
KRAFT: Supporting Virtual Organisations through Knowledge Fusion

Alun Preece, Kit Hui & Peter Gray

Department of Computing Science
University of Aberdeen
Aberdeen AB24 3UE

Scotland, UK
{ apreece | khui | pgray } @csd.abdn.ac.uk
www.csd.abdn.ac.uk/research/kraft.html

Abstract

The formation and operation of dynamic and open virtual
organisations is a central concern in business-to-business
e-commerce. Virtual organisations enable partner
companies to develop and manufacture customised
products with low costs and rapid delivery. Agent-based
architectures are an effective platform for such virtual
organisations because they provide mechanisms to allow
organisations to advertise their capabilities, exchange rich
information, and synchronise workflows at a high-level of
abstraction. In this paper, we examine the KRAFT
architecture and its features for supporting virtual
organisations. In particular, we focus upon KRAFT’s use of
constraints as a knowledge exchange medium, and show
how constraint fusion supports the design of customised
products.

Introduction

One of the most promising areas of electronic commerce
(e-commerce) is improved management of the supply
chain, to streamline the production of goods, enable the
rapid production of customised goods, and coordinate
business processes among cooperating organisations
[Kalakota & Whinston, 1997]. In effect, suppliers,
manufacturers and retailers are enabled to act as a single
virtual organisation; the member companies integrate
their complementary resources to create a more
competitive whole. Providing technology to support
virtual organisations is the primary theme of business-to-
business e-commerce [Schein, 1994]. Successful
integration requires that the members of the virtual
organisation at least agree on mechanisms to exchange
electronic documents and synchronise their workflows
[O’Leary et al, 1997].

To minimise production times and product costs, the
virtual organisation should be agile: relationships
between members need to be dynamic and flexible [Plant
& Murrell, 1997]. Re-negotiations between suppliers,
manufacturers and retailers will occur regularly. In this

kind of agile organisation, there is competition between
members, and members join and leave the organisation
more regularly. The support of agile organisations is
technologically challenging because the communication
mechanisms must cope with both the cooperative and the
competitive nature of the enterprise.

In current practice, the main technologies offered to
support virtual and agile organisations are Electronic
Data Interchange (EDI) and Extranets. EDI supports the
exchange of structured documents along the supply chain
(from requests for quotations to invoices). Unfortunately,
current EDI systems are largely proprietary and limited in
the form of information they can exchange; they are
limited to the exchange of relatively simple relational
data. The new XML standard promises to address the
former problem, but it will not solve the latter: to be fully
"self-describing", business data needs to have attached
meta-knowledge in the form of rules or constraints on
how the information can be used and combined with
other information [Jeffery, 1998].

Extranets provide the low-level communication
protocols to exchange EDI messages securely between
the internal networks (Intranets) of the individual
companies. Current Extranet technology is more
concerned with basic message exchange and security than
with supporting higher-level business operations. Recent
standards for supporting open transactions such as the
CORBA Services and Enterprise JavaBeans [Harkey et
al, 1998] provide a useful higher-level communication
infrastructure, but rely on conventional rigid electronic
data transactions models that cannot cope with the
required flexibility demanded by agile organisations
[Singh, 1997].

The KRAFT project (Knowledge Reuse and
Fusion/Transformation) has an architecture that is
suitable to support virtual organisations in which
members exchange information in the form of constraints
expressed against an object data model [Gray et al,
1997]. The constraints allow member companies to
design new products from components in their individual
catalogues, and also to advertise the content of their

catalogues. Constraints are exchanged via messages
expressed in an agent communication language,
supporting flexible transactions.

Configuration Design Problems

KRAFT was conceived primarily to support
configuration design applications among multiple partner
organisations with heterogeneous knowledge and data
models. This makes it suitable for the support of virtual
organisations.

Configuration design problems were originally tackled
by rules-based systems (the best-known being DEC’s
XCON system, used for configuring VAX computers);
now, they are more commonly seen as constraint
satisfaction problems. In the KRAFT architecture, the
domains of many of the variables will be entities stored
in local databases held by individual companies.
Constraints on these entity types may be set by their
makers, and stored with them in the database. KRAFT
provides mechanisms by which local database contents
can be advertised on the network, so that constraints can
be found by specialised mediator agents and passed to a
constraint solver together with other problem-specific
restrictions. The solver then has to find feasible values to
satisfy the constraints, as is common in engineering
problems. However, the problem is complicated by
constraints that refer to related instances of other entity
types, whose values must be extracted from some
database and checked for compatibility.

