
Commitment Management Through Constraint Reification

Stuart Chalmers Alun Preece Timothy J. Norman Peter M.D. Gray
Department of Computing Science, University of Aberdeen,

Kings College, Aberdeen, AB24 3UE, Scotland, UK.
{schalmer,apreece,tnorman,pgray}@csd.abdn.ac.uk

Abstract

In a virtual organisation (VO), a group of cooperating
agents may offer resources (or services) consisting of all,
or part, of the sum of their individual contributions. Some
of these resources may already be in use for certain time
periods (existing commitments), and these existing commit-
ments may vary in value to the VO. Using constraint reifi-
cation and cumulative scheduling methods, we investigate
ways in which agents may manage their resources and exist-
ing commitments when faced with a decision to take on new
commitments. We describe a technique that allows an agent
to intelligently construct satisfiable permutations consist-
ing of existing and new commitments, and use preference
and quality information to choose between these permuta-
tions. We show how constraint reification is used to model
whether commitments are breakable/re-negotiable and how
this influences the permutations available to the agents.

1. Introduction and Motivation

A virtual organisation (VO) is a grouping of semi-
independent autonomous agents (representing different in-
dividuals or organisations) each of which has a range of
service-providing capabilities and resources at their dis-
posal. These agents co-exist and often compete with
one another in a virtual marketplace environment. Each
agent attempts to sell its services in a way that max-
imises their individual gain, by advertising the services
to potential customers in terms of the cost and quali-
ties of the services. There are occasions where one or
more of the agents may realise there are potential ben-
efits to be obtained from pooling resources, either with
a partner offering complementary expertise (to pro-
vide a new type of service package), or with a direct
competitor (by forming a coalition). When this oppor-
tunity for pooling is identified, the potential partners go
through a process of trying to form a new VO to ex-
ploit the perceived niche.

Consider two examples:

• A high bandwidth mobile service provider may agree
to collaborate with a streamed video content provider
in the delivery of such content as a service to mobile
devices. This corresponds to a new type of packaged
service.

• A pair of relatively small airline companies with com-
plementary routes agree to form a coalition and coor-
dinate their services so that they may offer flights be-
tween a wider range of destinations, with a view to be-
coming more competitive in this market.

The problem of VO formation is addressed in detail
in [10]. If the agents succeed in forming a VO, the collec-
tion of partners will then act as a single conceptual unit in
the context of providing the new service (though they will
likely retain their individual identity outside this context). In
general, each participating agent will commit some part of
its available service-providing capacity to the VO; it will re-
tain the remaining portion either to offer other services out-
with the VO (perhaps as a partner in some other VO), or
to expand the collective services provided by the VO. Ev-
ery entity participating in a VO therefore needs a reasonably
sophisticated decision-making capability to manage its ex-
isting commitments, and decide when to take on new com-
mitments. Moreover, the VO itself needs this capability as a
whole.

When an agent (or coalition of agents) receives a request
to agree to the provision of the resources under its man-
agement, it may or may not be able to fulfill this request
alongside existing commitments. In essence, if it were to
asceed to the new request, the problem of allocating its re-
sources under commitments it has made will become over-
constrained. The agent (or group) then has a choice to com-
mit to the new request — and break one or more existing
commitments — or to reject the request. This choice may
depend on influences such as the value of existing com-
mitments, who the commitment is for, and whether it is re-
negotiable.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

Figure 1. The agent decision making process.

The various decision-making possibilities can be enu-
merated from the point-of-view of a single service provider
agent. The purpose of such an agent is to be able to create a
bid in reply to a call for services, and decide how much re-
source it can, and more importantly, how much resource it
wants to provide as a bid for the procurement of that service.
Furthermore, any agent may, when considering what to of-
fer, opt to attempt to form a VO by recruiting partners if it
identifies a shortfall in its existing resources available. Each
agent must, therefore, be able to act as a contractor and sup-
plier in any given situation.

Figure 1 shows this overall scenario, where the agent acts
as the supplier and receives a call for bids. The following
responses are possible: (i) the agent can decide not to bid
for the service; (ii) it can bid using only its own resources;
(iii) it can provide a bid from within an existing VO col-
laboration utilising the resources of the combined VO; or
(iv) it can identify a need for extra resources not available
within the existing VO. This last option represents the sce-
nario where the agent becomes the contractor, and itself be-
gins the process of recruiting partner agents in the environ-
ment.

