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Abstract With the rapid development of computing technology, three- dimensional (3D) human body models and their
dynamic motions are widely used in the digital entertainmen t industry. Human performance mainly involves human body
shapes and motions. Key research problems in human performance animation include how to capture and analyze static
geometric appearance and dynamic movement of human bodies,and how to simulate human body motions with physical
e�ects. In this survey, according to the main research direc tions of human body performance capture and animation, we
summarize recent advances in key research topics, namely human body surface reconstruction, motion capture and synthesis,
as well as physics-based motion simulation, and further discuss future research problems and directions. We hope this will
be helpful for readers to have a comprehensive understanding of human performance capture and animation.
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1 Introduction

Ever since the Renaissance, precise modeling of hu-
man bodies has become an important subject explored
by both scientists and artists alike. Da Vinci's drawing
Vitruvius Man sketches the ideal proportion of a man
who lived in Italy in the 15th century. Michelangelo's
sculpture David accurately portrays the Jewish hero
David King. In modern times, with the rapid develo-
pment of computing technology, the reconstruction and
the synthesis of human appearance and motion play an
important role in �lm production, animation, digital
entertainment and other industries.

A major goal of human performance capture and an-
imation is to reconstruct and simulate realistic human

behaviors, which bene�ts many downstream applica-
tions. For example, this will help enhance the sense
of immersion for virtual reality. However, it is a chal-
lenging problem, because human performance includes
diverse shapes (due to the variation of individuals and
poses) and complex motions. Moreover, a well-known
psychological observation known as \uncanny valley"
states that high-standard realism is required for human
bodies to be perceived as real. To capture the perfor-
mance accurately, a series of devices have been deve-
loped. For example, laser scanners are used to capture
and reconstruct the geometry of human shape, and op-
tical sensor based motion capture equipment such as
VICON is used to track human motions.
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In the virtual digital world, shape and motion are
the two major aspects essential to characterize a human
body. The shape of a human body is typically repre-
sented as a 3-dimensional (3D) mesh and the motion
is usually represented by a deforming skeleton. One
way of obtaining digital representation of dynamic hu-
man bodies is to capture them in real world. The re-
search topics include human shape reconstruction and
motion capture. This can often be expensive and time-
consuming, thereby an alternative approach consid-
ers reusing captured motion data to synthesize new
motions by analyzing existing motions, to satisfy di-
verse environmental constraints. The motion of humans
obeys physical laws, and thus another direction of mo-
tion synthesis is by simulation. In order to simulate
realistic human motions, signi�cant research e�ort has
been put on physics-based human body simulation in-
cluding forward dynamics and inverse dynamics.

In the following, we �rst overview research on hu-
man surface reconstruction, and body motion capture
and synthesis in Section 2 and Section 3, respectively.
In Section 4, we summarize methods in physics-based
shape deformation for human motion modeling. And
�nally in Section 5, we draw conclusions of this survey.

2 Human Body Surface Reconstruction

Human body modeling refers to building a mathe-
matical model for a human body, which is suitable for
computer representation and processing. Human body
modeling is the basis of handling, operation and anal-
ysis of the virtual human body in the digital environ-
ment. Obtaining high-quality geometric models is often
the �rst step towards realistic animation.

Existing methods for human body modeling can be
divided into two categories: modeling without prior
data, which reconstructs human models from acquired
raw 3D data (including Kinect-type depth images, and
depth images obtained from structured light scanning,
laser scanning, LiDAR scanning, etc.), and modeling
based on prior data, which uses human body databases
as prior knowledge in the form of embedded skeletons,
template models, parametric models, etc.

2.1 Human Body Modeling from Raw 3D Data

Di�erent 3D data acquisition techniques can be used
to obtain raw 3D data for human body modeling. In
the following, we will discuss four typical acquisition
techniques, namely laser scanning, photometric stereo,
using standard video input, and using depth cameras.

The data obtained using each technique has its unique
characteristics, leading to the needs of developing di�e-
rent human body modeling techniques.

2.1.1 Human Body Modeling by 3D Laser Scanning

3D laser scanning technology is characterized by its
capability of capturing 3D data with a high precision.
When applied to 3D human body modeling, it can be
used to build 3D models of high accuracy.

The 3D laser scanning technology is relatively ma-
ture and widely applied. It plays an important role in
building 3D human body datasets for those methods
exploiting prior knowledge (see Subsection 2.2). For
example, the CAESER (Civilian American and Euro-
pean Surface Anthropometry Resource) project[1] uti-
lizes the Cyberware WB4 laser scanner produced by the
Cyberware Inc. in America to collect American human
body data. Meanwhile, it utilizes Vitronic laser scanner
manufactured by German company Vitronic to obtain
European human body data.

Wang et al.[2] utilized unorganized point cloud data
collected by a 3D laser scanner to reconstruct human
body models. By exploiting human body structure and
semantic features, their method is able to reconstruct
human body models with high topological �delity and
�ne details.

Although 3D laser scanners have the advantages of
high precision, they also have drawbacks such as being
expensive, large and sensitive to calibration errors.

2.1.2 Human Body Modeling Using Photometric
Stereo

Photometric stereoscopic modeling is a classic prob-
lem in computer vision, which was �rst proposed by
Woodham[3] . Photometric stereo is a branch of SfS
(Shape from Shading) method. The major di�erence
from standard SfS is that photometric methods use
multiple images to restore the 3D structure of the ob-
ject's surface. An important research direction is to
combine photometric stereo with other techniques, such
as optical ow, stereo matching. Vlasic et al.[4] utilized
a multi-view video taken at a light stage to capture the
detailed geometry of a moving human body using the
photometric stereo method. All of the methods above
require speci�c light sources to work, which is a ma-
jor limitation. To address this, Wu et al.[5] proposed a
general method to estimate high-quality surface details
in uncontrolled lighting conditions by analyzing multi-
view video sequences captured in a common environ-
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ment, along with spatio-temporal maximum a posteri-
ori (MAP) probability inference.

Existing methods which can be approximated us-
ing a Lambertian surface reection model either require
highly controlled capture environments, or assume the
shape to be reconstructed. Further research with more
general reection models in less controlled environ-
ments is needed to expand its practical use and improve
the reconstruction quality for general non-Lambertian
surfaces.

2.1.3 Human Body Modeling Using Video

Traditional 3D scanning technology (such as laser
scanning) requires complex equipment and is very
time consuming. Consumer-level 3D sensors (such as
Kinect) provide a low-cost alternative. However, the
quality of generated data is substantially compromised
for outdoor scenes. In essence, this is because such sen-
sors use an active scanning technology, which is easily
disturbed by the outdoor light. On the contrary, video-
based methods are passive: they only need a normal
video camera and are suitable for the outdoor recon-
struction of human bodies. Moreover, such methods
are exible and have lower requirements for the scan-
ning environments compared with depth cameras; thus
in recent years human body reconstruction based on
video or image sequences has become a popular research
topic.

