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Abstract

Segment-wise matching is an important research problem that supports higher-level understanding of
shapes in geometry processing. Many existing segment-wise matching techniques assume perfect input seg-
mentation, and would suffer from imperfect or over-segmented input. To handle this shortcoming, we propose
multi-layer graphs (MLGs) to represent possible arrangements of partially merged segments of input shapes.
We then adapt the diffusion pruning technique on the MLGs to find consistent segment-wise matching. To
obtain high quality matching, we develop a voting step to find hierarchically consistent correspondences as
final output. We evaluate our technique with both qualitative and quantitative experiments on both man-
made and deformable shapes. Experimental results demonstrate the effectiveness of our technique when
compared to two state-of-the-art methods.
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1. Introduction
Given two similar 3D meshes with pre-defined segments, 3D segment-wise matching aims to establish

meaningful correspondences of segments between the two meshes. It is an important problem as it helps
with higher-level and hierarchical understanding in geometry analysis Zhu et al. (2017). It further impacts
many downstream applications, like defining better similarity measures between 3D models Kleiman et al.
(2015); Shapira et al. (2010); Kleiman and Ovsjanikov (2017), functionality analysis van Kaick et al. (2013a),
surface registration Huang et al. (2008) and structure-aware analysis Mitra et al. (2013).

A few notable techniques have been proposed in the recent literature. Many of them combine topolog-
ical and geometrical information to help solve the segment-wise matching problem. Kleiman et al. (2015);
Kleiman and Ovsjanikov (2017) both take input shape segments and build a component graph to capture the
topological relationship of segments. Together with geometric similarity of segments, they adapt the spec-
tral technique Leordeanu and Hebert (2005) for matching. SHED (Shape Editing Distance) Kleiman et al.
(2015) innovates to consider one-to-many matching whilst Kleiman and Ovsjanikov (2017) focuses on robust
matching of non-isometrically deformed segments and disambiguating symmetric segments. Alhashim et al.
(2015) also takes pre-defined shape segments as input and builds a component graph to represent their topol-
ogy. To solve the segment-wise matching problem, they use a deformation energy as an effective constraint
to produce higher-level semantic matching results. Zhu et al. (2017) builds a component hierarchical graph
using a binary partition technique. Their matching technique adopts a top-down approach and achieves
good results.

We observe two problems for the methods in existing literature. First, most of these techniques rely on
input with consistent segmentation Kleiman et al. (2015); Kleiman and Ovsjanikov (2017); Alhashim et al.
(2015); Zhu et al. (2017). When the input segmentation is inconsistent (over-/imperfectly segmented), they
often lead to incorrect correspondences. For example in Figure 1, the two lamps are inconsistently segmented

Email addresses: 688818@swansea.ac.uk (Taiwei Wang), 654214@swansea.ac.uk (David George), LaiY4@cardiff.ac.uk
(Yu-Kun Lai), x.xie@swansea.ac.uk (Xianghua Xie), k.l.tam@swansea.ac.uk (Gary K.L. Tam)

Preprint submitted to CAGD; Special Issue of GMP 2019 March 27, 2019



(a) SHED Matching Result (b) Our Bottom Layer Matching Result (c) Our Higher Layer Matching Result

Figure 1: Example matching of inconsistently (over/imperfectly) segmented shapes. In all �gures in this paper, color of segment
indicates segment boundary only (not correct correspondences). Instead, we use blue lines for correct correspondences and red
lines for incorrect ones (according to our user study). We further use polygons with the same color to indicate one-to-merged
or merged-to-merged correspondences in our results. In this example, it is di�cult to de�ne a correct correspondence for the
middle (purple) joint of the left lamp. In our results we do not force full matching but leave it as unmatched to reduce incorrect
matching. Full matching techniques such as SHED produce incorrect matching between inconsistently segmented regions.

(one has more segments than the other on the joint). Kleiman et al. (2015) (Figure 1a) investigates one-
to-many correspondences and further requires full matching, i.e. every segment from one shape is matched
to at least one segment in another shape. A�ected by the di�erent joint composition on the right lamp,
the topology (graph distance) of the underlying component graphs di�ers a lot. As a result Kleiman et al.
(2015) returns incorrect matchings (indicated by red lines). Second, correct segment-wise matching also
depends on the global shapes and functionality. For example, in Figure 1b the upper stick of the right lamp
and the lower stick of the left lamp are over-segmented into two segments. Ideally, the left lamp's upper
stick should be matched to all segments of upper stick on the right lamp. This requires merging of segments
before a meaningful consistent segment-wise matching can be established (Figure 1c). These observations
inspire us to investigate the following research questions:

� Can a technique that handles moderate topological changes in the underlying segment graphs improve
matching results?