The remainder of this paper focusses on this decision-
making process, introducing a technique based on con-
straint reification and cumulative scheduling. Managing
agent commitments entails distinguishing between the im-
portance of commitments, being able to identify conflict-
ing commitments, and being able to provide solutions to
these conflicts. Using finite domain constraint solving high-
lights conflicting commitments and the use of constraint
reification allows an agent (or group of agents) to at-
tach information to such commitments on whether they are
breakable. The agent(s) can then identify important con-
straints and begin to differentiate between commitments
and how valuable they are to the agent(s). This tech-

nique allows an agent to reason explicitly over a space
of satisfiable and unsatisfiable combinations of commit-
ments, and hence to decide rationally when to take on
new commitments, when to break or renegotiate exist-
ing commitments, and how to choose between alternative
combinations of commitments.

2. Modelling Resources using Cumulative
scheduling

An agent’s resources can be defined by two values, the
length of time that the agent can provide the resource for,
and the amount of resource available to the agent. Further-
more,, to model the use of an agent’s resources, we need
to record when resources are scheduled to be utilised un-
der an agreement and in what quantity — these are what we
refer to as commitments.

To do this we model the resources of an agent and its
commitments as a cumulative scheduling constraint satis-
faction program (CSP) [2] using finite domains to represent
the time and amount of the resources available and con-
straints over those domains to represent commitments to
provide some or all of the resources for a particular time
period.

Cumulative scheduling is defined as the maximum al-
lowable limit of a finite resource that can be used by an
agent or agents at any given time [1]. So there is a commu-
nal resouce of which various agents can obtain an amount
(i.e. the resource is commited to a certain agent). To allow
multiple contributions of the same resources from different
agents, instead we have the agents contributing to the com-
munal resource and we define the required value (new com-
mitment) as a minimum allowable limit on this communal
resource so that the set of agents must provide this service
at least or above the required threshold limit over the re-
quired time to satisfy the new constraint. This means that
as well as showing what commitments there are on the re-
sources provided by the agents we can also model what re-
source are contributed by each agent towards the commu-
nal ‘pool’ that will be required to satisfy the new commit-
ments.

To explain our cumulative scheduling based algorithm
more formally, we first define the problem. Given a set of n
agents, each of whom can provide a specific finite amount
of a resource R, {R1 . . . Rn}, a set of start times describing
when the agent can begin providing each of the resources
{S1 . . . Sn} and a set of durations over which the resource
is available {D1 . . . Dn} we can say, for an agent i, that
the function δi(t) is true if the current time t is within the
agent’s resouce start and end time.

δn(t) =
{

0 if (t < Sn) ∨ (t > (Sn + Dn))
1 otherwise

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

Then, an amount r of resource R is available over a time
period 0 . . . v iff:

∀t ∈ {0 . . . v}
n∑

a=1

Raδa(t) ≥ r

In other words, the total sum of the resource provided
by the set a of agents {1 . . . n} at any time between 0 . . . t
does not fall below the resource limit r specified. Using this
representation means that we can also use constraints on
the agent resource domains to represent existing commit-
ments on those resources (and thus taking away resources
from the communal ‘pool’). In our scenario, this helps us to
model the decision making process because the agents can
look at their own resources and their own existing commit-
ments, and see whether they can accomodate the new allo-
cation of resources asked of them.

3. Motivating example

To illustrate the use of cumulative scheduling for re-
source modelling and management, we now present a de-
tailed example. This example is a simplification of the type
of problem that occur in the CONOISE application domains
alluded to in the introduction (see also [10]).

Consider two agents, a1 and a2. Each agent can pro-
vide a certain amount of resource x (12 units from a1 and
10 from a2). The agents have existing commitments — c1,
c2 and c3 on those resources (shown in the first schedule
in figure 2):1

• c1: 5x from 0→5 on a1

• c2: 3x from 6→10 on a1

• c3: 5x from 0→7 on a2

If a new request, N is received by the agents to provide
15x from 0→10, then the agent has 4 main choices2:

• Reject N and satisfy existing commitments c1, c2 &
c3 (Schedule 1 in Fig.2)

• Accept N and break c1 & c2 (Schedule 2)

• Accept N and break c3 (Schedule 3)

• Accept N and break c1 & c3 (Schedule 4)

As the number of agents and commitments increases
the number of possible combinations of solutions that sat-
isfy all the commitments (and solutions that break commit-
ments) grows exponentially. Also the number of trivial so-
lutions (i.e. solutions that vary in extremely small detail)

1 Note that in the example, we only look at a single type of resource.
However, the solution to the resource management problem presented
here generalises to any number of resource types and combination. We
restrict ourselves to a single resource type here for the sake of clarity.