Stoll et al.[6] presented a comprehensive approach to
reconstructing human models in a video, which includes
a physics-based garment model that enables real-time
rendering of high-quality human body models in the
video. Recently, Zhu et al.[7] proposed to use a single
ordinary camera in the outdoor environment to shoot
videos for human reconstruction which is easy to de-
ploy. However, the method cannot cope with large-scale
motions, and relies on the success of SfM (Structure
from Motion) and multi-view segmentation algorithms
to work e�ectively.

Reconstruction of dynamic 3D humans from 2D
video is an inherently ill-posed problem. Despite the
signi�cant progress, it still remains challenging to cap-
ture detailed geometry and complex motions, and is
thus worth further research.

2.1.4 Human Body Modeling Using Depth Cameras

Since 2009, the research in the reconstruction of hu-
man body has made great progress with the advent
of depth cameras (e.g., Kinect). Compared with tradi-
tional 3D scanners, it is not only much cheaper but also

capable of capturing dynamic color and depth (RGB-
D) data. The emergence of Kinect in the �eld of com-
puter graphics and computer vision research is a re-
markable achievement, making it possible to develop
cheap and rapid methods to acquire 3D point clouds.
However, Kinect-type depth cameras also have disad-
vantages. First, the data captured is often incomplete
and noisy. Second, the resolution of captured images is
not high enough. Finally, the range that a Kinect can
scan is limited. Thus a lot of research has been carried
out to address them in order to obtain satisfactory 3D
reconstruction.

Reconstruction with a Single Kinect. Single Kinect
based systems are easy to set up. However, depth im-
ages captured by a single Kinect are of low quality. To
address this problem, several methods have been pro-
posed. Newcombeet al.[8] proposed a system named
KinectFusion that can acquire complex models accu-
rately in real time with only a single Kinect. The basic
idea is to merge depth data from multiple views auto-
matically to reconstruct a high quality model. Never-
theless, it is only able to scan static human bodies since
it does not adopt non-rigid registration. To make single
Kinect systems more user friendly, Liet al.[9] proposed
a modeling method that lets ordinary people acquire
their self-portraits with a single Kinect. This method
does not need a turntable or calibration, thereby it is
easier to set up. However, it requires the subject to
be in the same pose after turning. Moreover, since the
rotating motor of Kinect is required in the system, this
method is not applicable to those depth cameras with-
out a rotating motor.

Recent work considers reconstructing dynamic hu-
man bodies using a single Kinect. Newcombeet al.[10]

proposed a real-time system called DynamicFusion to
reconstruct and track non-rigid scenes. This system is
mainly used for non-rigid reconstruction from local per-
spectives. For dynamic motions that are fast moving
or form closed loops, since the method registers point
cloud sequences frame by frame, error accumulation can
lead to the drifting problem. Dou et al.[11] addressed
the drifting problem by error dispersion, and adopted
cluster adjustment to improve the reconstruction re-
sults of error dispersion.

Reconstruction with Multiple Kinects. With a sin-
gle Kinect, it can only capture RGB-D data from a
single viewpoint at a speci�c time, which unavoidably
has the occlusion problem. When a sequence of scans
are taken, even if the subject is trying to stand still,
some minor movement is often unavoidable. As a re-
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sult, non-rigid alignment is usually needed to capture
high-quality human bodies. To capture the full human
body, the Kinect sensor also needs to be su�ciently far
away from the subject, resulting in a low depth resolu-
tion. To address such limitations, systems with multi-
ple Kinects have been developed.

However, multi-Kinect systems also have problems:
as an active acquisition technique, Kinects interfere
with each other in the overlapping areas when several
Kinects are active simultaneously, and they often in-
volve more complicated setup and calibration. To ac-
quire satisfactory results through multiple Kinects, re-
search studies have been done to address such prob-
lems. Butler et al.[12] developed a simple and e�ective
method to reduce interference among Kinects by me-
chanical augmentation, i.e., using vibration motors to
blur the infrared patterns. Alternatively, Tong et al.[13]

proposed a scanning system (see Fig.1) to capture static
human body using three Kinects and a turntable. To
avoid interference, they used two Kinects to scan the
upper and the lower parts of frontal human body re-
spectively and the third Kinect to scan the middle part
of human body from behind, which avoids overlaps be-
tween scanning areas. Compared with using a single
Kinect, the quality of depth data acquired by this sys-
tem is higher because the Kinects are placed closer to
the human body. Lin et al.[14] developed a system for
fast capture of 3D human body with desired accuracy
by optimizing the con�guration and locations of RGB-
D cameras. Their �nal system uses 16 Kinect sensors
to capture a human body within one second. To re-
duce the requirement for system setup and calibration,
Ye et al.[15] proposed an algorithm which can be used
for marker-less performance capture of interactive hu-
mans with only three hand-held Kinects. Although
high-quality depth data can be acquired, the method
is not suitable for scenes with uncontrolled lighting.

Up

Middle

Down
1.7 m

0.5 m

1 m 1 m

1.1 m

Fig.1. Tong et al. 's multi-Kinect human body capture system [13] .

In summary, the current 3D human capture systems
still need to be improved, e.g., to capture complex hu-
man motions, to improve the accuracy of 3D recon-
struction, to obtain more detailed information such as
material properties, and to reduce the setup e�ort. One
way to achieve these is to use prior data, as will be dis-
cussed in the following subsection.

2.2 Human Body Modeling Using Prior Data

Previously mentioned 3D human modeling tech-
niques all have their disadvantages such as limited
availability, high cost, and low quality. Since human
bodies generally have similar shapes and dynamics, it
is possible to further improve acquisition quality and
reduce acquisition restrictions by exploiting prior data.
To achieve this, it is essential to have high-quality 3D
human body databases.

2.2.1 CAESAR

The �rst large-scale 3D human body database is
CAESAR 1O (the Civilian American and European Sur-
face Anthropometry Resource database)[1] . It consists
of 2 400 American and Canadian and 2 000 European
civilians aged 18� 65. However, it does not take poses
into account.

Robinette et al.[1] proposed a learning approach
based on PCA (principal component analysis) to guide
a morphing model. However, their model does not in-
volve pose changes. With a similar approach purposed
as PCA, Wang et al.[16] proposed a spectral animation
compression method to e�ciently compress dynamic
animations under the assumption that the deformation
is continuous.

