a syntactic approach, such as for example subsumand disjunction. Be-
low we provide a simple motivating example to illustrate aclsforms of reasoning for
matchmaking.

subclass

~_~ disjoint

Predator

FIGURE 2. Partial classification of unmanned aerial vehicles (UAVS

Figure 2 depicts a partial classification of unmanned aeghicles (UAVS). The
figure shows six classes of UAV, and the various speciatisgsubclass) relationships
among them. At the top of the classification, th&v class encompasses all kinds of UAV,
which may range in cost from a few thousand dollars to tensithoms of dollars, and
range in capability from Micro Air Vehicles (MAV) weighingeks than one pound to
aircrafts weighing over 40,000 pounds. In this example veduitte just three categories
that are specialisations of th#AV class; these are, from left to right: the Small UAV
(SUAV), designed to perform “over-the-hill” and “around-therger” reconnaissance; the
Tactical UAV (TUAV), which focuses on the close battle in direct response tagade
commander; and the Endurance UAYUAV), which supports a division in deep battle.
Further, we have included two categories that specialiseEtidurance UAV class: the
Medium Altitude Long EnduranceALE) UAV, designed to operate at altitudes between
5000 and 25000 feet, and the High Altitude Long Enduramze_g) UAV, designed to
function as Low Earth Orbit satellites. The arcs betweertkags relationships indicate a
disjoint relationship among subclasses; a disjoint relatimong a set of classes entails

2For a modern definition of the term, we refer the reader to*f5]:ontology is a set of logical axioms designed
to account for the intended meaning of a vocabulary”.
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that an individual cannot belong to more than one of thosssels; for example, a UAV
that is classified as a Small UAV, can not be classified as keifagtical UAV. Next, we
introduce some basic examples illustrating specific forfms@asoning enabled by the use
of ontologies. Let us suppose that we have the following UAVailable for a mission:

e A Pioneer, which is aTUAV
e A Predator, which is aMALE-UAV
o A Global Hawk, which is aHALE-UAV

Now suppose that as part of a given missiopessistent-surveillance task over a
wide area is required to detect any suspicious movemenrd.Kiihd of task is best served
by an Endurance UAYV, since it is able to fly for long periodsiofd. From just the con-
cept definitions we know that: (1) thoneer is not an endurance UAV (because of the
disjoint relationship amongndurance-UAV and TUAV), and (2) both thePredator and
the Global Hawk areEndurance-UAVS (because of the subclass relationsHigEherefore,
the matchmaking process will select both fhredator and theGlobal Hawk as the assets
satisfying the specified mission requirements.

Now, suppose that according to the weather forecast, starengery likely to occur
in the area of operations during the surveillance perio@nl khe best option would be to
use aHALE-UAV, which has the capability of flying “above the weather”. Camsently,
the matchmaking process would select @iebal Hawk as the only asset satisfying the
mission requirements.

The UAV examples introduced above refer to a simple form ofcimag relation-
ships known asubsumption, but it is possible to devise more complex information con-
tainment relationships and even an ordinal ranking scatepcising several degrees of
matching just by using the subclass relationship. FiguepBasents graphically the main
kinds of matching relations that are found in the literattwrgerms of information con-
tainment, using concepts from the ISR dom#@hdenotes a query which specifies some
requirements to be met, which in our context are ISR requéres) andS1 — S5 de-
note the specification of components to be matched ag@inathich in our domain are
associated with ISR assets such as UAVSs.

Commencing at the left, our quety specifies two basic requirements to be met:
(1) provideinfrared (IR) vision and (2) be able to carry oatght reconnaissance. Going
from left to right and top to bottom, the figure shows the sfieaiion for several assets
that verify different types of relation in terms of inforniaat containment. Below follows
a description of these matching relations listed in ded@ngestrength order:

1. ExactMatch(SL, Q) holds when the specification of a component provides exactly
the same type of information described by the query. In ttzargte,S1 describes
an asset that provides IR vision and is designed to perfoghtmeconnaissance
tasks, just as stated @. This is represented &8l = Q.