� Can merged segments help improve the accuracy of segment-wise matching with inconsistent (over-
/imperfectly) segmented inputs?

� How can we develop a representation that facilitates matching of merged segments, and a technique
for robust segment-wise matching?

To address these questions, we propose to construct multi-layer graphs (MLGs) to represent the input
shapes with inconsistent segments. Inspired by Laga et al. (2013), an MLG is a graph consisting of nodes
with input and merged segments which is built in a bottom-up manner by neighbor merging. Di�erent from
Laga et al. (2013), our merging technique uses many possible combinations based on the connectivity (if
two segments share common faces/vertices) of input segments. In this way we achieve better capability with
over-/imperfect input segmentation than Laga et al. (2013).

Next we �nd consistent matching between MLGs by adapting the di�usion pruning (DP) technique Tam
et al. (2014b) and using both geometric and topological constraints. Inspired by spectral techniques, DP
computes matching results by inferring global consistency from the local matching. It has been shown to
be robust against moderate non-isometric deformation Tam et al. (2014b). It would allow us to handle
moderate changes in graph distance due to over/imperfect input segmentation.

Further, di�erent from existing techniques Kleiman et al. (2015); Kleiman and Ovsjanikov (2017) that
apply spectral matching on component graphs built from input segments only, we apply DP on the proposed
multi-layer graphs (MLGs) consisting of both input and merged segments. Compared to Kleiman et al.
(2015) which innovates in one-to-many matching, our technique can o�er both one-to-merged and merged-
to-merged correspondences. From our experiments, our technique produces better results than Kleiman et al.
(2015). The obtained matching results are also consistent across layers while existing top-down approach
Zhu et al. (2017) may fail (see Section 8). In summary, ourcontributions include:
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� We propose a multi-layer graph (MLG) representation to capture detailed geometric, topological and
hierarchical information from the input and merged segments of shapes.

� We propose a matching technique to obtain geometrically, topologically and hierarchically consis-
tent matching results with over/imperfectly-segmented inputs. From our experiments, it outperforms
Kleiman et al. (2015) quantitatively and qualitatively in our user study.

� To the best of our knowledge, this is the �rst technique which can obtain meaningful merged-to-merged
segment-wise correspondences. This has not been considered before in the literature.

To be consistent throughout this paper, we use the term \components" for semantic parts obtained from
perfect segmentation that respect human intuition. \Segments" instead refer to regions resulted from perfect
or imperfect segmentation. We discuss related work in Section 2. Section 3 provides an overview of our
technique. Then we discuss the construction of MLGs from input shapes and initial matching computation
in Section 4. Section 5 explains di�usion pruning and how to adapt it on MLGs. After that we vote the
pruned results in Section 6. We evaluate our method in Section 7. Finally, discussions and conclusions are
presented in Sections 8 and 9.

2. Related Work
Our method involves global geometry features, partial matching between shapes, and hierarchical analysis

of shape topology. We summarize and discuss existing works related to ours below.

2.1. Global Geometry Features

There are many important shape features developed over the past decades. We mention some important
features, and those that are particularly relevant in this section. We would like to refer readers to recent
surveys Tam et al. (2013); van Kaick et al. (2011).

Light Field Descriptor Chen et al. (2003) is one of the notable geometry descriptors. It is based on
a set of 2D images of the input shape (captured from di�erent angles) and use image-based features for
measuring shape similarity. Ankerst et al. (1999) introduces a 3D shape histogram approach with sampled
points on meshes to determine shape similarity. Osada et al. (2002) further extends 3D shape histograms into
A3/D1/D2/D3/D4 descriptors with di�erent random sampling based measures. Blomley et al. (2014) uses
eigenvalues from PCA to determine shape distribution features (such as linearity, sphericity, omni-variance,
change of curvature). These distribution-based features may be unreliable in certain cases (e.g. the left base
and right cap have similar scores in Fig. 6). Heat Kernel based descriptors such as Heat Kernel Signature
(HKS) Sun et al. (2009) use heat di�usion on meshes to de�ne point-based features. Persistent-HKS Dey
et al. (2010) extends HKS and can be used as a descriptor for partial matching of non-rigid shapes.