2.2.2 SCAPE

To model pose deformation, Stanford University
proposed SCAPE (Shape Completion and Animation
of People)[17] , a data-driven human body modeling
database in 2005. It records 72 standard postures for
each individual. In this model, Anguelov et al.[17] built
a parameter function with uniform standard data of hu-
man body. The method considers the body subspace as
characterized by the pose dimension and the shape di-
mension during the process of generating a speci�c hu-
man shape. 3D human body shapes produced based on
the SCAPE model not only have complete, realistic 3D
human body meshes, but can also e�ectively present de-
tails in di�erent poses. The parameterized human body

1O http://store.sae.org/caesar/, Apr. 2017.



540 J. Comput. Sci. & Technol., May 2017, Vol.32, No.3

model of SCAPE includes shape deformation and pose
deformation. By adjusting corresponding parameters
in the two dimensions of the pose and shape, it builds
reasonable instances of human body models.

Since the SCAPE was proposed, many research �nd-
ings have been reported and they can be roughly di-
vided into two categories, using SCAPE for modeling,
and improvement/extension to SCAPE.

Using SCAPE for Modeling. Anguelov et al.[17]

proposed a data-driven mathematical model which can
build uniform parameters of standard human body data
based on SCAPE. The model can simulate the pose and
shape in the human body space, and generate 3D mesh
models of individual instances by altering parameters.
Weiss et al.[18] reconstructed a model of human body
by �tting a parameterized human model to the depth
data captured by a Kinect. However this method can
only capture static human models wearing tights. Bogo
et al.[19] used a parameterized human body model to a
monocular depth sequence of moving human body to
estimate the 3D surface. These models learn from a 3D
model library of human dressing tight clothes, thus they
cannot be applied to modeling subjects dressing loose
clothes. They also cannot generate geometric details of
personalized human body, such as face, hairstyle and
apparel. The methods[17;19-21] �rst learn a parameter-
ized model from the training library, and produce the
output by �tting the model in the input data. However,
these methods cannot reconstruct 3D models of human
body out of the database.

Recent work considers improving reconstruction ef-
�ciency and quality using SCAPE and a single Kinect.
Cheng et al.[22] proposed a method for parametric re-
construction of human body. To improve e�ciency,
their method uses a sparse set of key points for model-
ing. The success of the method, however, depends on
correctly identifying such keypoints. Zenget al.[23] uti-
lized a depth data sequence to reconstruct approximate
rigid objects, but again it cannot address dynamic ob-
jects. Chen et al.[24] used a single depth camera and
an SCAPE model to capture dynamic human bodies
by decoupling shape and pose. Their method �rst ob-
tains shape parameters of the subject with the help of a
model database and then uses linear blending skinning
(LBS) to reconstruct the animation of the human body.

SCAPE Improvement. To address the limitations
of the SCAPE model, further research augments it
with additional models for physics-based simulation
of clothing[25] and for breathing[26] . Further research
considers generating 3D human shape and pose from

point cloud data[21] , multiple depth images[18] and
video streams[20;27-28] . However, all these studies have
a common disadvantage that their calculation time
is too long to meet the need of generating a model
in real time, which is fundamentally caused by non-
linearity in the SCAPE model for non-rigid deforma-
tion. Chen et al.[20] proposed a tensor-based 3D model
(TenBo model). Compared with the popular SCAPE
model which separates the shape and pose deforma-
tions, their approach simultaneously models shape and
pose deformations in a systematic manner. Pons-Moll
et al.[29] proposed a Dyna model, which is extended
from SCAPE and can model dynamic humans. Inspired
by SCAPE, Zu� et al.[30] proposed the stitched pup-
pet (SP) model, a new part-based human body model
which is more e�cient and exible.

2.2.3 Datasets from MPI (Max Planck Institute )

Hasleret al. and Bogoet al. introduced a dataset[21]

and FAUST (�ne alignment using scan texture) [31] re-
spectively. The dataset[21] was captured by a laser scan-
ner, consisting of 114 subjects with every subject having
35 di�erent poses. However, the scanning quality is not
high. Data of human bodies in the FAUST dataset is
lifelike, because it utilizes a 3D multi-stereo system to
acquire data. FAUST consists of 10 subjects and each
subject has 30 poses. Recently, Bogoet al.[32] released
a dynamic FAUST dataset for modeling and registering
human bodies in motion.

In summary, the availability of 3D human body
databases provides opportunities to develop more e�ec-
tive 3D human acquisition techniques. Among the cur-
rently available databases, CAESAR[1] consists of the
largest number of subjects, SCAPE[17] contains most
poses, and FAUST[31] has geometric models of the high-
est precision.

Recent research on human reconstruction has ben-
e�ted signi�cantly from the development of 3D human
body databases. In the future, it would further con-
tribute to technology advances by building and exploit-
ing high-quality dynamic human databases with de-
tailed geometry and material properties.

3 Human Body Motion Capture & Synthesis

To produce realistic animation, human body mo-
tion is essentially important. This section overviews
the techniques for the capture and synthesis of human
body motions. The ultimate aim of human body mo-
tion capture technology is to capture the motion of
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human body at low cost and with high e�ciency and
precision. Equipment for human body motion capture
based on optical sensors is widely used in the industry,
such as Vicon and OpticalTrack. From the research
perspective, how to reconstruct human body motion
by monocular or multiple depth or color cameras is a
hotspot. In addition to capturing human body motion,
human body motion synthesis techniques are also pro-
posed to generate new motion data from the existing
data of realistic human body motions. Methods can be
categorized into data-driven, physics-based and stylized
human body motion synthesis.

3.1 Human Body Motion Capture

Human body motion capture uses physical or im-
age information obtained by sensors to reconstruct the
joints of the human body. According to the equipment
used in the motion capture, it is categorized into sensor-
based human body motion capture and image-based
human body motion capture.

3.1.1 Sensor-Based Human Body Motion Capture

For human body motion capture, commonly used
physical sensors include pressure sensors, magnetome-
ter sensors, inertial sensors, acoustic sensors, and op-
tical sensors. The movement information of human is
obtained by the sensors worn on the human body[33-34] .
Among all the sensors, motion capture systems based
on optical sensors are most widely used. Such systems
use a few infrared cameras to capture the human body
motion in di�erent viewpoints simultaneously, and use
the locations of the markers in di�erent infrared images
to recover the positions of human body joints. Such
equipment is precise but expensive, so it is often used
in �lm and animation production. CMU 2O (Carnegie
Mellon University)'s human body motion database is
captured by an optical sensor-based motion capture
device. To facilitate the storage and transmission of
motion capture data which has di�erent characteris-
tics from images and videos, Houet al.[35] proposed a
method that splits a motion sequence into clips and
uses a dedicated transform to encode motion in the fre-
quency domain with substantially reduced dependency.

3.1.2 Image-Based Human Body Motion Capture

Among human body posture capture techniques,
capturing human body motion based on images is one
of the most popular methods. Based on the type of

images, the capture methods can be divided into color
image based and depth image based methods. Based on
the number of cameras, the capture methods can also
be divided into single-camera and multi-camera meth-
ods.