2. Plugin(S2, Q) holds when the class of information described by the qudrgsmes
(i.e. is more general than) the class of information spetifig the component. In

3Note that we only state minimum explicit information abolié tUAVs (e.g.Pioneer is-a Tactical-UAV);
everything else is inferred from the concept definitiong.(thePioneer is not aHALE-UAV).
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Q S1 S2
Infrared Vision Infrared Vision Cooled FLIR
Night Recon Night Recon Night Recon
Q
Q S1/Q 5
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S3 S4 S5
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S4
S5
L N B
Subsumes Overlaps Disjoint

FIGURE 3. Basic matching relationships

the example, the asset describedd®refers to aCooled FLIR (forward looking
IR), which is a specific type of IR camera. This is represeatsd C S2.

3. Subsumes (S3, Q) holds when the class of information described by the query is
subsumed by the specification of the component, i.e. whespheification of the
componentis more general than the query. In the exariplegfers to an asset pro-
viding night vision capability, which is a more general concept tharared vision,
and also provides night reconnaissance. This is represast O Q.

4. Overlaps($4, Q): holds when the query and the specification share some iaform
tion, but neither one subsumes the other entirely. In oumgia, S4 describes an
asset that provides night reconnaissance as requirél byt the first requirement
is not satisfied, since it carries a radar (SAR, Syntheticriype Radar) instead of
an IR camera, and these two concepts are disjoint. Thisiesepted as4 N Q.

5. Digoint($4, Q): holds when there is no degree of information containmetwéen
the specification of the component and the query. In the el@rip describes an
asset that provides TV video and is suited to perform daymeaissance tasks;
radar imagery is disjoint with IR vision, day reconnaissaigdisjoint with night
reconnaissance, so there is no intersection or informatotainment between the
concepts. This is representedss] )

The kind of matching relationships introduced above arectlly used to discover
software components or services satisfying some specifigirements. Herein we are
proposing to use these kinds of matching relations to disct®R assets that satisfy
intelligence requirements. Although different matchnmgkproblems could seem very
similar in term of basic matching relationships used, theyld differ when considering
the matching relationship at the component level, rathem it the attribute level.
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2.2. Matchmaking abstract architecture

A matchmaking application is not entirely characteriseth®/semantic relationships that
might be established among concepts. An important issuaradtanmaking application
is the distinction between the attribute-level and the congmt-level: a component may
be described by different attributes, and so different liagcschemas could be applied to
each attribute depending on the particular meaning or talkays within the component.

In our application, we have identified two main kinds of coments to be matched
against the ISR requirements of a mission, each one chassttdy different attributes
that deserve a separate treatment. Note that the kind obitipaequirements that are
relevant to select a specific kind of sensor are quite diffieirom the requirements that
are relevant to select a platform. For example, in orderdesssthe utility of different sen-
sors it is very important to consider the kind of intelligerto be produced (e.g. Imagery
Intelligence (IMINT), Measurement and Signature Intedlige (MASINT), Signals Intel-
ligence (SIGINT), since each type of sensor provides infiifom that supports a different
kind of intelligence (e.g. infrared cameras support IMIMRijle acoustic sensors support
MASINT). Besides, to select a specific UAV for a reconnaissamission there are other
factors to consider, such as the range to the targets oéstiehe presence or absence of
enemy anti-air assets, and so on. In addition, UAVs are dichih the weight and type of
sensors they can carry, and the performance of some senagreninfluenced by con-
ditions that depend on the platform they are attached tdy asche altitude. Therefore,
one cannot select UAVs and sensors independently; indteathteraction between these
components must also be taken into account.

