
Service Level Agreements for Semantic Web Agents

Nir Oren, Alun Preece, Tim Norman∗

Department of Computing Science
University of Aberdeen, Scotland, UK

∗ noren,apreece,tnorman@csd.abdn.ac.uk

Abstract

We propose an RDF-based language called SWCL to
represent contracts, with a focus on service level agree-
ments. The language came about due to a requirement
in our research concerning reliable service delivery in
domains containing virtual organizations, and we de-
scribe one such domain. Our language is built around
a production rule system using RDF bindings and con-
taining some contract-specific resources. A number of
other approaches to contracting have been proposed,
and we first describe these, and then compare them
to SWCL. Finally, we suggest a number of extensions
to this work, as well as ideas regarding how contract-
ing can form part of a framework for increasing agent
reliability in an open environment.

Introduction

Agents operating in an unregulated open environment
do not know that other agents sharing this environment
with them are entirely trustworthy. When one offers a
service to another, the service consumer has no guaran-
tee that the provider will fulfill its end of the bargain.
Similarly, the provider has no way of ensuring that it
will be paid for its services.

Mechanism design (Dash, Jennings, & Parkes 2003)
can ensure that rational agents do not attempt to re-
nege on their obligations. However, programming er-
rors or simple maliciousness can render this approach
ineffective. Trust and reputation systems (Yu & Singh
2002) can prevent agents from approaching unreliable
providers but have difficulty dealing with agents about
which nothing is known. Contracts between agents are
able to overcome some of these difficulties, and have
the additional benefit of allowing agents to agree on
exactly what service is to be provided, and how. Fur-
thermore, contracts are declarative, allowing an agent
to autonomously decide how best to fulfill its obliga-
tions. Contracts do however have the disadvantage of
requiring a contract execution monitoring mechanism,
as well as some external body to implement sanctions
against agents breaking contracts. Contracts can thus
be seen as one of the tools required to create a trusted

Copyright c© 2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

environment between agents operating within open sys-
tems.

Robust service delivery in CONOISE-G

This research is being done as part of the CONOISE-G
(Norman et al. 2004) project. The project is focused
on investigating technologies to enhance VO reliability,
and contracting forms one of the foundations for this
goal.

Inter-agent contracts allow us to reinforce proper be-
havior in two ways. First, an agent is reluctant to vi-
olate a contract due to the penalties it will incur. Sec-
ond, when a contract is violated, the contract moni-
toring agent informs the trust component, leading to
a reduction in the violating agent’s reputation. A key
consequence of this is that the agent is less likely to
successfully bid for work in the future. Thus, even an
agent which doesn’t care about the penalties it receives
for breaking a contract will have difficulty affecting the
marketplace after not meeting their obligations in a few
contracts.

In this paper we describe a machine understandable
language for contracts. We begin by describing the sce-
nario in which our contracting language will be evalu-
ated. We then examine other contract representation
languages and look at their strengths and weaknesses.
After this, our contracting language is described. Fi-
nally, we look at possible extensions to this research.

Scenario

We envision a marketplace where agents can temporar-
ily pool their resources to form a virtual organization
(VO) so as to achieve goals that they would be unable
to achieve individually, or to provide services more ef-
ficiently than they would be able to do alone. Once a
VO is formed, it should act as a single cohesive unit in
the context of service provision.

While our research is designed to operate in a generic
service provision domain, we have focused on a mobile
multimedia scenario.

The domain consists of a number of service provider
agents (SPs), each of which is able to provide a num-
ber of multimedia services to a set of clients. Currently
defined services include text-messaging, news clippings,

streamed movies and phone calls. Each SP has a lim-
ited number of resources it can provide at any one time.
Client agents represent the user, and are able to request
services from the SPs. The environment provides a
number of infrastructure services, instantiated as agents
and agent components:

• Yellow pages agents (YPs) store SP contact details,
as well as information concerning the services adver-
tised by SPs.

• A clearing agent (CA) allows an agent to determine
which set of bids best fulfills its requirements, based
on the agent’s request and various parameters asso-
ciated with each bid (such as the bid price).

• A quality agent (QA) is able to assign a quality rat-
ing to the services offered by an agent. This quality
rating can be used by the CA to determine the overall
utility of an agent’s bid.