Motion Capture Using Multi-Camera Color Image
Data. In the process of human body motion capture
from images, occlusion is a serious problem, resulting
in the ambiguity of posture reconstruction. To alleviate
this problem, multiple cameras are often used to cap-
ture image data of human body motion from di�erent
viewpoints. Human body motion is reconstructed us-
ing features extracted form images, such as silhouette,
texture, and edges.

The SfS method, namely visual hull construction
method for human body motion tracking, treats the hu-
man body as an articulated model and uses a rigid ob-
ject to approximate each human limb. In the �rst step
it segments the silhouette into a few parts correspond-
ing to the parts of the articulated model and assigns
six degrees of freedom to each part. In the second step
the motion of each part of the articulated model is esti-
mated separately. The positions of articulation points
are the location of human joints. Vlasic et al.[36] used
a similar method to reconstruct the skeleton and shape
of a human body, and further strengthen the details of
the shape by silhouettes. However, the method requires
manually correcting the pose of human body and does
not make the most of the human body's texture.

The above methods can only reconstruct motion of
a single human subject in the scene at a time. Liu
et al.[37] proposed a method that simultaneously re-
constructs shapes and poses of multiple people. The
method segments individual subjects from the image,
and classi�es the foreground pixels by a maximum a
posteriori (MAP) probability method to get human
body regions of di�erent people.

Traditional multi-camera systems require hardware
synchronization with �xed cameras. Hesler et al.[38]

proposed a method to reconstruct the human pose and
shape from videos captured by unsynchronized hand-
held video cameras. They used SfM to recover a static
background and camera positions, and audio streams
to assist synchronization. The method described above
requires multiple cameras recording from di�erent view-
points, thereby it is not suitable for large scenes or out-
door use. To address this, Shiratoriet al.[39] used 16
GoPro cameras bound onto the human body to esti-
mate human poses using SfM.

2O http://mocap.cs.cmu.edu/, Apr. 2017.
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In order to reduce the number of cameras for hu-
man body motion capture, Elhayek et al.[40] proposed
a method that combines image-based joint detection
and model-based generative motion tracking to recover
human body motion with fewer cameras.

To develop and evaluate methods of human
capture, multiple databases have been proposed.
Human3.6M[41] database provides color, depth and pos-
ture data of human in di�erent genders and actions.
HumanEva[42] provides a database for evaluating multi-
view human tracking algorithms.

Motion Capture Using Monocular Color Image
Data. It is a very challenging problem to recover a hu-
man body's 3D posture from a single 2D image. This is
not only because of the occlusion and deformation exist-
ing in a single image, but also because of the ambiguity
of the posture. Methods using monocular color image
data can be divided into interactive methods involv-
ing manual assistance and automatic statistical learn-
ing based methods.

Early methods mostly require manual interactions
to label the initial position of the body's joints on the
image. This is acceptable for some applications, but
not others. Automatic methods to obtain human pos-
ture are demanded. Dantoneet al.[43] used a regression
method involving two layers of random forests to re-
cover human posture from a single picture. First, they
used a classi�er to obtain separated parts of the human
body, and in the second stage, they obtained the human
body's joint positions.

With the widespread application of convolutional
neural networks (CNNs), a lot of methods applying
CNNs to estimate human pose were proposed. They
reconstruct 3D poses of the human body from video se-
quences, taking into account both spatial and temporal
information. Wei et al.[44] used CPMs (convolutional
pose machines) which are implicit spatial models to es-
timate poses by a single image.

In addition, Wei and Chai [45] used mechanical prin-
ciples to constrain the solution space of human poses,
which is able to simultaneously obtain the pose and
joint torque information. Meanwhile, Insafutdinov et
al.[46] developed a method to estimate motions of mul-
tiple individuals in an image. In order to compare di�e-
rent algorithms, Andriluka et al.[47] proposed MPII Hu-
man Poses dataset, which contains 40 000 images with
human joint locations marked.

3.1.3 Depth Image Based Human Body Motion
Capture

Compared with color images, depth images provide
useful spatial information. We divide the depth image
based methods into methods based on monocular depth
images and multiple depth images.

Motion Capture Using Monocular Depth Data. A
single depth image can provide more spatial informa-
tion than a color image. Methods to capture human
body motion from a single depth image can be catego-
rized into discriminative methods, generative methods,
and hybrid methods.

Discriminative methods are also called model-free
methods. Such methods do not consider the prior infor-
mation and employ classi�ers to identify feature points
or pixels for human pose recovery. Baaket al.[48] used
boosted classi�ers with local features to extract human
body from depth images. Baaket al.'s method obtains
interest points and local information from a depth im-
age and classi�es the local information using classi�ers.
Doing so allows detecting human joints from a single
depth image. Due to the use of classi�ers, Baaket al.'s
method is e�cient and achieves real-time performance.
Ye et al.[49] utilized a data-driven method to restore
the posture information of a human body from a depth
map. For a given depth image, Yeet al. searched for
related gestures from a human body model database
and further optimized the pose according to the cur-
rent gesture. Liu et al.[50] used the Gaussian Process
model as a prior to recover more precise postures.

Generative methods are also called model-based
methods. They need to build an a priori human model.
The a priori human model can be based on a skeleton-
driven 3D human body scan model or an approximate
chained 3D cylinder model. Pose estimation involves
two stages, namely modeling and estimation. The pro-
cess of modeling is to construct the likelihood equation
between the pose and captured data by considering in-
formation such as camera matrices, image features, 3D
human body models, matching equations, and/or phys-
ical constraints.

Hybrid methods combine the advantages of
discriminative methods and generative methods. Wei
et al.[51] formulated the registration problem as a maxi-
mum a posteriori probability (MAP) problem. The al-
gorithm uses both registration and feature point detec-
tion. Registration can e�ectively reduce the impact of
occlusion and improve accuracy and robustness. They
further used GPU (graphic processing unit) accelera-
tion to achieve real-time performance.
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Motion Capture Using Multiple Depth Cameras.
The occlusion is also a problem for techniques with a
monocular depth camera. Methods have been deve-
loped to use multiple depth cameras to address this.
Such methods require calculating spatial position rela-
tionships between depth cameras. Yeet al.[15] proposed
an approach that uses three hand-held Kinects to col-
lect depth data from di�erent viewpoints. The method
is able to capture the pose and shape of multiple people
in the scene, and at the same time obtain the camera
parameters.

3.1.4 Human Body Motion Capture with Hybrid
Sensors

Image-based human body motion capture is often
inuenced by environment and lighting. Self-occlusion
and pose ambiguity can also lead to pose reconstruc-
tion errors. In order to improve the robustness of the
system, methods combining a variety of sensors were
proposed.