TASK match(T,P) PLATFORM

match(T,S) @ match(P,S)

v

SENSOR

FIGURE 4. Abstract matching architecture

To address the issues above, we define an abstract arctetbeged on three types
of components and three kinds of matching relations, as stiémFigure 4. In each case
we build on existing work in defining ontologies for the sieactomponents:
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e Tasksare the actions to be performed in order to accomplish a arisgi task may
have attached environmental conditions (weather, teresiamy, etc) that are ex-
pected to impact the performance of a task. We seek to usgsstiised catalogues
of Tasks and Conditions such as those found in the Univeogat Jask List

e Sensorsare the assets that collect the information required taefyatie intelligence
requirements of a mission. However, sensors do not opesatelapendent entities,
they have to be attached to (or carried by) devices that geotfiem with energy,
protection, mobility, etc. Several ontologies of sensdnesaaly exist, e.g. [6, 7].

e Platforms are the systems to which sensors are attached so as to ggy,qretec-
tion, mobility, communication, etc. Platforms include betatic and mobile systems
operating on land, in sea and air. Again, some work has alreaen done to create
ontologies of these, e.g. [8].

The three components involved and the dependencies bethemrresult in three differ-
ent matching relations, as follows:

e Task-Sensor matching: a sensolS matches a task, match(T, S), if S provides the
information collecting capabilities required to satidfietintelligence requirements
of T.

o Task-Platformmatching: a platformP matches a task Tpatch(T, P), if P provides
the kind of ISR-supporting capabilities (mobility, surahility, communication) re-
quired to perforni’".

o Platform-Sensor matching: a sensoS matches a platfor®, match(P, S), if S can
be carried by and is compatible with the characteristicB of

In order to satisfy the ISR requirements of a mission one sieedelect both a platform
and a combination of sensors such that the three matchiatipres of the architecture are
satisfied simultaneously.

2.3. Towards a multidimensional solution

Although one can envisage a single ontology supportingitieeesensor-mission match-
making process, actually we adhere to the Semantic Webnvidionultiple interlinking
ontologies covering different aspects of the domain. Fiwst provide an ontology based
on the Missions and Means Framework (MMF), which is basjcaltollection of con-
cepts and properties that are essential to reason aboutdbesg of analysing a mission
and attaching the means required to accomplish it (missask, capability, or asset).
Then we provide a second ontology that refines some of theiigamancepts in the MMF
ontology so as to represent the ISR-specific concepts thetiaate our particular ap-
plication domain. This second ontology comprises seveedafrequently organised as
taxonomies, such as a classification of sensors (acousticag chemical, radar) and
information sources, a classification of platforms (aig,sground and underwater plat-
forms), a classification of mission types, or a classificatid capabilities. As noted in
the previous section, there are existing ontologies cogeati least part of each of these
domains.

4See http:/iwww.dtic.mil/doctrine/jel/cjcsd/cjcsm/nB®4c.pdf and http://www.daml.org/2002/08/untl/
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FIGURE 5. Main ontological concepts and their relationships
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Figure 5 shows a high level view of the main concepts andioglships that support
our semantic matchmaking approach. On the left hand sidéind¢he concepts related
to the mission: a mission comprises several tasks that reelbd accomplished. On the
right hand side we find the concepts related to the meanssasisma system that can be
carried by or constitutes part of a platform; inversely,atfolrm can accommodate or have
one or more systems, and both platforms and systems ars;amseisset provides one or
more capabilities; a capability can entail a number of méeenentary capabilities, and
is required to perform certain type of tasks and inversetgsé is enabled by a number
of capabilities.

In the next section, we focus on the use of argumentation toage the gathering of
evidence from a set of sensors and sources assigned to a task.

3. Arguing About Evidence in Partially Observable Domains

In this section, we examine how argument may be used to redsmnn sensor assignment
based on evidential and diagnostic reasoning. Informaiyare trying to address situ-
ations where different agents, each with their own goals\aedpoints, are attempting
to reach a shared agreement about the state of a subsetraérthizgbnment. By reach-
ing agreement, they may take decisions about how theirrecgbould be coordinated.
We further assume that the environment is partially obddeyand that any information
about it is obtained through the use of (possibly incorreetjlence. Finally, we assume
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that the agents are self interested. The argumentatiomagipthas a number of advan-
tages over competing methods, including understandgbitifproved running time and
ease of knowledge representation.