Our proposed technique mainly uses LFD as it is more robust for small segments. In general, local
features can be used to obtain initial matching, but the results are likely to be globally inconsistent. Our
technique aims to produce consistent segment-wise matching results.

2.2. Shape Registration and Matching

Shape registration and point-based matching is an important research area with long history Tam et al.
(2013). The research challenges are to develop robust and accurate techniques to handle shapes undergoing
di�erent real-life transforms (rigid) and deformations (non-rigid), including near-/non-isometric deforma-
tions Kim et al. (2011). Finding subsets of sampled shape features can help form meaningful or semantic
matching van Kaick et al. (2011). There are further many existing works, e.g. Maciel and Costeira (2003);
Berg et al. (2005); Gelfand et al. (2005); Zhang et al. (2008) which rely on sampled/key points on input
shapes, and then use designated objective functions to analyze alignment/distortion errors and generate
matching. One of the notable techniques van Kaick et al. (2013b) uses deformation distortions to obtain
semantic matching.

Compared to other techniques that require speci�c constraints (e.g. sphere topology Kim et al. (2011)),
one of the notable matching techniques Leordeanu and Hebert (2005) uses spectral analysis and has inspired
many subsequent and useful point-based matching and registration techniques e.g. Huang et al. (2008). The
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spectral pruning technique Huang et al. (2008) assumes near-isometric deformation using global geodesic
isometry. However, when the deformation is large (becoming non-isometric deformation), the technique does
not perform well. Tam et al. (2014b) proposes a di�usion pruning (DP) technique to infer global consistency
from locally consistent matching. It has been shown to handle moderate non-isometric deformation well.
We adapt DP on multi-layer graphs to handle moderate change in topological distances in the segment
graph. A complete literature survey of shape registration and matching techniques is beyond the scope of
this paper. We would like to refer readers to surveys (e.g. Tam et al. (2013) and van Kaick et al. (2011)).

2.3. Hierarchical Understanding

Some works solve the shape matching/synthesis problem using a hierarchical approach for higher-level
understanding. Chaudhuri et al. (2011); Kalogerakis et al. (2012); Shapira et al. (2010) use graphs encoded
with probabilistic and topological information to solve region-wise matching or shape synthesis problems.
Zheng et al. (2013) converts input shapes into component relationship graphs and then combines graph
subsets with designated symmetric functional arrangement for synthesizing new shapes. Alhashim et al.
(2015) combines component relationship graphs and deformation energy constraints to establish meaningful
segment-wise correspondences of input shapes. Binary decomposition approaches are also used to help
with hierarchical understanding. Wang et al. (2011) introduces a novel shape representation in a binary
hierarchical manner which cuts a shape from-whole-to-segment hierarchically. Zhu et al. (2017) �nds the best
binary segmentation in a top-down manner, via matching along the object hierarchy and uses recognition
measures to better handle structural variations and inconsistent initial segmentation than Alhashim et al.
(2015). The technique however may fail in �ne-grained matching because such cases lack the support of
cross-layer information (see more discussion in Section 8.) Laga et al. (2013); Pechuk et al. (2008) focus
on merging shape parts to form a hierarchical graph representation of part-functionality with geometry and
topological information. Inspired by all these works, we propose to build a multi-layer graph by merging
adjacent nodes in a bottom up manner. We do not de�ne speci�c constraints (e.g. functional constraint
Zheng et al. (2013) or binary segmentation Zhu et al. (2017)). The search space we consider, compared
to existing work, is arguably larger. To address this, we further develop a robust matching technique to
discover meaningful segment correspondences even under inconsistent (over/imperfect) input segmentation.