Zhang et al.[52] developed a system that combines
three depth cameras and a pair of foot pressure sen-
sors to obtain human body motion data, and at the
same time reconstructs both the pose and kinetic infor-
mation (see Fig.2 for an overview of the system). von
Marcard et al.[53] used a color camera and �ve inertial
sensors. The camera data is used to eliminate inertia
sensor o�sets.

3.2 Human Body Motion Synthesis

Capturing human motion directly is expensive and
often infeasible. Motion synthesis aims to generate new
motion sequences from existing ones. Realistic, vivid

human body motions are more likely to provide the
users with immersive feeling, and make them resonate.
However, human visual perception is very sensitive to
even minor distortion of human motions, and thus how
to generate high-quality human body motion sequences
is an active research direction. Current human motion
synthesis methods are mainly composed of the following
three types: 1) data-driven human body motion synthe-
sis, 2) physics-based human body motion synthesis, and
3) human body motion style synthesis. We will discuss
physics-based human body motion synthesis in detail
in Section 4. Data-driven human body motion synthe-
sis can be further divided into the following four major
types: 1) motion graph, 2) motion editing, 3) motion
interpolation, and 4) statistical motion synthesis.

3.2.1 Motion Graphs

The motion graph based methods divide motion
data in the database into several di�erent fragments
and reassemble them to generate new motion sequences
that do not exist in the original database. Unlike other
methods, the motion graph based methods can be ap-
plied not only to the whole motion sequences[54-55] but
also partial body such as a limb[56] . When applying
such methods to the whole motion sequence, the mo-
tion sequence is split into several sections corresponding
to poses. Then these poses are reassembled to produce
new motion sequences. When applying the methods
to a limb, the limb movement is split and reassembled
to get new motion sequences. However, the motion
graph based methods are also restricted by the mo-
tion sequences in the database. Since these methods do
not actually change the motion data in the database,
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Fig.2. Hybrid human body motion capture by combining depth d ata and foot pressure sensors[52] .
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they cannot generate novel motions beyond those in the
database.

3.2.2 Motion Editing

Another type of techniques to synthesize new mo-
tions is motion editing. Through editing key frames of
a given motion sequence, motion editing based meth-
ods modify the original motion data to satisfy the key
frame constraints[57] . As in [57], the author proposed a
trajectory control method based on displacement map-
ping. The main advantages of motion editing based
methods are that they are easy to use and it is intuitive
to edit an action. The main limitation is the amount of
work involved. If the motion sequence to be edited is
long, this method can be very time-consuming. Simi-
lar techniques are used for planning of whole-body mo-
tion of virtual humans in virtual scenes[58] . Kim et
al.[59] retargeted human motion to virtual avatars in
real time based on a precomputed spatial map, taking
object interaction into account.

3.2.3 Motion Interpolation

Motion interpolation based methods interpolate ex-
isting human posture or motion sequences to generate
a new motion sequence. To use this method, it is nec-
essary to register the existing motion data in time, and
then map the motion sequences to an abstract space
suitable for interpolation. Various methods can then
be used to control the process of motion blending, such
as geostatistical interpolation[60] . In addition, inter-
polation functions may also be weighted[60-61] to con-
trol their contributions. Motion interpolation is often
used as a tool for manipulating motion sequences. For
example, in [61], a continuous motion sequence space
is constructed by interpolating similar motions. Wang
et al.[62] formulated motion planning between two sub-
stantially di�erent poses as a boundary value problem
on an energy graph taking into account desired motion
characteristics.

3.2.4 Statistical Motion Synthesis

Statistical model based motion synthesis methods
apply statistical models and machine learning models to
generate human body motion sequences. Earlier statis-
tical motion synthesis methods include clustering-based
hidden Markov models[63] which generate motion be-
tween two key frames. The approach bene�ts from both
the exibility of the key frame based motion synthesis
and the accuracy and realism of original database mo-
tions. At the same period, Pullen and Bregler[64] pro-

posed a motion synthesis method by decomposing the
motion data in the frequency domain, and then generat-
ing the joint angle and global translation of the motion.
Hsu et al.[65] proposed a method of generating stylized
motions based on a linear time invariant (LTI) method.
Chai and Hodgins[66] regarded user-constrained motion
generation as a maximum a posteriori probability prob-
lem, and proposes a motion synthesis method using lin-
ear dynamic system modeling. Lauet al.[67] used the
Bayesian dynamic model to generate motion sequences
which have similar spatio-temporal relationship as the
input motion sequences. Min and Chai[68] used the
Gaussian process model based method to generate mo-
tion sequences. In more recent work, Holdenet al. used
convolutional autoencoders to learn the manifold of mo-
tion data [69] , and then used a deep feedforward neural
network to generate motion sequence[70] .

3.2.5 Stylized Motion Synthesis

Even for the same action (e.g., walking), motion
sequences can vary signi�cantly. The style of human
body motion is a high-level attribute to characterize
such di�erences. By varying styles, richer and more
vivid human body motion can be generated, avoiding
unnatural synthesis with little variability. However, col-
lecting di�erent styles of human body motion is time-
consuming and laborious, thereby synthesizing stylized
human body motion is of signi�cant research value. The
study can be divided into implicit style modeling and
explicit style modeling according to the di�erent views
on the source of motion styles.

Implicit Style Modeling. Implicit style model-
ing[65;71] mainly focuses on characterizing the di�er-
ences between human body motion of di�erent styles,
while retaining the content of the motion; therefore it
is more widely used for style transfer of human body
motion, i.e., given an input motion sequence, the aim
is to generate a new motion sequence with a speci�ed
style but the same content. Hsuet al.[65] used a linear
time-invariant (LTI) system to model the di�erences be-
tween motion sequences of the same content and di�e-
rent styles. Once the parameters of the LTI system are
trained, the system can e�ciently convert an input mo-
tion to other styles. Ikemoto et al.[71] used a Gaussian
mixture model (GMM) to model the kinematics and
dynamic di�erences after manual motion editing. The
models trained with the GMM can convert a new input
motion to the desired style. Xia et al.[72] proposed a
new approach that �rst retrieves candidate sequences
from a motion database that are close to the input mo-
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tion by k-nearest neighbor search, and then models the
transformation involved for style transfer by building
online local mixtures of autoregressive (MAR) models,
which are then used to generate the stylized motion
for the input. This method is related to [65], but with
fundamental di�erences: [72] uses local MAR models
whereas [65] uses a global LTI model, and local models
can represent complex and highly nonlinear relation-
ships between motion sequences better. As a result,
[72] can handle unlabeled heterogeneous input motion
and is more robust. Fig.3 shows some results of MAR-
based stylized motion synthesis. As can be seen from
Fig.3, the MAR-based method can handle motion se-
quence with di�erent contents, such as running, walking
and jumping.