Without a trusted third party, a centralised solution t® flwioblem is difficult. Our
proposed approach involves the agents engaging in dialwigh@ach other, exchanging
arguments, and obtaining evidence (possibly via existengars) for additional infor-
mation about the environment. By basing arguments on ev&lemn shared world view
can be constructed. To tackle the problem, a representatgmianism for the environ-
ment, agents’ knowledge and arguments is required, as wellnaethod for determining
which conclusions are justified when opposing argumengsact. A specification is also
needed, detailing how dialogue may take place. Finallyntgmust be able to decide
which arguments to advance, and what sensors to probe fiberese.

Prakken [10] identified these as the logical, dialecticcprtural and heuristic lay-
ers of an argument framework. Our logical layer is built andSubjective Logic [11],
allowing us to represent concepts such as likelihood andrteiaty in a concise and el-
egant manner. The way in which arguments are constructedriframework and used
at the dialectic level is intended to support a rich repregen of arguments; we are
able to represent concepts such as accrual of argumerusyangschemes and argument
reinforcement in a natural manner. While the logical andediic layers are domain in-
dependent, acting as a general argument framework, thigigxpiroduction of evidence
at the procedural level allows us to attack our problem.

Evidence is gathered via sensors, where a sensor refergtturamthat can deter-
mine the state of a portion of the environment. Multiple seasnay exist for certain parts
of the environment, and some of these sensors may be moratethan others. Finally,
sensors may not perform their services for free. Thus, ssrcspture an abstract notion
of a source of evidence within our framework.

At the procedural level, agents engaging in dialogue, takimns to advance argu-
ments and probe sensors in an attempt to achieve their dgodlds context, an agent’s
goal involves showing that a certain environment state 10/ assume that an agent
associates a utility with various goal states. Our heurlatfer guides an agent and tells
it what arguments to advance, and which sensors to probeglitsiturn in the dialogue
game.

The logic of our framework is built on Subjective Logic [1&}hich, in turn, is based
on Dempster-Schafer theory. We may assigrogimion to predicates representing por-
tions of the environment. These opinions &die f, disbelie f, uncertainty) triples.

Jgsang defined a large number of operators that are used bireapinions, some
of which are familiar such as conjunction and disjunctiamj aome less so such as ab-
duction. We look at three operators, namely negation, disting, and consensus.

The propositional negation operator calculates the opitthat a proposition does
not hold. A negated opinion’s belief is equal to the origiopinion’s disbelief, while the
original disbelief becomes the opinion’s belief. Uncertgiremains constant.

5This is in fact a simplification, Subjective Logic ordingriises 4-tuples, with the forth element representing
atomicity.
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Discounting is used to model hearsay. That is, given thatg@mtahas an opinion
a about ageng’s reliability, and thatg has an opinior: about something, without any
additional informationg will have an opinioru ® x, where® is the discounting operator.

The independent consensus operator gives the opinion agirierg agent would
have about if it had to assign equal weighting to different opinians x5 about a state
of the worldz. Itis represented ag, @ z».

3.1. The Framework

Following Prakken’s model[10], we build our framework iryéas, starting at the logical
layer, where we describe how an argument is constructetieldialectic layer, we look
at how arguments interact, and then show how agents may engatjalogue in the
procedural layer. Finally, in the heuristic layer, we shaswhagents can decide which
lines of argument should be advanced in a dialogue.