• A monitoring agent abstracts the various sensors
in the system, using a publish-subscribe pattern.
Agents interested in observing the environment con-
tact the monitoring agent and tell it what services
(and which service properties) should be monitored,
and for what type of events. When such an event
occurs, the monitoring agent sends a message to the
interested agent, informing it of the event.

• A trust component models the levels of trust between
the various agents in the system. The trust value can
be used as one of the parameters passed to the CA
so as to allow it to make a decision regarding which
bids should be accepted.

• A contract monitoring component generates inter-
agent contracts and tells the monitoring agent what
service attributes should be monitored for compli-
ance. When a message from the monitoring agent
is received,the contract monitor computes whether a
contract has been violated, and if so, what penalties
should apply.

An agent may also take on one of a number of roles:

• It may take on the role of a client and thus ask other
agents to provide it with services.

• An agent may be the VO manager (VOM), in which
case it represents the entire VO to the client.

A client is unable to tell whether it is dealing with a
single provider agent or with a VO fronted by a VOM.
VOs are thus opaque and hidden from other agents by
the VOM handling their tasks.

A VO’s lifecycle consists of three distinct phases: VO
formation, VO service provision and VO dissolution.

VO formation

The VO formation process is illustrated in Figure 1 and
proceeds as follows: the client contacts a SP and asks
for a package of services. The SP takes on the VOM
role, and contacts the YP asking it which other SPs
can provide the services requested by the client. Once

Figure 1: Some of the agents making up the VO and
the environment, together with the order of messages
passed between them during the initial part of the VO
formation episode. For clarity, message passing between
the VOM and the contracting component, as well as
between the VOM and the monitoring component has
been omitted. The numbers next to the edges indicate
the order in which messages are generated and passed.

the YP responds, the VOM sends a request for bids to
the other SPs. Once these bids are received, a clear-
ing algorithm computes which SPs should form part
of the VO. In our system, the messages exchanged be-
tween the agents take the form of RDF fragments. The
agent’s knowledge base is also internally stored as RDF,
and our agents are thus able to easily parse, reason
and integrate the messages into their internal knowl-
edge structures.

Contract negotiation is outside the scope of our work.
Thus, when successful SPs are informed that they have
been chosen to provide a service, they send the VOM a
contract that describes the what they will be providing.
Similarly, the VOM sends a completed contract to the
client containing details about the package it will be
providing.

In the final stage of VO formation, the VOM and
client ask the monitoring agent to monitor the values
of the attributes for the services that they will be re-
ceiving. Alerts from the monitor agent are used in the
next stage of the VO lifecycle.

VO service provision

The VO service provision stage runs until a contract is
terminated, either successfully or due to a fatal contract
failure. Within this stage, the client asks the VOM for a
service. The VOM then transmits the client’s request to
the appropriate SP(s) (and, given that SPs may them-
selves be VOMs, this request may filter down through
multiple VOs). The SP(s) then begins to provide the
service to the client. Various events can perturb a ser-

vice provision episode.
One of the simplest perturbations occurs when the

SP providing a service is unable to fulfill its contract
conditions. Other possible perturbations include a fail-
ure by the VOM to forward messages from a client (also
leading to a contract failure), the VOM deciding to re-
organize the VO (possibly to take advantage of new
market conditions such as a new agent appearing), and
having the VOM or an SP leave the environment during
service provision.

Whether recovery is possible depends both on the
exact perturbation type, as well as the contents of the
contract. For example, if an SP providing a critical ser-
vice leaves, and cannot be replaced, recovery is impossi-
ble. This paper will not provide a detailed taxonomy of
perturbation types, their effects and possible recovery
methods. It should, however, be noted (and will be dis-
cussed in greater detail below) that a contract should
be able to specify how recovery from a failure can take
place.

VO Dissolution

A VO may dissolve due to a contract successfully end-
ing, contract termination due to a failure, or the VOM
deciding to dissolve the VO. Our contracting language
must be able to specify what actions the VOM and SPs
should take when the VO is dissolved.

Contracting in CONOISE-G

As should be clear from the previous sections, contract-
ing is a critical component of the CONOISE-G environ-
ment. Since we are implementing a technology demon-
strator, rather than a fully functioning prototype, we do
not use a central contract repository. Instead, agents
keep copies of their own contracts (which, in a real envi-
ronment would be digitally signed to avoid tampering),
and update their internal contract state as appropri-
ate. Contracts are enforced by having an agent’s con-
tract monitoring component compare the state of the
contract to that of the real world. If a discrepancy is
detected, an investigation can then take place to deter-
mine what penalties should come into force. Only one
centralized component is needed in such a framework,
namely the sanctions enforcer. If the only sanction is
loss of trust, then a distributed reputation system can
overcome even this limitation, leading to a completely
decentralized system.