2 Although there are many value permutations, in terms of commitments
broken these are the main choices.

12x

0 10

Resource/Agent

a1

a2

5x 0->5

10x

5x 0->7

12x

0 10

Resource/Agent

a1

a2

5x 0->5

10x

5x 0->7

12x

0 10

Resource/Agent

a1

a2

5x 0->5

10x

5x 0->7

Broken
Commitment

resources contributed
to new commitment

existing
commitment

Free
Resources

Schedule 2
Break c1&c2.
Satisfy N
(a:12x, a2:3x)

Schedule 3
Break c3
Satisfy N
(a1:5x,a2:10x)

Schedule 4
Break c1&c3
satisfy N
(a1:12x - 0->6
 9x - 6->10
 a2:3x - 0->6
 6x - 6->10)

3x 6->10

3x 6->10

3x 6->10

12x

Time

0 10

Resource/Agent

a1

a2

5x 0->5

10x

3x 6->10

5x 0->7

Schedule 1
Reject N
Satisfy c1,c2&c3

c1
c2

c3

1 2 3 4 5 6 7 8 9

c1
c2

c3

c1
c2

c3

c1
c2

c3

Figure 2. Agent a1 & a2’s Options for provid-
ing new commitment N

increases (e.g. schedule 3 could take 7x from a1 and 8x
from a2 rather than 5x and 10xwhich would not affect
the commitments broken). The main emphasis behind the
CSP/cumulative scheduling is to find solutions that break
commitments (i.e. solutions that are different enough in out-
come that they break different commitments). As a result
of this we need to extend the cumulative scheduling CSP
with a method for differentiating between solutions. We
also need a way to prioritise commitments so that we can
rule out solutions that break commitments that have been
specified a priori as ‘must-complete’ tasks.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

We implement this as a reification extension to the cur-
rent cumulative scheduling CSP that uses a combination of
reification and constraint value labeling to provide the re-
quired commitment management and prioritisation.

4. What is Constraint Reification?

Constraint Logic Programming attempts to find a satis-
fiable subset of values from an initial set given a number
of limitations (constraints) imposed. Constraint Reification
associates a value with each constraint, which can be eval-
uated to true or false depending on the satisfiability of the
constraint. These reified values can also be reasoned about,
thus we have a set of meta-level boolean values showing the
constraints that have been succesfully applied (and the ones
that have failed to be applied). The reification process is bi-
directional, so we can also specify that a constraint must be
satisfied (i.e. must have a true value for its reification), even
if this means that a suboptimal set of the constraints may be
chosen to be satisfied for the problem, or indeed the prob-
lem itself is not satisfied.

We thus promote the constraints from being value lim-
iters on knowledge to pieces of knowledge themselves. The
application of the constraints then become just as important
as satisfying the problem itself.

In the following example we have a variable D with a fi-
nite domain of possible values:

D ∈ {1,2,3,4,5,6,7,8,9}
and two constraints on those domains:

D≤5, D>5

If we reify these constraints thus:3

D≤5 <=> A, D>5 <=> B

we assign a true or false value to each constraint (A and B
respectively).

A ∈ {0,1}, B ∈ {0,1}
So when we try and find a solution to this problem, we end
up with one of the following:

D ∈ {1,2,3,4,5}
A=1, B=0

D ∈ {6,7,8,9}
A=0, B=1

Both sets of values for D include breaking at least one of
the constraints. We can specify that a constraint cannot be
broken by specifying a ‘1’ as the reified value. So stating
B=1 means that any solution provided for D must now hold

3 We use the notation <=> to indicate that a constraint has been reified.

12x

5x 0->5

10x

5x 0->7

3x 6->10

0 0 0 0 0 _ _ _ _ _

_ _ _ _ _ _ 0 0 0 0

1 1 1 1 1 1 1 _ _ _

sum(c2)=4 <=> q (0)

sum(c1)=5 <=> p (0)

sum(c3)=7 <=> r (1)

Figure 3. A Reification Example

true to the constraint X>5 (and we thus lose the first solu-
tion above). In this way we can begin to differentiate be-
tween the importance of constraints in problems by making
them breakable or non-breakable.