Facts in our model are represented as grounded predicatebase an associated
opinion. An argument is an instantiated argument schenjdifiking facts to other facts.
Argument schemes are common, stereotypical patterns sbm@zy, often taking on a
non-deductive or non-monotonic form. A simple argumenéesed (Modus Ponens) could
be represented as follows:

(ModusPonens, {holds(A),implies(A, B)}, {holds(B))}, F, true)
Here,Fis:

(0,0,1) b(holds(A)) < 0.5 or
_ b(implies(A, B)) < 0.5
W(holds(B) =, holds(A))  blholds(A) < blimplics(A. B))

w(implies(A, B) otherwise

whereholds(A) andimplies(A, B) are the premises of the argument scheme (i.e.
these facts must hold for the argument scheme to be indieahtiato an argument).
holds(B) is the conclusion of the argument scheme (i.e. this fact nejnktantiated
if the argument scheme is applicablg)js a function allowing us to compute the opinion
for the conclusion based on the opinions associated witlptbmises, and finallyrue
is anapplicability function, stating any restrictions on the application & strgument
scheme. We make use of first order unification to transformrganaent scheme into a
concrete argument. any symbols in capital letters are aniith facts, as done in prolog,
S0 as to instantiate the scheme.

Until now, we have described what individual arguments Itik&. However, ar-
guments do not exist in isolation. Instead, they intera¢hwach other, reinforcing or
weakening opinions about predicates in the process. Unfi@st other argumentation
frameworks, we do not explicitly model rebutting and undetiog attacks to show how
arguments interact. Instead, we use the concept of acdragayoments to allow for both
argument strengthening and weakening. To represent atii@na between arguments, we
must be able to answer the following question: what happdrenvtwo different argu-
ments have opinions about a (partially shared) set of pagebdn their conclusions?

The independent consensus operator gives us a defauliqeehior applying ac-
crual. Thus, given a set of arguments for and against a nestaiclusion, and given no
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extra information, we apply the consensus operator baséaeoopinions garnered from
the arguments to arrive at a final opinion for the conclusion.

While some researchers have suggested that accrual of engsiis an argument
scheme and can be treated as such (arguably, for examp)e IPt8kken'’s view, in our
understanding, is that the best way to handle accrual ofhaegts is by following a two
stage process. First, determine what arguments may enteaimaccrual, and second
compute the effects of the accrual. We agree that accruabofi@ents cannot be treated
as “just another” argument scheme due to its role and natdedaelieve, however, that in
certain situations (usually obeying principle 1), accrofaévidence can be treated as an
argument scheme. The way in which our framework aligns thesesiews is one of its
most unique aspects.

Informally, given multiple arguments for a conclusion, weply the standard con-
sensus rule. However, if an argument is advanced which sudsiisome of the) argu-
ments which take part in the consensus, the subsumed argjsroenclusions are ig-
nored, and the subsuming rule is used instead. If any of th@genents are attacked and
defeated, then our accrual rule is itself defeated, allgvah its undefeated (and previ-
ously subsumed) members to act again. If some of the newlated sub-members were,
in turn, part of accruals, those accruals would enter intod@again.

Given these underpinnings, it is possible to provide anrétyo for evaluating how
sets of instantiated arguments interact. Such an algorithenates in a way similar to
the way reasoning occurs in probabilistic networks, ances lexplained by thinking of
our sets of arguments and predicates as a graph. Both plesiemad arguments can be
thought of as nodes, with a directed edge between the twe iptadicate appears in the
premises or conclusions of an argument. The edge entersghmant in the case of the
predicate being a premise, and exits the argument otherwise

To operate, our algorithm requires an argument graph, dsasel starting set of
opinions. We assume that these opinions are not under dispud the associated nodes
must, therefore, have no edges leading into them. Our @hgorihen propagates these
opinions forward through the graph, until all applicablguanents in the graph have been
taken into account. The specific details of the algorithmeapin [14].

At this point, we have a way of determining which conclusitiodd given a set
of arguments. It is now possible to define a procedure for Hmwset of arguments is
generated. This can be done in two phases. In the first, agdialbetween agents may be
defined. This states when an agent may make an utterance hafbnm these utterances
should take. We assume that agents take turns to speak,anddtyame ends when both
agents pass (i.e. say nothing) during their turn.