2.4. Segment-Wise Matching

A few works in the literature focus on segment-wise matching which we survey here. Kleiman and Ovs-
janikov (2017) relies on HKS features for pre-segmentation. It uses spectral matching to �nd segment-wise
correspondences with a focus on symmetric/pairwise issues. However, it outputs pair-to-pair correspon-
dences, and may lead to no matching if there are left-right symmetry issues. Alhashim et al. (2015) uses
combinatorial tree search and a deformation energy constraint to establish meaningful segment-wise corre-
spondences. One shortcoming of this method is that it may not work on �ne-grained segmented shapes. Zhu
et al. (2017) �nds the best binary segmentation in a top-down manner, and matches along the object hier-
archy. It uses recognition measures to better handle structural variations and imperfect initial segmentation
than Alhashim et al. (2015). This method does not exploit matching from object hierarchies and may result
in some incorrect correspondences (see also Figure 14a). SHED (Shape Editing Distance) Kleiman et al.
(2015) takes shape segments and performs matching to de�ne a better shape similarity measure. It innovates
to �nd both one-to-one and one-to-many segment-wise correspondences, using both geometry and topology
information. It forces full matching which means each input segment must have at least one correspondence
to another shape, which helps resolve some ambiguities with perfect input segmentation, but when the input
segmentation is inconsistent, incorrect matching may result.

To our knowledge, none of the existing techniques consider inconsistent (over-/imperfect) input segmen-
tation. Our technique is the �rst work to handle this challenge. Our novel idea is to use a multi-layer graph
to represent possible merging arrangement, and carry out our matching on such graphs. Together with a
novel voting step, our results are shown to be geometrically, topologically and hierarchically consistent.

4



Figure 2: Method overview: our technique �rst builds multi-layer graphs to represent the input meshes from the pre-de�ned
segmentation. Such pre-de�ned segmentation may be inconsistent between two shapes. Next we adapt di�usion pruning (DP)
Tam et al. (2014b) on the bottom layer to �nd anchors. With the support of anchor correspondences, we apply DP again on
the multi-layer graphs to obtain initial matching. A voting technique is further applied to con�rm high quality segment-wise
correspondences using matching from high layers.

3. Method Overview
Figure 2 shows an overview of our proposed method for segment-wise matching with inconsistent input

segmentation. It involves four steps, namelymulti-layer graph construction (Section 4), discovery of
anchor correspondences (Section 5), higher layer matching (Section 5.2) andvoting (Section 6).

Given two shapes with inconsistent segments, we build two hierarchical segment graphs (referred to as
multi-layer graphs, MLGs) to represent the original shapes. Each input segment in a shape is assigned a
graph node. All input segment nodes are grouped into one layer, denoted as thebottom layer . A merging
stage is then applied to the nodes in the bottom layer to construct the MLG. It generates new nodes and
new layers and is applied recursively until all nodes are merged into one | the original shape. After we have
built two MLGs, we compute geometry similarities between nodes in the two MLGs for initial matching.
Next, we adapt the di�usion pruning technique to compute good matching. There are two stages: the �rst
pruning stage involves only the bottom layer in both MLGs. This is inspired by Kleiman et al. (2015)
as SHED provides reasonable results with perfect segmentation. Only strong results are used as anchors
for the second pruning stage. For inconsistent input with large topological/geometrical variation however,
using only nodes in the bottom layer alone often does not provide acceptable results. The second pruning
further uses these anchors and involves more layers than previous pruning computation. Finally, we apply
our voting technique to extract and con�rm highly con�dent segment matching, using correspondences in
higher layers.

4. Multi-Layer Graph and Initial Matching
Given a shape with prede�ned segments, we de�ne the multi-layer graph (MLG) as a hierarchical rep-

resentation. It covers possible merging arrangements of segments that are adjacent in a shape. An MLG
consists of nodes and edges. Nodes are further grouped into layers. Bottom layer (layer 1) consists of input
segment nodes whilst higher layers consist of nodes due to merging of two adjacent nodes in a lower layer.
Nodes in internal layers are further connected by edges indicating their adjacent connections (within layer)
and where the nodes are merged from (across this and lower layer). The highest layer consists of only one
node. It represents the entire shape where all segments are merged. We �rst de�ne the construction of
multi-layer graph equipped with a speci�c volume constraint, and then discuss the initial correspondences.

4.1. Multi Layer Graph

Node Construction with Volume Constraint . Precisely, let S = ( V; E) be a 3D shape with sets of
vertices V , edgesE and pre-de�ned input segmentsf S1; S2; S3; :::g where S =

S
Si is the union of vertices

� V and edges� E in Si . Denote by �N [l ]
k the kth node in the l th layer of a source shape MLG(S). We
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