We utilise this reification process by attaching a reified
value to each of the existing commitments and the new com-
mitment. We can then create solutions where certain com-
mitments are ‘allowed’ to fail (and produce a ‘0’ reified
value). We can also specify non-breakable constraints by
specifying their reified value as ‘1’.

5. Management Strategies

5.1. Reifying Commitments

Figure 3 shows an example of the reification strategy
working on schedule 2 from Figure 2. We first have a reified
value on each of the time slices for c1,c2&c3. This cor-
responds to whether the existing commitments have been
satisfied at that particular time when the new constraint N
(15x:0→10) is applied4. To have a singular value to sum
up these slices and therefore show whether the whole con-
straint has been satisfied or not, we also have a reified value
on these binary values (shown as p,q&r in the example)
specifying that their sum must be equal to the length of time
given for the duration of the commitment (i.e. the constraint
has held over the given time).

We similarly construct a set of reified values for check-
ing the validity of commitment N. Given a set of resources
R, {R1 . . . Rx} and a set of applied existing commitments
C, {C1 . . . Cy}, we can define a reified value V for each
time slice of a new commitment to provide value N over
time 0 . . . v as:

4 The underscores represent the times slices where the commitment is
not valid.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

12+10x >= c3+12x+3x

12x

10x

c1
c2

c3

1 1 1 1 11 1 1 1 1

3x 6->10
5x 0->5

5x 0->7

12x

3x

N

R

C

V

Figure 4. Reification of new commitment

∀t ∈ {0 . . . v}
(

x∑
i=1

Ri

)
≥

 y∑

j=1

Cj

+ N

 <=> V

Using these reified values, we can check whether the new
constraint has been satisfied over its required duration. This
can be seen graphically in Figure 4 (Note that in this case
c1 and c2 are not applied as part of the existing set of com-
mitments C).

5.2. Value Labeling and Limiting Strategies

Even for the simple example in Figure 2 we can see that
there are many possible solutions and permutations of solu-
tions. We can have numerous combinations of values from
a1 and a2 contributing to the 15x needed for commitment
N, plus we add extra complexity by allowing constraints
c1,c2&c3 to be broken.

The most important solutions though, are ones that show
the breaking of commitments, and what combination or sub-
set of commitments need to be broken in order to satisfy
new commitments. To be able to do this, as well as priori-
tise commitments, we look at the way in which the values
for the reified constraints, as well as the values for the re-
sources themselves are found.

To prioritise and label values we follow three general
rules:

• Designate non-breakable commitments

• Order resources/commitments is terms of priority

• Choose value labeling strategy

To start with we can designate certain commitments as non-
breakable by giving their reified value as ‘1’, rather than
leaving them uninstantiated. For instance, in the example in
Figure 3 we could specify the reified value p to be 1, there-
fore limiting the solutions found to those which only satisfy
its associated constraint c1.

The ordering of the resources/commitments, plus the
value labeling strategy are interlinked, as certain labeling
strategies re-order the variables too. The labeling strategies
used are standard strategies provided by most CSP systems,
such as first fail, bisect domain, max, min [8]. We do how-
ever, add additional prioritising strategies to these to weight
constraint labeling in certain ways specific to our cumula-
tive scheduling CSP. We have 3 main strategies, all of which
can be specified at run-time (Section 7 discusses in more de-
tail methods for utilising these strategies):

• Favour new commitment: Will find solutions that
break any existing commitments to satisfy new com-
mitments.

• Favour existing commitments: Will find solutions that
break the least existing commitments for the new com-
mitment.

• Favour specific agent: Used in conjunction with the
previous strategies but will try to keep as many of the
favoured agent’s commitments as possible while car-
rying out the existing or new commitments strategies.