Since we are interested in arguing about evidence in pigridkervable domains,
we assume that the environment holds a number of sensorse Skasors may be probed
to obtain opinions about the value of various relations.ricfise, sensors may be agents,
static parts of the environment, or some other entity capablproviding an opinion
about the environment. We assume that multiple sensorsieanginions about the same
relations, and that some sensors are more reliable tharsothe
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During their turn, an agent may advance a connected set ofragts, and probe a
number of sensors. These sensor probings are one way tagassotopinion with a fact.
The other way is to have the fact be the conclusion of an argume

At each step in the dialogue, an opinion is calculated foryefect. When partici-
pating in the game, an agent must decide which utteranceke.niée associate a cost to
probing actions, and a utility gain to the showing that dartacts hold in the world. Then
the agent selects the utterance that maximises theiryutititeffect, the agents perform
one step lookahead during their turn. Increasing the le\leb&kahead requires some form
of opponent modelling.

3.2. An example scenario

In this section, we describe a dialogue in a hypotheticat@eassignment scenario. A
commander, fronted by an agenthas a mission (labellegission(m)) to accomplish.
To successfully execute the mission, he requires the usesefisor package that can be
deployed on either a Predator UAV, or a Sentry UGV (with dgplent on the UAV pre-
ferred by the commander). Another agehtis also present in the system. Both agents
share some knowledge, but both also have private beliefsuld represent another com-
mander, a member of a coalition, or, though not explicitharained in this scenario,
someone with their own goals, some of which may not be corigatiith o’s mission.
We assume that certain sensors have already been depldpedield, and that the agents
have access to these and other sources of information suelsas/stemsa must argue
with G in an attempt to allocate resources for its mission. In therests of clarity, the
description of the dialogue that follows is semi-formal.

Assume the agents have the following argument schemeshbletb them:

Name Premises Conclusions

ModPon A, B,implies(A, B, C) C

HumlInt atLocation(E, L), claims(E, A), A
inArea(A, L)

MisAss  capable(T, R), available(R), assigned(M, R)
hasTask(M,T)

M, higherPriority(M, N), uses(N, R) reassignReq(N, M, R)

My reassignReq(N, M, R), assigned(M, R)
reassign(M, R)

D, ugv(U), taskLocated (T, L), capable(U)
hasRoad(L)

Dy ugv(U), taskLocated (T, L), mud(L)  capable(U)

Ds ugv(U), taskLocated (T, L), mud(L), capable(U)
hasRoad(L)

We do not show the admissibility and mapping functions is table, but assume
that they are unique to their associated argument scheme.

Some arguments here are very general, for exanigle] Pon represents standard
two premise Modus Ponens. Others, sucl{asniInt and MisAss, are specific to the
military domain. The former, similar to Walton’s argumerdrh expert opinion [12], rep-
resents an argument based on information from “expert” umglligence. The latter
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argument scheme allows agents to reason about when a resoaycbe assigned to a
task.M; and M- are very specific to the military domain, and represent hognggmay
reason about task assignments, while the remaining argistleemes are used to reason
about the applicability of & GV to different types of domains. Note that; is able to
handle more specific cases th@n and Ds.

« would like to assign either a UGV or a UAV to his mission (preifeg a UAV),
and thus has the goals

assigned(mission(m), uav(predator)), assigned(mission(m), ugv(sentry))

With a higher utility being given to the former goal.
Both agents are aware of the following facts:
hasTask(mission(m),task(t)) higherPriority(mission(m), mission(n))
capable(t, uav(predator)) implies(recentRain(l), sand(l), mud(l))
ugv(sentry) taskLocated(t,1)
atLocation(h, 1)

Agent « also believes thatvailable(uav(predator)), hasRoad(l) and, believes
there is a good chance that, if necessanyssign(mission(m), uav(predator)) would
work. It also believes that no rain has fallen/aand that the human intelligence assets
would agree with it, i.eclaim(h, —recent Rain(l)) andin Area(l, —recent Rain(l)).