Usually, configuration problems are solved by
specially written pieces of software including pre-
programmed constraints that take their parameter values
from a number of data files prepared by the designer. The
KRAFT architecture generalises this to allow both the
parameters and the constraints representing the problem
to be searched for and selected and brought together, over
a network of nodes that may develop in various
unanticipated ways. The agent architecture looks to be
the best hope for coping with evolutionary change and
the autonomy of different resource nodes.

For an example of the use of a KRAFT system,
consider the problem of finding a number of parts that fit
together to make something, or that work together in
some way. Suppliers of these parts make catalogues, in
the form of database tables, available over the network.
However, the tables may have different semantics and
hidden assumptions. These assumptions are often
contained in an asterisked footnote or small print in the
catalogue, for example: this part must be mounted in a
housing of adequate size. Thus, it is not enough just to
make a distributed database query to find a list of
possible parts; we must also ensure that these parts satisfy
various constraints.

It is the knowledge in these constraints which we aim
to reuse by transforming it to work in the context of a
shared ontology that is being used to integrate the data.

Thus we might have a constraint stored as metadata in
the database for the AbComponents catalogue:

constrain each w in widget
to have width(housing(w)) >= width(w) + 5
 and width(housing(w)) =< width(w) + 15;

This constraint is expressed in the KRAFT Constraint
Interchange Format (CIF), based on the CoLan language
used to express semantics in the object database P/FDM
[Embury & Gray, 1995]. However, within the
AbComponents database, the constraint might actually
have been represented in some other form (as a trigger on
a frame structure, for example); it must be translated into
a CIF constraint before it can be used by the KRAFT
network. To make use of widgets from the
AbComponents catalogue, we must translate this
constraint into a form consistent with a shared ontology.
This requires an understanding of the different
terminologies used in the AbComponents database and
the shared ontology:

constrain each w in wotsit
 such that source(w) = "AbComponents"
to have distance(left_neighbour(w),
 right_neighbour(w)) >= width(w) + 2
 and distance(left_neighbour(w),
 right_neighbour(w)) =< width(w) + 6;

There are various ways to use the transformed constraint;
in a design, for example, it could be transformed and
fused with another constraint on a particular usage of the
widgets/wotsits as parts of containers:

constrain each c in container so that
 each p in parts(c) such that p is a wotsit
 and source(p) = "AbComponents"
has internal_diameter(c) >= width(p) + 2 and
 internal_diameter(c) =< width(p) + 6;

Alternatively we could represent the fused constraints as
a collection of clauses in normal form. We can now use
this fused information in various ways as explained later.

The KRAFT System Architecture

The KRAFT system has an agent-based architecture, in
which all knowledge processing components are realised
as software agents. An agent-based architecture was
chosen for KRAFT for the following reasons:

• Agent architectures are designed to allow software
processes to communicate knowledge across
networks, in high-level communication protocols; as
constraints are a sub-type of knowledge, this was seen
as an important feature for KRAFT.

• Agent architectures are highly dynamic and open,
allowing agents to locate other agents at run-time,
discover the capabilities of other agents, and form

cooperative alliances; as KRAFT is concerned with
the fusion of knowledge from available on-line
sources, these features were seen as being of great
value.

The design of KRAFT is consistent with several
emerging agent standards, notably the de facto KQML
standard [Labrou, 1996] and the de jure FIPA standard.
Agents are peers; any agent can communicate with any
other agent with which it is acquainted. Agents become
acquainted by registering their identity, network location,
and an advertisement of their knowledge-processing
capabilities with a specific type of agent called a
facilitator (essentially an intelligent yellow pages
service).

When an agent needs to request a service from
another agent, it asks a facilitator to recommend an agent
that appears to provide that service. The facilitator
attempts to match the requested service to the advertised
knowledge-processing capabilities of agents with which it
is acquainted. If a match is found, the facilitator can
inform the service-requesting agent of the identity,
network location, and advertised knowledge-processing
capabilities of the service provider. The service-
requesting agent and service-providing agent can now
communicate directly.