6. Implementation

The cumulative scheduling constraint program is writ-
ten using the SICStus Prolog finite domain constraint li-
brary [9], which allows us to construct finite domains as sets
of integers, and define constraints over one or more of these
domains. This library also includes the ability to reify those
constraints. Our reification mechanism itself is defined as a
simple predicate of the form:

reify(+R,+C,+V,+N,+S,-RES)

Where R is a list of the resources available, C is a list
of constraints on those resources, V is the time period over
which value N is required and S is the strategy to be used by
the agent for assigning values and reifying the constraints
to produce a list RES of results (such as those shown in Fig-
ure 5). The strategies available for S are described in sec-
tion 5.2.

We have embedded this solving mechanism in an agent
implemented using the JADE agent platform5. The agent is

5 http://sharon.cselt.it/projects/jade/

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

REQUIRED RESOURCES
N: 15 x : 0 -> 10

CURRENT RESOURCES
12 x-a1 : 0 -> 10 -Using 5 x-c1: 0 -> 5,

Using 3 x-c2: 6 -> 10
10 x-a2 : 0 -> 10 -Using 5 x-c3: 0 -> 7

SETTING UP TIME SLICES & TOTALS
Setting up 0 - 10 for x-a1 - total 12
Setting up 0 - 10 for x-a2 - total 10
CHECKING EXISTING COMMITMENTS

SETTING UP NEW REQUIREMENT

FINDING SOLUTIONS

Solution(1)-
contributions to new commitment
[0,0,0,0,0,0,0,0,0,0] : (x-a1)
[0,0,0,0,0,0,0,0,0,0] : (x-a2)

REIFIED CONSTRAINTS
[0,0,0,0,0,0,0,0,0,0] - [N][0] 15x:0->10
[1,1,1,1,1,_,_,_,_,_] - [c1][1]
[_,_,_,_,_,_,1,1,1,1] - [c2][1]
[1,1,1,1,1,1,1,_,_,_] - [c3][1]

Solution(2)-
contributions to new commitment
[12,12,12,12,12,12,12,12,12,12] : (x-a1)
[3,3,3,3,3,3,3,3,3,3] : (x-a2)

REIFIED CONSTRAINTS
[1,1,1,1,1,1,1,1,1,1] - [N][1] 15x:0->10
[0,0,0,0,0,_,_,_,_,_] - [c1][0]
[_,_,_,_,_,_,0,0,0,0] - [c2][0]
[1,1,1,1,1,1,1,_,_,_] - [c3][1]

Solution(3)-
contributions to new commitment
[5,5,5,5,5,5,5,5,5,5] : (x-a1)
[10,10,10,10,10,10,10,10,10,10] : (x-a2)

REIFIED CONSTRAINTS
[1,1,1,1,1,1,1,1,1,1] - [N][1] 15x:0->10
[1,1,1,1,1,_,_,_,_,_] - [c1][1]
[_,_,_,_,_,_,1,1,1,1] - [c2][1]
[0,0,0,0,0,0,0,_,_,_] - [c3][0]

Solution(4)-
contributions to new commitment
[12,12,12,12,12,12,9,9,9,9] : (x-a1)
[3,3,3,3,3,3,6,6,6,6] : (x-a2)

REIFIED CONSTRAINTS
[1,1,1,1,1,1,1,1,1,1] - [N][1] 15x:0->10
[0,0,0,0,0,_,_,_,_,_] - [c1][0]
[_,_,_,_,_,_,1,1,1,1] - [c2][1]
[1,1,1,1,1,1,0,_,_,_] - [c3][0]

Figure 5. Example program output

queryable as a service using FIPA ACL with the message
content specified in RDF [5].

The communication between Prolog and the JADE plat-
form is through Jasper6, a close coupling Java/Prolog inter-
face that allows us to use Java as the parent application and
load in the SICStus prolog runtime kernel into the JVM and
instantiate and use it as a SICStus object.

7. Discussion

The purpose of this research into the management of an
agent’s commitments is to offer a general method for an-
swering the question: “Can I meet a new request for re-
source/service provision, and, if not, what are my options?”
In the example used throughout this paper, introduced in
section 3, we have considered a simple case in which there
are three prior commitments and a request to adopt a fur-
ther commitment, such that the agent is left with the deci-
sion to reject the new request or drop at least one of its prior
commitments.

In developing a good answer to the question posed we
must first employ a language that is sufficiently expressive
to capture real situations of resource use over time. Then,
given this language for describing commitments, we re-
quire reasoning machinery that may be used to determine
whether an arbitrary set of commitments may be met by
the resources available — used to determine whether a new
request may be accommodated without breaking existing
commitments — and, if not, what minimal sets of exist-
ing commitments may be dropped to accommodate a new
request. As has been argued within this paper, cumulative
scheduling and constraint reification techniques offer a gen-
eral and well-founded solution to this problem.