Fig.3. MAR-based stylized motion synthesis [72] .

Explicit Style Modeling. Explicit style model-
ing[73-75] attributes di�erences in motion styles to in-
volving both the content and the style, and thus it
treats them as two hidden factors, and �nally uses a sta-
tistical model to solve this problem. Since this method
models styles explicitly, it is more often used for syn-
thesizing large-scale stylized motions. However, the ef-
fectiveness of such methods is also largely restricted by
the size and quality of motion databases. The work
[73] regards motion content as hidden states of a hid-
den Markov model (HMM), while treating motion styles
as parameters in the HMM such as state transition
probabilities. Wang et al.[74] proposed a method that
uses a multi-factor latent Gaussian process to model
style di�erences of human body motion. Min et al.[75]

further extended this idea of simultaneously modeling
motion content and styles. They used a large number
of pre-registered motion data to construct a multidi-
mensional motion model, useful to characterize motion
content and style from a motion sequence. This facili-
tates various applications such as motion style transfer,
style-aware editing. Motivated by these studies, Maet
al.[76] proposed a method to model motion data's con-
tent and style at the same time. They used several joint

groups to represent the skeleton and introduce latent
parameters to represent the variation of each group.
The Bayesian network was then used to parameterize
the relationships between the style and the latent vari-
ation parameters.

3.3 Research Problems and Future Directions

Current technology for human body motion capture
cannot satisfy the needs for capturing large-scale and
outdoor scenes. Moreover, high-precision capture de-
vices still require markers and sensors, making them
expensive and di�cult to use. A future direction is
to reduce restrictions while increasing the accuracy of
low-cost solutions, e.g., using hand-held non-calibrated
multi-color cameras to reconstruct poses of multiple hu-
man subjects.

The current limitation of human body motion syn-
thesis lies in the di�culty of building motion databases
and generating vivid motion sequences. Methods using
machine learning have shown great potential. There are
still scopes to exploit recent development in deep learn-
ing, with various CNN-based architectures, including
generative adversarial networks (GANs).

4 Physical Simulation of Human Body Motion

Although kinematics-based human body motion
simulation methods are generally mature, having made
great progress in the use of motion data and the gene-
ration of responsive movement, the shortcoming is in-
evitable | relying extensively on existing movement
data. The realism of human body motion is based on
a variety of physical laws, full of complex situations
and possibilities. Simulation methods based only on
kinematics cannot generate completely realistic human
body motions which are able to respond to the environ-
ment in real time and are not mechanically repetitive.
In contrast, physical simulation provides this possibil-
ity. Instead of directly manipulating existing human
body motion data sequences for editing and synthesis
as the methods mentioned in Section 3, physical simula-
tion computes the driving torques of joints through the
force and torque given by environmental constraints,
which are then used to drive the subject to produce
a physically realistic motion like a real human subject.
The development of physical simulation has greatly im-
proved the authenticity and richness of the simulated
human body motions. We divide the physical simu-
lations of human body motion into physical simula-
tion based on forward dynamics and physical simula-
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tion based on inverse dynamics. We now describe these
methods in detail.

4.1 Physical Simulation Based on Forward
Dynamics

The goal of forward dynamics is to calculate the lin-
ear and angular accelerations of the simulated objects
with external forces and constraints. When applied to
human bodies, such methods can achieve physical sim-
ulation of human body motion. In physical simulation,
collision detection is used to determine whether the hu-
man and the environment are in contact, and calculate
the contact force, environmental constraints and other
information. Then the linear acceleration and the angu-
lar acceleration of characters are computed by forward
dynamics. Such information will be used to synthesize
human body motions. We now overview key techniques
in the following subsections.

4.1.1 Collision Detection

Physical simulation based on forward dynamics typ-
ically requires the use of physical engines to obtain
ground contact information. Ground contact informa-
tion is generally obtained by the collision detection
between the foot and the ground, and then the con-
tact force can be calculated using a suitable model.
There are two main types of models. The �rst type
is the penalty strategy model[77] , which is similar to
the spring-damping model, and calculates the contact
force according to the penetration depth of the foot.
The other is the friction cone model[78] , which models
the ground contact force as being generated by discrete
friction contact points. The friction cone de�nes the
parameters of such friction points.

Many mature and stable physical simulation engines
are available. These physical engines integrate colli-
sion detection and other useful features, and provide a
good environment for physics-based human body mo-
tion simulation. Commonly used physical engines in-
clude open dynamics engine (ODE), PhysX, etc.

4.1.2 Controller-Based Physical Simulation

One approach for the physical simulation of human
body motion is to use a �nite state machine where at
each state, joint torques are controlled by PD (propor-
tional derivative) controllers, which are then used to
update the subject status from the current to the next.
The PD controller typically takes the target joint pose
as input, and after computation, outputs the controlled

joint torque. The advantage of this method is its high
e�ciency and robustness. However, there is a major
problem for human body motion simulation: the force
and the torque are not intuitive, making controller de-
sign di�cult.

Controllers with Manual Parameter Settings. In the
study of controllers, early work manages to generate
complex kangaroo jumping motions by manually set-
ting the state machine, or to generate motions for ac-
tions such as running, cycling and vaulting using con-
trollers with manual parameter settings. An important
advance was made by Yinet al.[79] who proposed a mo-
tion controller named SIMBICON (Simple Biped Loco-
motion Control), which features a very robust Feedback
Error Learning strategy and is one of the most represen-
tative controllers. Fig.4 shows the state machine and
motion synthesis result of SIMBICON.
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0.3 s

Left Foot
Strike

Right Foot
Strike
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0 1

23

Fig.4. Finite state machine in [79].

Optimization of Controller Parameters. The para-
meters used in the controllers mentioned above are
manually speci�ed by the researchers through under-
standing and analysis of human motion. While be-
ing e�ective, such controllers are designed for speci�c
motion and subject rather than for general motions.
Thus to apply such controllers to generate other types
of motions or subjects, the controller parameters need
to be re-adjusted, which is very laborious. To address
this, Coroset al.[80] presented a general control strategy
for physics-based simulation of walking that e�ectively
combines multiple techniques to address di�erent as-
pects of simulation. The method works well across a
wide range of scenarios, such as changing gait para-
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meters and varying motion styles. The control is also
robust to disturbances due to its universality.

Applications of Biomechanics to Controller Design.
It is worth noting that the controller method uses state
transition to describe human body motions, thereby
the resulting motions can be rigid. In order to solve
this problem, Wang et al.[81] optimized controller para-
meters with the help of biomechanical rules, resulting
in more realistic and natural motions. Wang et al.[82]

used a set of Hill-type musculotendon units (MTUs)
to augment the joint actuated humanoid model. To
drive this new model, a new controller parameter opti-
mization strategy was proposed to minimize metabolic
energy consumption. The method helps increase the
authenticity of the synthetic motion.