We believe that the CONOISE-G domain is complex,
but contains many properties required of any system
operating in the real world. Furthermore, we claim
that, as described in more detail in the next section,
existing contracting languages would have great diffi-
culty operating in such environments.

Contracts and contracting languages
In this section, we look at the requirements for a con-
tracting language in more detail. We examine the
desiderata of a contracting language, and look at how
existing contracting languages fulfill these desiderata.

Broadly, a contract is a legally binding agreement
between two (or more) parties. We extend this defi-
nition somewhat: to us, contracts are legally binding
agreements between two or more parties, specifying the
norms in effect between the parties for the duration of
the contract.

Since a contracting language must be able to describe
anything talked about by a contract, it should be able
to :

1. Identify the parties involved in the agreement.

2. Refer to the temporal aspects of the contract, includ-
ing durations and time instants to allow for the de-
scription of

(a) When the contract comes into force.

(b) When the contract terminates.

(c) When certain clauses are in effect.

3. Provide support for the concept of an agent under-
taking an action.

4. Allow for the description of norms (obligations, pro-
hibitions, permissions and the like) imposed on each
party.

5. Provide a way of representing rewards and penalties.

6. Allow for contrary to duty obligations (e.g. since rule
a was broken, rule b is now in effect).

7. Refer to the state of other agents, contracts, and the
environment.

8. Allow for the conditional evaluation of obligations
and contract elements, based on temporal, action and
state elements.

These desiderata were selected by examining the fea-
tures provided by a number of existing contracting lan-
guages, as well as by the domains they appear to be
intended to function in (usually identified by looking at
the examples provided in their descriptions). While we
cannot in any way prove that they completely describe
all the requirements for a contracting language, we were
unable to find further requirements based on our survey
of existing contracting languages.

Note that many of these requirements are interre-
lated, and may be required at different stages of con-
tract execution. As an example, assume the following
(simplified) contract:

This contract is in effect for 24 hours beginning at
midnight on the 31st of December 2005. The provider
is to provide a movie every three hours, each of which
must be between one and two hours long. For each three
hour period during which a movie is not supplied, the
provider must pay the consumer a penalty of twenty dol-
lars. A payment of $20 is to be made at the end of the
contract.

It is clear that temporal, deontic and action concepts
can come into play at multiple levels: they describe
the contract start and end conditions, the way in which
actions are executed, how often (and, more infrequently,
how) penalties must be assessed, the manner in which

payment is made and are an integral part of determining
whether an action is valid.

Contracting languages are normally designed to ful-
fill any of a number of possible roles. Some languages
focus on the contract negotiation phase. Courteous
Logic Programs (Reeves et al. 1999) are an example
of such a language. CLPs extend standard logic pro-
gramming approaches by introducing priorities between
rules. Reeves et al. provide an ontology for use with
CLPs that facilitates contract creation and negotiation
from base contract templates. SweetDeal (Grosof &
Poon 2004) extends CLPs by situating them (allow-
ing them to invoke methods) and presents a concrete
DAML+OIL ontology for contracting.

Another possible goal for a contracting language is
the ability to perform contract consistency checking.
Given a contract written in such a language, it should
be possible to determine whether the contract contains
any inconsistencies (for example, an agent being obliged
to both achieve and not achieve a certain state of affairs
simultaneously). (Daskalopulu 1997) proposed a con-
tracting language that performs this task. DPL (Milo-
sevic & Dromey 2002) is a deontic logic based contract-
ing language that is also intended to allow for consis-
tency checking.

The majority of contracting languages are designed
to allow for automated contract execution monitoring,
that is, the determination of what state a contract is in,
and which contract rules are in effect given the current
contract state.

Contracting languages can be broadly divided into
two groups: formal approaches have very well specified
semantics, and are often based on some logic. Ad hoc
approaches on the other hand often have only “com-
monsense” semantics, and are often constructed by ab-
stracting the features of real world contracts. Each ap-
proach has its own advantages and disadvantages.

