






Table 2. Performance of foreground propagation task on
two supervoxels GBH and TSP, averaged on Youtube-Objects
Dataset [20] (Best results are shown in bold).

Method Running time Accuracy
Time (sec) CP1 UE3D SA3D BRD F1

GBH 126.62 0.0439 3.5781 0.8929 1.8567 0.7409
TSP 99.28 0.1795 1.7952 0.8705 3.7914 0.7232

4.1. Foreground propagation

Given the first frame with an annotated foreground object,
Jain and Grauman [1] propose a novel method to propagate
the foreground region through time, by using supervoxels
to obtain long-term coherent estimates. A spatio-temporal
graph was constructed based on supervoxels and optical flow,
in which a Markov random field is developed with a well-
defined energy function consisting of unary, pairwise and
higher order potentials. The energy is then minimized by
α-expansion and iteratively updating the likelihood functions
using label estimates.

The accuracy of this energy minimization solution (evalu-
ated by the F-measure F1) depends on the over-segmentation
accuracy of supervoxels, which can be indicated by the met-
rics UE3D, SA3D and BRD in a comprehensive way. On the
other hand, supervoxels’ compactness affects the time com-
plexity of this solution. More compact supervoxels tend to
construct a simpler spatio-temporal graph owing to simpler
neighborhood relationships. The reduction of combinatorial
complexity of the graph leads to the reduction of the com-
putational cost of the energy function and processing time of
energy minimization.

We verify this relation between compactness and process-
ing time by experiments (see Table 2, tested on a PC with
Intel Core E5-2683V3 and 256GB RAM). Given the same
number of supervoxels, GBH result with non-compact super-
voxels takes more time to minimize the energy function than
compact TSP.

4.2. Optimal video closure

Levinshtein et al. [2] propose a novel spatiotemporal closure
detection method to separate an object from background in a
video clip. Based on the same spatio-temporal graph as sum-
marized in Section 4.1, spatiotemporal closure detection is
formulated as finding a subset of supervoxels that minimizes
a spatiotemporal closure cost over the graph.

Minimizing this normalized cut exactly is NP-complete
[22]. An approximation solution using parametric maxflow is
applied in [2]. The accuracy of this approximation solution
depends on the compactness of supervoxels: More compact
supervoxels tend to have more compact subsets and hereby
better results.

We verify this observation by experiments. For seven pre-
sentative supervoxels, their metric values of CP1, UE3D and
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Fig. 3. The measures of CP1, UE3D and BRD for seven rep-
resentative supervoxels, and their performance (evaluated by
F-measure F1) in the video closure application [2], averaged
over Stein et al.’ dataset [21].

Table 3. Correlation analysis between F measure F1 of video
closure and supervoxel metrics.

UE3D BRD SA3D CP1

F1 −0.8061 0.2896 −0.0468 0.5385

BRD, averaged on Stein et al.’ dataset [21], are illustated in
Figure 3, in which their performance in video closure (evalu-
ated by F-measure F1) is also presented. The results clearly
show that TSP achieves the best performance simultaneously
on average F-measure F1 and compactness CP1. Further ex-
periments for investigating relations between F1 and super-
voxel metrics are conducted; see Table 3 for correlation co-
efficients. The results show that both UE3D and CP1 have
strong correlation with F1. When supervoxels have similar
performance on UE3D (e.g., GBH and NCut), the difference
on CP1 metric can further justify the goodness of different
supervoxels (e.g. NCut with larger CP1 also has higher F1).

5. CONCLUSION

In this paper, we propose a new metric of two possible forms
CP1 and CP2 to measure the shape regularity of supervoxels.
Their discriminative power is analyzed by comparing seven
representative supervoxels on various datasets. We also inves-
tigate the relation between CP1 and existing metrics, reveal-
ing that CP1 reflects a new aspect of supervoxel quality. We
further demonstrate the effect of compactness measure with
two video applications, showing thatCP1 is a necessary com-
plement to existing metrics.
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