Methods Based on Sampling. In recent years, the
simulation of simple motions such as walking, running
and jumping has become more and more mature. On
this basis, researchers begin to design controllers that
can simulate more complex and varied motions with the
help of sampling. Liu et al.[83] designed a more robust
controller parameter optimization method to generate a
varying motion with parkour style using sampling. Liu
et al.[84] further presented a method using given mo-
tion capture clips and transition paths between clips,
as well as exploiting motion control graphs to learn a
robust feedback strategy. Their method supports real-
time physics-based simulation of multiple characters.

4.1.3 Date-Driven Simulation Methods

Another approach to obtaining realistic kinematic
trajectories is through motion capture. The obtained
trajectories include velocity information. Since the tra-
jectories are from real-world human motions, they are
obviously physically feasible. Unlike the kinematic-
based editing synthesis method, the data-driven phys-
ical simulation approach simulates the motion of the
human body through calculating joint torques using
physical motion equations, driving the model to track
motion-captured data, and giving real-time feedback
to environmental constraints. The di�culty of this
method lies in the following. 1) Discrepancies between
the physical character model and the motion captured
subject are inevitable. 2) Some of the actor's feed-
back mechanisms are so subtle that they cannot be
recorded by captured data, and some only work in spe-
ci�c situations. 3) Motion capture data does not con-
tain joint torques and ground contact force information,
thereby they cannot be used to drive the model to track
the trajectories directly. 4) Physics-based characters

are under-actuated, and errors accumulate in applying
global translations and rotations.

Human Body Motion Simulation Without Locomo-
tion. Early work on data-driven simulation combines
motion capture data with procedural balance strategies
to simulate and control human motion. At this stage,
researchers aim to simulate human motions without lo-
comotion. Zordan and Hodgins[85] tracked full-body
actions such as boxing and table tennis playing with an
in-place procedural balance strategy, trying to control
the center of mass using a virtual force. They used the
inverse dynamics to adjust the upper body trajectory,
and �nally create controllers for interactive boxing and
table tennis playing. Zordan et al.[86] also generated
character falling motions under external forces with mo-
tion capture data.

State-Action Mapping. Another approach for data-
driven physical simulation is state-action mapping. It
is based on the assumption that the target pose can be
derived directly from the current pose at any time. At
any time during the control, the next pose can be se-
lected from a set of possible poses according to the cur-
rent state. Motion capture data is used to establish the
mapping between the current pose and the target pose.
Sharon and van de Panne[87] developed a typical state-
action mapping control system. It uses a kinematic
target trajectory not necessarily physically realizable
to specify the desired style. It then uses a nearest-
neighbor controller representation with its parameters
optimized by local search, where the cost function to be
optimized is formulated as total mass-weighted squared
di�erences between simulated and target motions, inte-
grated over �xed simulation periods.

Given a biped motion which can be either captured
or synthesized, Soket al.[88] developed an optimization
approach that adjusts it using physical simulation to
produce a physically-feasible motion with balance pre-
served. This makes it feasible to capture diverse stylis-
tic human motions for training. Building on this, they
further develop an algorithm that learns dynamic con-
trollers from the training data and combines them to
produce desired new motions.

Physical Simulation Coupled with Inverse Dynam-
ics. In data-driven approaches, the PD controller is
often used to predict and calculate the acceleration of
joints, and the motion capture data is then tracked by
computing the torques using inverse dynamics. Silva
et al.[89] derived the corresponding control system ac-
cording to a given reference motion, and used quadratic
programming to combine style feedback and balanced
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feedback, which can generate motions similar to refe-
rence motions. Geijtenbeeket al.[90] used a PD con-
troller to simulate character motions, using a special
form of the Jacobian conversion controller to control
the balance. They then used the CMA (covariance ma-
trix adaption) o�ine parameter optimization controller
to track the motion capture data.

Simulation of Complex Motions. Since the simula-
tion of simple motions has become mature, researchers
begin to focus on the control and simulation of com-
plex motions. Hamalainenet al.[91] proposed a model-
predictive control scheme, called Control Particle Be-
lief Propagation (C-PBP). The method �nds paths and
smooths them at the same time, and then evaluates cost
functions to decide whether to perform a resampling to
cut the unsatisfactory trajectories. In each iteration,
the motions are guided by the trajectories generated in
the last iteration. Furthermore, the method does not
require any o�ine precomputation, and can generate
complex motions such as balancing on a ball, juggling
a ball. Although the generated motions are fairly com-
plex, the e�ect is not so satisfactory as the simulation
of simple motions. In addition, to obtain more realistic
simulation results, an important observation is that hu-
man body motion is usually task-oriented. Even for the
same action, subtle di�erences in motion exist for di�e-
rent purposes. In previous work, the general method
of simulating human body motion is usually the sim-
ple movement between two positions without taking
these rich motion types into account. Agrawal and de
Panne[92] used a task-based foot-step template, com-
bined with online optimization, to generate task-based
human body motions. The method is demonstrated
to generate a variety of motions such as whiteboard
writing, moving boxes, sitting down, standing up, and
turning.

4.1.4 Problems and Future Directions

For physics-based simulation, both controller meth-
ods and data-driven methods have their limitations.
For controller methods, the parameterization of envi-
ronmental constraints, the automatic optimization of
parameters, and the realistic simulation of motions are
still challenging problems. This is where data-driven
methods may help. For data-driven methods, capturing
complex motions in real-world environment is still dif-
�cult. Moreover, the e�ectiveness of data-driven meth-
ods relies heavily on su�cient amount of motion cap-
ture data. From this perspective, these two types of
approaches are complementary. To address such chal-

lenges, it is worth exploiting hybrid methods that com-
bine data-driven approaches with controller based ap-
proaches, e.g., by training physics-based controllers us-
ing motion capture data, and choosing suitable con-
trollers in a data-driven manner.

4.2 Physical Simulation Based on Inverse
Dynamics

Unlike methods based on forward dynamics, meth-
ods based on inverse dynamics establish relevant objec-
tive functions, and obtain the driving torques of joints
by optimization, so as to generate simulated human
body motions. In this subsection, we will introduce
methods for solving the body segment parameters es-
sential in inverse dynamics, and methods for simulation
of human body motions based on the inverse dynamics.

4.2.1 Solving Human Body Inertia Parameters

Human body motion is very complex, thereby in
simulation it is necessary to simplify a human body as
a system of multiple rigid components with �xed joints
and degrees of freedom. The inertial parameters of each
rigid component are the key to solving human dynam-
ics.

Human inertia parameters refer to the mass, center
of mass, and momentum of inertia of each part of the
human body. Several major methods exist for acquiring
the inertia parameters of a human body.