Agents can probe a GIS system to determine the stathg<dRoad(l) at very little
utility cost, whilerecent Rain(l) andsand(l) would costo more utility. Probing whether
the UAV is available can be done at very little cost by lookagdifferent inventory
databases. We also define two expensive sensors for thégreasst request and the
reassignment itself. These represent the cost of goingaupttiin of command to ask for
the UAV/UGYV to be reassigned. Finally, it is possible to pgdbe opinion of the human
intelligence for details such as thé&zim() predicate, but this is very expensive as the
location of the assets might be compromised.

Agenta begins the conversation by making the utterance

((MisAss, {hasTask(mission(m),task(t)), capable(t, uav(predator)),
available(uav(predator))}, {assigned(mission(m), uav(predator))}),

{available(uav(predator))})

In other words, it attempts to check that the predator UAWailable for the mis-
sion, and assign it (if possible). We assume that the probeesals.

B responds with its own sensor probg available(uav(predator))}), as it be-
lieves the UAV is not available.

When this returns an opinion @6.1, 0.9, 0), «'s argument is nullifieda now has
two options. It may either ask to get the UAV reassigned twiti¢h would involve a large
cost in utility), or may attempt to use the UGV. Since low cgestisor probes are available
to it, it will get a greater utility gain by attempting to udeetUGV than by following the
former route. It thus makes the utterance:
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({(Dy,{hasRoad(l), taskLocated(t, 1), ugv(sentry)}, { capable(t, ugv(sentry)}),
(MisAss, {hasTask(mission(m),task(t)), capable(t, ugv(sentry)),
available(ugv(sentry)))}, {assigned(mission(m), ugv(sentry))})},
{available(ugv(sentry)), hasRoad(l)})

In other words, it claims that since there are roads at thettilme, and since the UGV
is available, it can use it for its mission.

5 believes that (due to rain and sand), mud exists at the ttafihis leads to the
utterance:

(({ModPon, {recentRain(l), sand(l), implies(recentRain (1), sand (1), mud (1))},
{mud(l)}), (D3, {ugv(sentry), task Located(t,l), mud(l), hasRoad(l) },
{capable(t, ugv(sentry))}), {recent Rain(l), sand(l)})

Argument D3 subsumedD;, meaning thatapable(t, ugv(sentry)) is no longer
believed.

« can now either probe human intelligence to check for thegmes of mud, or
attempt to get the mission’s resources reassigned (we adhainthe UAV was assigned
to mission(n)). The latter option yields it more utility, and it makes atesénce using
argument scheme¥/; and M, while probingreassign andreassignReq.

[ has no more responses, and thus passes, aswoesaning that the UAV will be
assigned to the mission.

Obviously, the dialogue described here is simplified. In @isdc scenario, the
agents would have access to more information and many mguenant schemes. Figure
6 illustrates the argument graph that resulted from thifdize, though for clarity, part
of the graph is omitted.

While o has managed to get the UAV assigned, it paid a steep utilgy cavould
have preferred to get the UGV assigned to it without havingeawee asked for the reas-
signment of resources, but would then not have been ablentplete its mission (due to
0'’s criticism).

Once the dialogue terminates, predicates are associatedpinions. Depending
on the form of the admissibility function, they, or their @¢ign may be judged to be ad-
missible. Thus, for example, ifssigned(mission(m), uav(predator)) exceeds a cer-
tain threshold, it is assumed to be assigned to mission m.

3.3. Discussion

Our framework was designed to allow for complex argumersalke place, particularly in
the domain of evidential reasoning. Uncertainty is a keyuieaof such domains, hence
our decision to base our framework on Subjective Logic. @agefor uncertainty in ar-
gumentation frameworks is by no means new. Pollock [13] madbability a central
feature of his OSCAR architecture. We disagree with hisrestte use of the “weakest
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hasTask(mission(m),task(t)) ——— . capable(T,R),available(R),

/ hasTask(M,task(T)) -> assigned(M,R)

capable(t,uav(predator))