The well defined semantics of formal contracting
languages, exemplified by approaches such as LCR
(Dignum et al. 2002), reduces contract enforcement in
fully observable domains to theorem proving. However,
formal languages have a number of shortcomings: first,
they require that the environmental state can be trans-
lated to a contract state. Tied to this is the require-
ment that the environment be fully observable. Gener-
ating contracts in a formal language is difficult, and im-
portant features are often not included in the language
for the sake of tractability (for example, specifying re-
peated actions is difficult in LCR).

Ad hoc languages, including DLP (Dimitrakos et al.
2003) and NoA (Kollingbaum & Norman 2002), also
borrow ideas (such as obligations) from logic, most no-
tably deontic logic. These language often support many
of the desired attributes of a contracting language, but
their weak semantics means that contract enforcement
is more difficult (and often implementation dependent).
Without very careful consideration to the design of the
language, other tasks, such as contract validation, can
be impossible for an ad hoc language. However, speci-

fying contracts in these languages is relatively easy, due
to their English or programming language like syntax.

Formal languages appear to take a “top down” ap-
proach to contracting: first, define semantics, and then
see what type of contracts can be represented using
the approach. Ad hoc techniques attack the problem
in a“bottom up” manner: first, one determines what
features a contract requires, then one constructs a lan-
guage that provides these features, and finally, seman-
tics are added at the very end.

Since the effects of a rule within a contract can be
arbitrarily general, a contracting language should be
as expressive as a general purpose programming lan-
guage. By focusing on specific classes of contracts, it
may be possible to reduce the descriptive capabilities of
the contracting language, thus simplifying its design.

One such class of contracts are service level agree-
ments (SLAs). Service level agreements are contracts
that specify a set of services to be provided, and ranges
in which the various attributes of each service must re-
main. Penalties are assessed when an attribute strays
outside of its required boundaries. Rewards can also
be given when an attribute stays within its required
range. Normally, penalties take the form of a payment
from the provider to the consumer, with repeated fail-
ures being grounds for the cancellation of the contract.
SLAs are found in myriad environments, for example in
the telecommunications sector, outsourcing agreements
and service provision environments. Work has started
on a standard for machine readable SLAs, called WS-
Agreement1. Since CONOISE focuses on the service
provision domain, our language also focuses on being
able to represent SLA type contracts. We have named
our language “SWCL”, standing for “Semantic Web
Contracting Language”.

SWCL

Our language is RDF based, and borrows many ideas
from the work being done on the WS-Agreement stan-
dard. Our reasons for creating a new language, rather
than using WS-Agreement, are discussed in a later sec-
tion. We will illustrate aspects of SWCL by referring
to fragments from a sample contract. The fragments
are written in pseudo-RDF, with namespaces left out
when unimportant so as to enhance readability. We
will not attempt to give a full, in-depth description of
our contracting language in this paper.

<RDF>

<SLA rdf:about=“contract1”>

<provider>
<Actor rdf:about=“uri:a123”/>

</provider>
<Consumer>

1http://www.gridforum.org/Meetings/GGF11/Documents/
draft-ggf-graap-agreement.pdf

<Actor rdf:about=“uri:b321”/>

</Consumer>

Following the standard RDF document preamble, we
begin by identifying the parties participating in the con-
tract (fulfilling the first desideratum). The ¡Actor¿ tag
originates in an ontology used within CONOISE and
uniquely identifies an agent in the system. All the
tags used to describe services and attributes are spec-
ified in a CONOISE-G service ontology, adapted from
DAML-S2 and intended to be compatible with OWL-S.
Providers and consumers need to be identified so that
penalties and rewards can be dispensed as appropriate
by the contracting framework.

<monitoredService>
<Service rdf:about=“movieService1”>

<monitoredAttribute>
<Attribute rdf:about=“frameRate”>

<monitorMethod><QoSC/></monitorMethod>

</Attribute>
</monitoredAttribute>

<monitoredAttribute>
<Attribute rdf:about=“genre”>

<monitorMethod><QoSC/></monitorMethod>

</Attribute>
</monitoredAttribute>

</Service>
</monitoredService>

<monitoredAttribute>
<Attribute rdf:about=“currentTime”>

<monitorMethod><System/></monitorMethod>

</Attribute>
</monitoredAttribute>

<monitoredAttribute>
<Attribute rdf:about=“frameRateDropCounter”>

<monitorMethod><System/></monitorMethod>

</Attribute>
</monitoredAttribute>

The next section of the contract specifies the ser-
vices and attributes that are to be monitored, as well as
where the attribute values are obtained. The QoSC is
the monitoring agent within our system, and provides
us with all our environmental data. Some environment
variables (such as currentTime) are also specified. At-
tributes monitored by the QoSC are listed within the
service as a contract may specify the same attributes
for different groups of services (for example, two movie
services may be required, each of which has a different
genre or frame rate). Attributes monitored by System
are related to, and kept track of by, the contracting
environment.