It is worth emphasising that, while this model is
superficially similar to that used in distributed object
architectures such as CORBA and DCOM [Harkey et al,
1998], the important difference is the semantic level at
which interactions take place: In distributed object
architectures, objects advertise their presence by
registering method signatures with registry services, and
communicate by remote method invocations.

In agent-based systems, advertisements of capabilities
are much richer, being expressed in a declarative
knowledge representation language, and communication
uses a high-level conversational protocol build from
primitive conversational actions such as ask, tell,
advertise, and recommend. Distributed object
architectures are in fact highly suitable for implementing
agent-based architectures (for example, the ADEPT
system used CORBA [Jennings et al, 1996]) but the
converse is not true.

A conceptual view of the KRAFT architecture is
shown in Figure 1. KRAFT agents are shown as ovals.
There are three kinds of these: user agents, wrappers, and
mediators. All of these are in some way knowledge-
processing entities.

Wrappers are agents that act as proxies for external
knowledge sources, typically databases and knowledge-
based systems. These are often legacy systems, so one
task of a wrapper is to provide a bridge between the
legacy system interface and the KRAFT agent interface.

For example, the legacy interface of a relational
database will typically be SQL/ODBC; the KRAFT
wrapper will accept incoming request messages from

other agents in the KRAFT agent communication
language, transform these into to SQL queries, run them
on the database, and transform the returned results to an
outgoing message in the KRAFT agent communication
language.

Wrappers also provide entry-points into the KRAFT
system for user agents. User agents allow end-users
access to a KRAFT knowledge processing system. A user
agent will offer some kind of user interface, with which
the user will present queries to the KRAFT network. The
user agent will transform the users’ queries into the
internal knowledge representation language of the
KRAFT system, and interact with other KRAFT agents to
answer the queries. A user agent will typically also do
some local processing on knowledge, at least to transform
it for presentation.

UA

W

W

UA

R

W

R

W
W

W

R
R

UA

F

F

M

M

M
KRAFT
domain

M

UA

R

W

F

M

User
Agent

Resource

Wrapper

Facilitator

Mediator

KRAFT facilities
Non-KRAFT
components

Key

Figure 1 A conceptual view of the KRAFT architecture

Mediators are the internal knowledge-processing
agents of the KRAFT system: every mediator adds value

in some way to knowledge obtained from other agents.
Typical mediator tasks include filtering, sorting, and
fusing knowledge obtained from other agents.

Facilitators have already been mentioned above: these
are the "matchmaker" agents that allow agents to become
acquainted and thereby communicate. Facilitators are
fully-fledged knowledge-processing entities: establishing
that a service request "matches" a service advertisement
requires reasoning with the declarative representations of
request and advertisement.

KRAFT agents communicate via messages using a
nested protocol hierarchy. KRAFT messages are
implemented as character strings transported by a
suitable underlying protocol (for example, CORBA IIOP
or TCP via sockets). A simple message protocol
encapsulates each message with low-level header
information including a timestamp and network
information.

The body of the message consists of two nested
protocols: the outer protocol is the agent communication
language CCQL (Constraint Command and Query
Language) which is a subset of the Knowledge Query and
Manipulation Language (KQML) [Labrou, 1996]. Nested
within the CCQL message is its content, expressed in the
CIF protocol (Constraint Interchange Format).

It is worth noting that, syntactically, KRAFT
messages are implemented as Prolog term structures.
This is chiefly for convenience, as most of the
knowledge-processing components are written in Prolog.
However, the Prolog term structures are easily parsed by
non-Prolog KRAFT components; currently there are
several components implemented in Java, for example.