1) Scanning and imaging: using medical imaging
technology to scan the body and then calculate the
parameters. The scanning techniques include magnetic
resonance imaging (MRI), gamma scanning, etc.

2) Regression forecasting methods: building a re-
gression model to forecast inertia parameters based on
human density data or relation between inertia para-
meters and human body parameters such as height and
weight.

3) Dynamics methods: Yeadon[93] calculated iner-
tia parameters using the characteristics of human body
motion in the air.

4) Mesh-based methods: based on the methods that
can generate adaptive human body meshes, Sheetset
al.[94] generated subject speci�c inertia parameters with
the hypothesis that the density of human body is iden-
tical.

5) Inverse dynamics methods: Lvet al.[95] proposed
a method based on the Lagrangian equation. They
transferred the inertia problems into the optimization
problem of the Lagrangian equation and used captured
dynamic data to calculate human inertia parameters.
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4.2.2 Trajectory Optimization

Trajectory optimization is a computational method
to solve simulation problems. Given a piece of motion
data as input, the trajectory optimization framework
generates the desired motion using a set of constraints
and objectives. In order to make the generated motion
more natural, the minimal principle is often applied in
the trajectory optimization process.

The idea of trajectory optimization was �rst
brought out by Witkin and Kass [96] . Their objec-
tive is to minimize the use of energy, where the con-
straints are physical constraints computed under the �-
nite di�erence framework and the boundary constraints
on the ground. This method �nally generates motion
sequences such as the jumping motion of lamp \Luxo".
As a global optimization method involving space-time
constraints, the method needs to calculate the whole
motion o�ine, and it is relatively di�cult to compute
and would easily get stuck in local minima. Follow-up
work considers improving the method in these aspects.
Early methods try to optimize e�ciency by simplify-
ing models or reducing lengths of motion sequences.
They subdivide a motion sequence into sections and
solve these subproblems or reduce the complexity of the
motion by only preserving basic physical parameters of
the model.

Although methods such as model simpli�cation can
reduce the complexity of computation, the generated
motions are not su�ciently natural. Researchers have
investigated alternative solutions. Liu et al.[97] took the
desired character interactions as constraints and iden-
ti�ed the variables needed for optimization in each it-
eration. By reducing the number of variables in op-
timization, the method e�ectively reduces the amount
of computation. Borno et al.[98] synthesized full-body
motions such as breakdancing and getting up from the
ground based on the covariance matrix adaptive (CMA)
evolution strategy, which aims to avoid getting stuck in
local minima. This method successfully solves large-
scale non-linear optimization problems.

Another way to solve trajectory optimization prob-
lems for models of high degrees of freedom (DOFs) is
to use a three-phase optimization method[99] . Park et
al.[99] �rst computed the initial trajectory from a dis-
crete contact con�guration. Then they computed the
collision-free trajectory using a simpli�ed model. Fi-
nally they performed a full-body optimization consi-
dering balancing and other constraints. Eventually the
method is able to synthesize realistic motions for hu-
manoid models with high DOFs.

4.2.3 Optimization with Dynamical Constraints

Another widely used approach to physical simula-
tion is optimization control with dynamical constraints.
By adding multiple objectives based on dynamical fea-
tures, the method obtains forces and torques needed
for the target motion through optimization. Since this
method has multiple objectives with di�erent weights,
the design of weights is also a problem that needs con-
sideration. Di�erent from traditional trajectory opti-
mization which uses o�-line global optimization, dy-
namically constrained optimization uses online opti-
mization and can generate interactive motions. In
general, there are three ways to achieve necessary
e�ciency [100] . 1) Local optimization, i.e., only consi-
dering whether the current state meets the required
constraints: this method is only applicable to motions
that do not need long term planning, such as maintain-
ing balance. 2) O�-line precomputed trajectory based
optimization: this method uses the trajectories precom-
puted for optimization and is applied to tracking spe-
ci�c motions. 3) Low-dimensional models: this method
employs low-dimensional models to reduce the amount
of calculation and uses predictive trajectories to guide
the motion in a short period.

Local Optimization. By designing the weights of
objectives manually, Abe et al.[101] controlled the hu-
man body's center of mass to maintain balance. They
achieved robust balance control that can interact with
external perturbation and change motion accordingly.
Alternative methods control momentum by adding the
center of mass and trajectory of swing legs[102] to the
objective function. They achieved balanced control by
adjusting the center of mass. de Lasaet al.[103] divided
objectives according to their physical priority and ob-
tained target trajectories by empirical formulas. The
method successfully synthesizes walking and jumping
motions of a human body.

O�-Line Precomputation of Trajectories. Muico et
al.[104] used o�-line trajectory optimization to obtain
trajectories similar to captured motion data, and then
employed a nonlinear quadratic regulator to optimize
the joint momentum and ground contact forces. They
then adjusted the ground contact forces and �nally
generated walking motions of a human body. Based
on this work, they increased the robustness of synthe-
sized motions by tracking multiple trajectories simul-
taneously and using a graph to describe the blending
and transformation between trajectories[105] . Wu and
Popovi�c [106] used the covariance matrix adaptive strat-
egy to generate target trajectories o�-line. They then
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tracked the trajectory and adjusted the weights of the
balance controller and tracking controller. They �nally
generated walking motions that can adapt to di�erent
terrains.

Low-Dimensional Models. Kwon and Hodgins[107]

used the �rst-order inverted pendulum model optimized
by motion data to control the position of the foothold in
running (see Fig.5). Mordatch et al.[108] generated tar-
get trajectories using an inverted pendulum and tracked
the trajectory with the whole body model. They �-
nally synthesized robust motions that can transfer be-
tween di�erent gaits. Using a low-dimensional dy-
namic model, Han et al.[109] obtained short-term con-
trol strategies through model predictive control. They
controlled the trajectory of the center of mass, the an-
gular momentum and the position of foothold to gene-
rate real-time interactive balanced motions.

4.2.4 Problems and Future Directions

The main problem of trajectory optimization meth-
ods is e�ciency. It is di�cult to achieve real-time per-
formance. More e�cient optimization techniques may

be exploited in the future. Regarding optimization
with dynamical constraints, the main problem is that
the design of objective functions requires researchers
to have complete knowledge of dynamics and optimiza-
tion. In the future, it is worth exploiting more general-
ized frameworks that can help researchers design objec-
tives more easily. In addition, optimization strategies
may be applied to improve other aspects, e.g., the de-
sign of high-level controller parameters.

5 Conclusions

In this survey, a number of key issues related to hu-
man performance capture and animation, including hu-
man geometric model reconstruction, human body mo-
tion capture and synthesis, physics-based simulation,
were described and discussed. Most research directions
of human motion capture and animation are covered in
this survey. We hope that this survey can help readers
have a more comprehensive understanding of existing
work on human performance capture and animation,
and inspire future research in this area.
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