2http://www.daml.org/services/

<hasClause>
<Clause rdf:about=“minimumFrameRate”>

<evaluationExpression>

<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate
rdf:resource=“swrlb:greaterThanOrEqual”/>

<swrl:argument1 rdf:resource=“frameRate”/>

<swrl:argument2> 24 </swrl:argument2>

</swrl:IndividualPropertyAtom>

</evaluationExpression>

<assesmentInterval>
<DurationDescription>

<minutes>1</minutes>
</DurationDescription>

</assesmentInterval>
<effect>

<Payment>
<from rdf:resource=“uri:a123”/>

<to rdf:resource=“uri:b321”/>

<amount>5</amount>
</Payment>

</effect>

<effect>
<CounterIncrement>
<counter rdf:resource=“frameRateDropCounter”/>

<amount>1</amount>
</CounterIncrement>

</effect>
</Clause>

</hasClause>

</SLA>

</RDF>

The last section of the contract contains the rules for
contract execution and monitoring. Borrowing termi-
nology from real world legal documents, we call each
rule a clause. As with most other rule driven systems,
each clause contains an evaluation component and an
action component. The evaluation component is made
up of an evaluation expression and an evaluation fre-
quency fragment. A clause’s action component is exe-
cuted if the evaluation expression becomes true. The
evaluation expression is reevaluated (and the action
component may thus be run again) based on informa-
tion from the evaluation frequency section.

Clause evaluation expressions are built up of SWRL3

expressions. They may reference any attributes de-
clared in the monitored attributes section, as well as
query the state of other contracts and clauses.

A clause can have multiple effects. These effects may
alter the contract or the environment in many ways.
Apart from altering the values of certain variables (no-
tably counters and Boolean conditionals), a contract

3SWRL is the Semantic Web Rule Language. More de-
tails can be found at http://www.daml.org/2003/11/swrl/

effect may specify a payment is to take place. An ef-
fect clause may also change the state of the contract,
possibly triggering other clauses.

To allow for contracts to refer to other contracts and
clauses, it is important to keep track of contract state.
A contract may be in one of the following states:

• Running. In this state, the contract is in force, and
no violations have taken place.

• Violated. Here, the contract is still in force, and some
clauses have been violated.

• Terminated. This state occurs when the contract is
no longer in force, due to entering a failure state from
which recovery was impossible.

• Complete. This state occurs when a contract is no
longer in force due to successful contract completion.

Clauses can either be in a running state, in which
case their evaluation expression is under observation,
or active, in which case their effect is triggered. One-
off clauses, once triggered, are considered to be perma-
nently active.

The second desideratum requires the language to be
able to specify when the contract starts and ends. At
the moment, SWCL contracts come into force as soon
as all parties agree to them. We can, however, alter
when individual clauses come into effect by adding a
temporal condition to their evaluation expression. An
earlier version of language did support a ¡startTime¿
tag, but we discovered it was not often used. Contract
termination in SWCL comes about as an effect of a
clause.

SWCL fulfills the desiderata for the concept of an
action (3), norm description (4) and contrary to duty
obligations (6) in the contract ¡Clause¿ sections. Condi-
tional evaluation of obligations (desideratum seven) is
done by allowing evaluation expressions to refer to the
state of other clauses.

Rewards and penalties (desideratum five) are viewed
as actions by many contracting languages. Our explicit
¡Payment¿ comes from the CONOISE-G environment,
and we allow any sort of effect to represent a reward or
penalty.

Most languages supporting contract execution allow
for conditional obligations (desideratum eight). Allow-
ing clauses to come into effect only as a result of some
other clause failing is how we cater for this feature.