This solution — the generation of a set of options for
resolving an over-constrained problem — is, however, par-
tial. From this set of options, the agent must make a deci-
sion (possibly in collaboration with other members of the
coalition) on which option is best (for the coalition as a
whole). It is in answering this broader question that we see
how the research reported in this paper complements deci-
sion theoretic mechanisms for selecting between such op-
tions such as leveled commitment contracts [11]. The intro-
duction of penalties for unilateral decommitment from con-
tractual obligations is a commonly employed mechanism
for binding agents to their agreements and specifying (typ-
ically financial) reparation to the other party [7]; the other
type of penalty commonly considered in the literature, be-
ing a loss of reputation [6].

In making a decision on which deal in a set of possi-
ble options available, D, the agent must take into account
the following information: the revenue expected from tak-

6 http://www.sics.se/sicstus/docs/latest/html/sicstus.html/Jasper.html

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

revenue total decommitment
per unit revenue penalty

delivered
c1 0.2 5 5
c2 1 12 5
c3 0.2 7 5
n 0.1 15

Table 1. Example estimated revenues and
penalties.

ing on the new commitment(s), the revenue lost from com-
mitments to be released under a deal and any decommitment
penalties that will be imposed. Let us assume that each deal,
d, that is considered an option comprises of the new com-
mitments that will be made under that deal, dn, the com-
mitments that remain unchanged under the deal (commit-
ments to be kept), dk, and those that are released, dr. Also
assume that, for each commitment, c, we are able to com-
pute the expected revenue obtained, rev(c), and assume that
each commitment has a fixed penalty, pen(c). We may then
compute the best, or optimal deal, dopt, from the set of op-
tions, D, in the following manner:

dopt = arg max
d∈D

 ∑

c∈(dn∪dk)

rev(c) −
∑
c∈dr

pen(c)

Returning to the example introduced in section 3, sup-
pose that the revenue expected for each commitment, c1,
c2 and c3, and the new request, n, and the decommitment
penalties for c1, c2 and c3 are shown in table 1. Note
that all the decommitment penalties are the same, but the
revenue per unit resource for each commitment varies (the
client of c2, for example, is paying a premium). Consider-
ing these three options suggested by the scheduler and us-
ing the criterion given above for a deal, the options are eval-
uated as 24 for schedule 1, 12 for schedule 2 and 27 for
schedule 3. Therefore, in the circumstances, the best option
open to the agent is to accept the request and decommit c3.

Selecting and following dopt is not necessarily the only
possibile use of the information provided by the constraint
solver. The information provided identifies a set of possible
and minimal fixes to the agent’s commitments that enable
it to take on a new request. In the above, we have assumed
that the agent has a static set of resources available to meet
its commitments, but these resources are made available by
members of a coalition, the use of which is being coordi-
nated by this agent. The resources contributed by members
of the coalition do not necessarily represent the resources
that may, in fact, be available. One coalition member may,

for example, have agreed in the past to make 50% of its re-
sources available to the coalition, keeping the remainder for
one-off deals outside the context of the coalition. It may
be possible for the coalition agreement to be renegotiated
to accommodate the new request without reneging on ex-
isting commitments. The options found can then be used
guide this negotiation. Furthermore, the coalition manager
may use background information about the expected avail-
ability of certain resources to further guide its search for
a solution. For example, it may be aware that resources of
type x are in great demand, but that resources of type y may
be more freely available from members of the coalition. In
this case, the coalition manager may consider options that
break commitments to the provision of y resources before
those that break commitments to x resources.

The possibilities considered so far for coalition manager
when it encounters an over-constrained commitment man-
agement problem following the receipt of a request are to
simply reject the request, break one or more existing com-
mitments or to seek to renegotiate coalition agreements to
transform the over-constrained problem into one that has a
solution. These are not the only possibilities, however. The
coalition manager may also seek to renegotiate the existing
agreements it has with clients, again guided by the compu-
tation of which commitments are most highly valued (deter-
mined by sorting the set of options D using a criterion such
as that discussed above). The manager may also seek to ex-
pand the coalition or out-source some of its commitments if
this is sufficiently profitable (or if a loss is acceptable if it
serves to uphold the reputation of the coalition).