Constraint Fusing Example

To demonstrate constraint fusion from different sources
to support the manufacturing activities of a virtual
organisation, consider a configuration problem where a
PC is built by combining components from vendors. The
customers specify their requirements in the form of
constraints through a user agent. In this example, a
customer specifies that the PC must use a pentium2
processor but not the win98 OS:

constrain each p in pc
 to have cpu(p)="pentium2"
 and name(has_os(p)) <> "win98"

For the components to fit together, they must satisfy
certain constraints originating in the designer’s
knowledge base. For example, the size of the OS must be
smaller or equal to the hard disk space for a proper
installation:

constrain each p in pc
 to have size(has_os(p)) =< size(has_disk(p))

Now the candidate components from different vendors
may have instructions attached to them as constraints. In
the vendor database of operating systems, winNT requires
a memory of at least 32 megabytes:

constrain each p in pc
 such that name(has_os(p))="winNT"
to have memory(p) >= 32

When we fuse all constraints together, we get the
description of the overall constraint satisfaction problem:

constrain each p in pc
 to have cpu(p)="pentium2"
 and name(has_os(p)) <> "win98"
 and size(has_os(p)) =< size(has_disk(p))
 and if name(has_os(p))="winNT"
 then memory(p)) >= 32 else true

Related Work

Agent-based architectures are proving to be an effective
approach to developing distributed information systems
[Bayardo et al, 1997], as they support rich knowledge
representations, meta-level reasoning about the content of
on-line resources, and open environments in which
resources join or leave a network dynamically
[Wiederhold & Genesereth, 1995]. KRAFT employs such
an agent-based architecture [Gray et al, 1997] to provide
the required extensibility and adaptability in a dynamic
distributed environment. Unlike most agent-based
distributed information systems, however, KRAFT
focuses on the exchange of data and constraints among
agents in the system.

Recent research in the area of software agent
technology offers promising ways of supporting virtual
and agile organisations, but the area is still far from
mature. Early projects such as PACT [Cutkosky et al,
1993] and SHADE [Kuokka et al, 1994] showed that
agent technology could support exchange of rich business
information — using the Knowledge Interchange Format
(KIF) — between organisations using heterogeneous
technologies, with a limited amount of organisational
agility — basic "matchmaking" brokerage connecting
suppliers to customers. While demonstrating the promise
of the agent-based approach, these projects revealed
problems: the complexity of the KIF representation has
prevented it from gaining widespread use, while the
limited brokerage model hinders the implementation of
flexible negotiation schemes.

The ADEPT project offers a flexible environment for
agile organisations, with an emphasis on the dynamic
management of workflow between partner organisations
[Jennings et al, 1996]. Service agreements are negotiated,
formed, and re-formed over time, supporting both
competitive and collaborative interactions, albeit with
rather limited forms of information exchange.

The design of the KRAFT architecture builds upon
recent work in agent-based distributed information
systems. In particular, the roles identified for KRAFT
agents are similar to those in the InfoSleuth system
[Bayardo et al, 1997]; however, while InfoSleuth is
primarily concerned with the retrieval of data objects, the
focus of KRAFT is on the combination of data and
constraints. KRAFT also builds upon the work of the
Knowledge Sharing Effort [Neches et al, 1991], in that
some of the facilitation and brokerage methods are
employed, along with a subset of the 1997 KQML
specification [Labrou, 1996]. Unlike the KSE work,
however, which attempted to support agents
communicating in a diverse range of knowledge
representation languages (with attendant translational
problems), KRAFT takes the view that constraints are a
good compromise between expressivity and tractability.

In its emphasis on constraints, KRAFT is similar to
the Xerox Constraint Based Knowledge Brokers project
[Andreoli et al, 1995]; the difference is that KRAFT
recognises the need to transform constraints when they
are extracted from local resources, typically for reasons
of ontological or schema mismatch [Gray et al, 1997;
Visser et al, 1997].

Current and Future Work

The KRAFT network architecture is being applied to the
problem of gathering a specification for a configuration
problem, including potential parts and their constraints.
Its agent architecture makes it very suitable to support
virtual organisations, where various vendors and potential
customers ally themselves together because they wish to
combine information. In order to do it they are prepared
to conform (or map data and constraints) to an ontology
that is shared but monotonically extensible [Gray et al,
1997]. Therefore, KRAFT is essentially restricted to
cooperative interactions between agents.

Clearly, there is a cost associated with joining a
KRAFT network, in that members must wrap their
knowledge sources to conform to the shared protocols
and knowledge exchange languages. However, KRAFT
aims to demonstrate that the use of constraints offers an
effective "middle way" between the off-putting
complexity of KIF at one extreme, and the limited
expressivity of the EDI approaches.