The reflective features (i.e. the ability to refer to
other contracts and clauses) of SWCL are intended to
allow one to refer to other contracts (part of require-
ment seven). These features were not shown in the
previous example, but could appear as follows:

<ReplaceClause>
<replace>

<Clause rdf:resource=“minimumFrameRate”/>

</replace>
<with>

<Clause rdf:resource=“newMinimumFrameRate”>

</with>

</ReplaceClause>

The ReplaceClause object would normally be embed-
ded as the object of another clause’s effect. Other, sim-
ilar effects are the removal and insertion of clauses. An-
other aspect of reflection is the ability, within an eval-
uation expression, to examine a contract’s state.

Comparison with other contracting

languages

In this section, we compare the features of SWCL with
those provided by other approaches. Table 1 summa-
rizes the various approaches, showing how they fulfill
the desiderata described previously. Note that while a
language may not explicitly support a feature, it may be
possible to still implement it, at the cost of additional
complexity. For example, while a language might not
explicitly offer support for temporal features, by allow-
ing for the invocation of methods from a programming
language, support for such features may be provided.

As was mentioned previously, and is highlighted in
the table, formal approaches lack the expressive power
required to represent real world contracts. Ad hoc lan-
guages, with the exception of NoA, have much greater
expressive power. NoA does not explicitly support a
number of contracts, but due to its integration with the
Java language, additional features can easily be added.
However, these additions, would require modifications
to the language and its interpreter.

SweetDeal was probably the first contracting lan-
guage which attempted to represent contracts in a for-
mat appropriate for the Semantic Web. While it shares
a number of similarities with SWCL, its main focus was
the extension of CLPs to deal with contrary to duty
obligations. Thus, while it is more capable than CLPs
in representing the various desiderata, we believe that
certain concepts can be more neatly represented using
our approach.

WS-Agreement tackles a similar domain to SWCL, so
in the remainder of this section, we will compare these
two approaches.

The WS-Agreement standard is still in its early stages
of development. Furthermore, the standard is currently
mostly concerned with building a standard syntax for
specifying SLAs, giving users latitude as to which lan-
guage should be used to represent the semantic details
of the contract. WS-Agreement does not provide any
RDF mappings for its tags, since the rest of our sys-
tem makes extensive use of Semantic Web technologies,
using WS-Agreement would have led to unneeded com-
plexity in our framework. Other differences arise be-
cause of a difference in focus between WS-Agreement
and SWCL. For example, the WS-Agreement draft
specification states that WS-Agreement will make no
attempt to cater for contract negotiation, or describe
a condition expression language for specifying clauses.
While we do not cover contract negotiation in this pa-

per, the ability to easily generate contract templates
with SWCL, and convert these into concrete contracts,
allows one to perform at least some form of contract
negotiation. We also specify a condition expression lan-
guage as we believe that allowing for other languages to
be inserted causes unnecessary complexity in the final
framework.

We feel that one other advantage of our language
over other existing contracting languages is the addition
of reflective capabilities, allowing parts of a contract
to refer to other contracts or clauses within itself, and
modify these. It is our belief that this requirement has
been noticed by other language designers, hence the
prioritized clauses in CLP, but that we cater for this
need in a more explicit manner.

Lang. 1 2a 2b 2c 3 4 5 6 7 8

Formal Approaches
LCR P N Y Y Y Y N Y N Y
CLP P N N N N Y P P P P
Ad hoc Approaches
DLP Y N N N Y Y Y Y N P
NoA Y P P Y Y Y P P N Y
Sweet P N N Y N Y P P P P
WS-A Y Y Y Y P P Y P N P
SWCL Y Y Y Y Y P Y Y Y Y

Desideratum Description

1 Identify involved parties
2a Agreement start time
2b Agreement end time
2c Temporal constraints in clauses
3 Action representation
4 Application of norms to agents
5 Describe rewards and penalties
6 Contrary to duty obligations
7 Refer to other agents, contracts and

clauses
8 Conditional evaluation based on

temporal, action and state elements

Table 1: The desiderata (described in the section on
contracts) catered for by each language. “Y” means
that the language has explicit constructs allowing for
this feature. A “P” means partial support, while “N”
means no support for the feature.

Future work and conclusions

Our short term goal is to create a component that is
able to take in such a contract, and, by monitoring the
environment, triggers the correct clauses. In the longer
term, our future work consists of two streams, namely
enhancing the contract representation language and im-
proving the contract monitoring environment.