--% available(uav(predator))

higherPriority(M,N)->reassignReq(N,M,R)

assigned(mission(m),uav(predator)))
higherPriority(mission(m),mission(n

reassignReq(mission(n),mission(m),

ignR t(N,M,R
uav(predator)) — 5 reassignRequest(N,M,R),

reassign(M,R) -> assigned(M,R)

—® reassign(mission(m),uav(predator))

ugv(sentry) _» ugv(U),taskLocated(T,L),

’/_.y hasRoad(L) -> capable(T,ugv(U))
A

taskLocated(t,l)

__p hasRoad(l) !

ugv(U),taskLocalted(T,L),mud(L)
capable(t,ugv(sentry)) €--------~""7"777 hasRoad(L) -> capable(T,ugv(U))

recentRain(l)
—>

sand(l)
—>
A,B,implies(A,B,C)->C

mud(l) <
implies(recentRain(l),sand(l),mud(l))

FIGURE 6. The argument graph for the dialogue. The second use of
the MisAss argument scheme is omitted. Solid arrows indicate support
for an argument or predicate, while dashed lines represeattack or
weakening. Arrows with no source indicate sensor probes.

link” principle, however, believing that, while it may hold general, it is not always ap-
plicable (as mentioned in [15]. His use of probability, etithan uncertainty is another
point at which our approaches diverge.

Our use of Subjective Logic as the basis of the frameworkiges/us with a large
amount of representational richness. Not only are we ablegoesent probability (via
belief), but we are also able to speak about ignorance (wianginty). Differentiating
between these two concepts lets us represent defaults itueahand elegant way. A
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default can be represented by specifying, within théunction, that a conclusion may
hold as long as the disbelief for a premise remains belowtaicghreshold. By requiring

that belief remain above some threshold, normal premisesatsd be represented. A
simple example of this was provided in the previous sectidrere everyone, by default,
is assumed to be an expert. Burden of proof [16] is very cjomedhted to defaults, and
we model it in the same way.

Argument schemes have been extensively discussed indhatlite (see for exam-
ple [17, 12]). A small, but growing number of argumentaticanieworks provide explicit
support for argument schemes (e.g. [18]). We believe thgt@ing argument schemes
in our framework not only enhances argument understanunghat such support also
provides clear practical advantages, including the séiparaf domain and argument
knowledge, re-usability, and a possible reduction in cotaenal complexity when de-
ciding what arguments to advance. The separation betwgemants and agent knowl-
edge created by argument schemes raises the intriguingppios®f the modification
and dynamic creation of argument schemes during a dialogue.

The interplay between sensors and arguments is an areach \ittle formal work
has been done [19]. While our model is very simple, it elelgagaptures the fact that
sensor data is inherently unreliable in many situationsiddimg our model of sensors is
one area in which we plan to do future work.

4. Conclusions

In this chapter, we have described how two aspects of our wonkanaging resources
in Virtual Organisations can be applied to the problem oflogipg and utilising intel-
ligence assets in coalition operations. We have shown hodemmomilitary doctrine, in
the form of the Missions and Means Framework, can be capiaracdsemantically for-
mal representation, allowing sensors and other ISR ressuoche assigned to a mission
through matchmaking reasoning. This approach has the talyesthat the MMF con-
cepts are familiar and transparent to users (e.g. commgnded the assignments are
logically sound.

We have also shown how argumentation can be used to managetiess of gath-
ering and reasoning about evidence from sensors and soB@esuse such sources are
fallible, and the military domain typically involves engimnments that are only partially
observable, we needed to devise a novel framework for argtatien in domains con-
taining uncertainty. The concept of argument schemes i ibtd the framework, al-
lowing for a rich set of primitives to be utilised in the argenation process. We have
also attempted to cater for other important concepts inraggu such as accrual of argu-
ments, defaults, and burden of proof. While the lowest lewéthe framework are general
enough to be applied to almost any area in which argumeneid, ulse higher levels are
aimed at evidential reasoning, incorporating abstractetwaf sensors and the notion of
obtaining information from the environment.
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