Currently, and in the immediate future, work is
focusing upon testing and evaluating the KRAFT
architecture in a realistic business-to-business e-
commerce scenario.

Acknowledgements

KRAFT is a collaborative research project between the
Universities of Aberdeen, Cardiff and Liverpool, and BT.
We acknowledge support from BT for Kit Hui working

on the KRAFT project, which is also supported by
EPSRC. We would like to thank Graham Kemp
(Aberdeen), Zhan Cui (BT) and other KRAFT project
partners for interesting discussions. Figure 1 is adapted,
with permission, from [Gray et al, 1997].

References

Andreoli, J.; Borghoff, U.; and Pareschi, R. 1995.
Constraint Agents for the Information Age, Journal of
Universal Computer Science 1:762-789.

Bayardo, R. et al. 1997. InfoSleuth: Agent-Based
Semantic Integration of Information in Open and
Dynamic Environments. In Proc SIGMOD’97.

Cutkosky, M.; Engelmore, R.; Fikes, R.; Genesereth, M.;
Gruber, T.; Mark, W.; Tenenbaum, J.; and J Weber, J.
1993. PACT: an experiment in integrating concurrent
engineering systems", IEEE Computer, 26 (1): 8-27.

Embury, S. and Gray, P. 1995. Planning Complex
Updates to Satisfy Constraint Rules Using a Constraint
Logic Search Engine". In Proc 2nd International
Workshop on Rules in Database Systems, 216-224.
Springer-Verlag.

Gray, P.; Preece, A.; Fiddian, N.; Gray, W.; Bench-
Capon, T.; Shave, M.; Azarmi, N.; and Wiegand, M.
1997. KRAFT: Knowledge Fusion From Distributed
Databases and Knowledge Bases. In Proc 8th
International Workshop on Database and Expert System
Applications (DEXA-97), 682-691. IEEE Press.

Orfali, R. and Harkey, D. 1998. Client-Server
Programming with Java and CORBA, 2nd ed. Wiley.

Jeffery, K. 1998. Metadata: an Overview and Some
Issues. ERCIM News, No 35.

Jennings, N.; Faratin, P.; Johnson, M.; Norman, T.;
O’Brien, P.; and Wiegand, M. 1996. Agent-Based
Business Process Management. International Journal of
Cooperative Information Systems, 5:105-130.

Kalakota R. and Whinston, A. 1997. Electronic
Commerce: A Manager’s Guide. Addison-Wesley.

Kuokka, D.; McGuire, J.; Weber, J.; Tenenbaum, J.;
Gruber, T.; and Olson, G. 1994. SHADE: Knowledge-
Based Technology for the Re-engineering Problem.

Labrou, Y. 1996. Semantics for an Agent
Communication Language, PhD Thesis, University of
Maryland, Baltimore MD, USA.

Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.;
Senator, T.; and Swartout, W. 1991. Enabling
Technology for Knowledge Sharing", AI Magazine
12:36-56.

O’Leary, D.; Kuokka, D.; and Plant, R. 1997. Artificial
Intelligence and Virtual Organisations", CACM, 40:52-
59.

Plant, R. and Murrell, S. 1997. The Agile Organisation:
Technology and Innovation. In AAAI-97 Workshop on
Using AI in Electronic Commerce, 26-32. AAAI Press
Tech Report WS-97-02.

Schein, E.. 1994. Innovative Cultures and Organisations.
In Information Technology and the Corporation of the
1990s, 125-146. Oxford University Press.

Singh, M. 1997. Commitments Among Autonomous
Agents in Information-rich Environments. In Proc 8th
European Workshop on Modelling Autonomous Agents
in a Multi-Agent World (MAAMAW), Ronneby,
Sweden.

Visser, P.; Jones, D.; Bench-Capon, T.; and Shave, M.
1997. An Analysis of Ontology Mismatches:
Heterogeneity versus Interoperability. In Proc AAAI
Spring Symposium on Ontological Engineering.

Wiederhold, G. and Genesereth, M. 1995. The Basis for
Mediation. In Proc 3rd International Conference on
Cooperative Information Systems (COOPIS95).