While descriptive, the contracting language still has a
number of shortcomings. Contract clauses should have

more power to alter other sections of the contract dur-
ing the execution phase. For example, given a scenario
in which a service provider has agreed to provide movie
and text services to a client, and has then reneged on
the text services, it should be possible to modify the
contract so that the service provider is still responsible
for providing movie services. We also intend to provide
the language with more concrete formal semantics in
the future. Since SWCL is RDF-based, it should be
possible to do this with relative ease4.

The current contract execution environment has two
sources of information which it can use to monitor con-
tract execution, namely the QoSC monitoring agent
and the contract execution framework (referred to as
System in the RDF fragments). This means that our en-
vironment is fully observable. SWCL will still function
in partially observable environments. The contracting
language is intended to be one of the foundations for a
more generalized policing framework. As described in
(Oren et al. 2004), we are investigating an argumen-
tation based approach to failure detection and blame
assignment in such complex environments. We require
contracting for our research as contracts form the basis
for what an agent is obliged to achieve.

Other open questions include extending the language
to provide support for contract negotiation, as well
as methods for performing contract validation on con-
tracts written with it.

In this paper, we described a RDF-based contract-
ing language that focuses on the SLA domain. While
many contracting languages have been suggested, it is
our belief that each is missing some desirable features.
SWCL is our first attempt at creating a language that,
we believe, provides enough structures to model com-
plex, real world contracts. SWCL is designed to allow
for automated contract enforcement.

Acknowledgments

The CONOISE-G project is jointly funded by the
DTI/EPSRC E-Science Core Programme and BT Exact
– British Telecom’s research, technology and IT opera-
tions business. The project is a collaboration between
BT Exact, and Aberdeen, Cardiff and Southampton
Universities.

References

Dash, R. K.; Jennings, N. R.; and Parkes, D. C. 2003.
Computational–mechanism design: A call to arms.
IEEE Intelligent Systems 18(6):40–47.

Daskalopulu, A. 1997. Logic-based tools for legal con-
tract drafting: Prospects and problems. In Proceedings
of the 1st Logic Symposium, 213–222.

Dignum, V.; Meyer, J.-J.; Dignum, F.; and Weigand,
H. 2002. Formal specification of interaction in agent

4A specification for the semantics of RDF can be found
at http://www.w3.org/TR/rdf-mt/

societies. In Proceedings of the Second Goddard Work-
shop on Formal Approaches to Agent Based Systems,
37–52.

Dimitrakos, T.; Djordjevic, I.; Milosevic, Z.; Josang,
A.; and Phillips, C. I. 2003. Contract performance
assesment for secure and dynamic virtual collabora-
tions. In Proceedings of the Enterprise Distributed Ob-
ject Computing Workshop, 62–75.

Grosof, B., and Poon, T. C. 2004. Sweetdeal: Repre-
senting agent contracts with exceptions using semantic
web rules, ontologies, and process descriptions. Inter-
national Journal of Electronic Commerce 8(4):61–98.

Kollingbaum, M. J., and Norman, T. J. 2002. Su-
pervised interaction – creating a web of trust for con-
tracting agents in electronic environments. In Proceed-
ings of the First International Joint Conference on
Autonomous Agents and Multi–Agent Systems (AA-
MAS’02), 272–279.

Milosevic, Z., and Dromey, R. G. 2002. On expressing
and monitoring behaviour in contracts. In Proceed-
ings of the Sixth International Enterprise Distributed
Object Computing Conference (EDOC’02), 3–14.

Norman, T.; Preece, A.; Chalmers, S.; Jennings, N.;
Luck, M.; Dang, V.; Nguyen, T.; Deora, V.; Shao, J.;
Gray, W.; and Fiddian, N. 2004. CONOISE: Agent-
based formation of virtual organisations. Knowledge-
Based Systems 17(2–4):103–111.

Oren, N.; Norman, T.; Preece, A.; and Chalmers, S.
2004. Policing virtual organizations. In Proceedings of
the 2004 European Workshop on Multi-Agent Systems
(EUMAS 2004).

Reeves, D.; Grosof, B.; Wellman, M.; and Chan, H.
1999. Toward a declarative language for negotiating
executable contracts. In Proceedings of the AAAI-99
Workshop on Artificial Intelligence in Electronic Com-
merce, 39–45.

Yu, B., and Singh, M. 2002. An evidential model of
distributed reputation management. In Proceedings of
the first international joint conference on Autonomous
Agents and Multi–Agent Systems (AAMAS’02), 294–
301.