8. Conclusion

In this paper, we have shown how the use of a cu-
mulative scheduler employing constraint reification can
provide a general and well-founded means for an au-
tonomous agent to manage a set of resources. In particular,
the technique allows the agent to identify options for fix-
ing an over-constrained resource-use problem. These op-
tions may be used to guide the reformation of coalitions,
or the re-negotiation of contracts between agents. Thus,
over time, the set of commitments — expressed in the form
of constraints — held by each agent will evolve in a cy-
cle of scheduling, reification, (re-)negotiation, and coalition
(re)formation. This employment of cumulative schedul-
ing with reification is novel in the multi-agent systems
context.

Currently, this decision-making component is being in-
tegrated and tested within the overall CONOISE architec-
ture and testbed environment described in 6. This work is a
development of previous work in KRAFT [3, 4], in propa-
gating and solving mobile constraints imposed by various
suppliers, within a configuration design context. KRAFT

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

lacked a mechanism for systematically relaxing constraints,
which has now been rectified by our cumulative scheduler
employing constraint reification.

Immediate future challenges include employing quality-
of-service information in choosing between alternative ser-
vice provisions, and linking the results of the deliberation
process to the CONOISE negotiation algorithms. For fur-
ther information, see: www.conoise.org

Acknowledgements

The CONOISE project is jointly funded by the
DTI/EPSRC E-Science Core Programme and BT Ex-
act – British Telecom’s research, technology and IT opera-
tions business.

The project is a collaboration between BT Exact and Ab-
erdeen, Cardiff and Southampton Universities.

References

[1] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based
scheduling–applying constraint programming to scheduling
problems. In International Series in Operations Research
and Management Science, volume 39. Kluwer Academic
Publishers, 2001.

[2] Y. Caseau and F. Laburthe. Cumulative scheduling with task
intervals. In Logic Programing Proceedings of the 1996 Joint
International Conference and Syposium on Logic Program-
ming, pages 363–377, 1996.

[3] P. M. D. Gray, S. M. Embury, K. Hui, and G. J. L. Kemp.
The evolving role of constraints in the functional data
model. Journal of Intelligent Information Systems, 12:113–
137, 1999.

[4] P. M. D. Gray, K. Hui, and A. D. Preece. Finding and mov-
ing constraints in cyberspace. In Intelligent Agents in Cy-
berspace, pages 121–127. AAAI Press, 1999. Papers from
the 1999 AAAI Pring Symposium Technical Report SS-99-
03.

[5] K. Hui, S. Chalmers, P. Gray, and A. Preece. Experience
in using rdf in agent-mediated knowledge architectures. In
Agent-Mediated Knowledge Management: Papers from the
2003 AAAI Spring Symposium, volume SS-03-01, pages 82–
89. AAAI Press, March 2003.

[6] M. Klein, J.-A. Rodriguez-Aguilar, and C. Dellarocas. Using
domain-independent exception handling services to enable
robust open multi-agent systems: The case of agent death. In-
ternational Journal of Autonomous Agents and Multi-Agent
Systems, 7:179–189, 2003.

[7] M. J. Kollingbaum and T. J. Norman. Supervised interac-
tion: Creating a web of trust for contracting agents in elec-
tronic environments. In Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Multi-
Agent Systems, pages 272–279, 2002.

[8] V. Kumar. Algorithms for constraint-satisfaction problems:
A survey. AI Magazine, 1992.

[9] C. M., O. G., and C. B. An open-ended finite domain con-
straint solver. Proc. Programming Languages: Implementa-
tions, Logics, and Programs, 1997.

[10] T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings,
M. Luck, V. D. Dang, T. D. Nguyen, V. Deora, J. Shao,
W. A. Gray, and N. J. Fiddian. Conoise: Agent-based for-
mation of virtual organisations. Research and Development
in Intelligent SystemsXX: Proceedings of AI2003, the Twen-
tythird SGAI International Conference on Innovative Tech-
niques and Applications of Artificial Intelligence, pages 353–
366, 2003.

[11] T. Sandholm and V. Lesser. Leveled-commitment contract-
ing: A backtracking instrument for mulitagent systems. AI
Magazine, 23(3):89–100, 2002.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

