Visual and Paralinguistic Cues, Confidence, and Perceived Trustworthiness

Tsankova, Elena* Möllering, Guido* Kappas, Arvid* Krumhuber, Eva* Aubrey, Andrew** Manstead, Antony S.R.** Marshall, David** Rosin, Paul L.**

* Jacobs University Bremen ** Cardiff University

Corresponding Author: Guido Möllering, g.moellering@jacobs-university.de

Authors' Note: The study described here was conducted with the financial support of the Research Center CoWell at Jacobs University Bremen, Germany.

Due to its evolutionary link to cooperation and survival, trust is a central aspect of human communication. Trust is typically established in the process of (continuous) interaction, but there is evidence that certain nonverbal information associated with trustworthiness can be processed already upon our very first encounter with an individual. For example, recent research by Willis and Todorov (2006), and Ballew and Todorov (2007) has shown that humans need no more than 100 ms to process facial features related to trustworthiness and generate an initial trustworthiness judgment. Such first impressions of trustworthiness, which emerge without the process of interpersonal interaction, are the focus of the current study. Here we investigate perceived trustworthiness, i.e., the subjectively estimated degree of another person's trustworthiness, rather than the actual trusting behavior in interaction. We also study how trustworthiness ratings are related to the person's own confidence in assessing the other's trustworthiness.

In the above-mentioned research by Todorov and colleagues, perceived trustworthiness has been studied solely in the context of facial information. However, it has already been suggested that in addition to the visual channel, trustworthiness cues also travel via the auditory one (e.g., Surawski & Ossoff, 2206). The present study follows up on this and investigates the relative role of facial and vocal (paralinguistic, non-verbal) information in processing trustworthiness information. The study also looks at the way in which trustworthiness cues from one information channel (visual or auditory) bias perception of the information presented in the other channel. There is no prior empirical evidence on whether visual cues are more important than auditory cues for perceived trustworthiness, how they interact, and how people deal with inconsistent cues on different channels.

Not least because visual and auditory cues can be inconsistent, people may be able to form trustworthiness judgments quickly, but their confidence in those judgments may vary. Our study enables us to test whether consistent cues are associated with higher confidence ratings. More interestingly, though, by including confidence in one's assessment as a construct besides the perceived trustworthiness of the other, we can connect this psychological experiment to the more sociological-philosophical literature that emphasizes the 'leap of faith' as an element in producing a state of trust (Giddens 1990, 1991; Möllering 2001, 2006). Essentially, this literature claims that trust goes beyond the available information (Luhmann 1979; Lewis and Weigert 1985). In the context of our study this would mean that truly trusting people – who suspend uncertainty – give higher trustworthiness ratings, even when they are not fully confident about their assessment of the other. It could also mean that highly confident people will give higher trustworthiness ratings, even when they are not fully confident about their assessment of the other. It could also mean that highly confident people will give higher trustworthiness ratings, even when they are not fully confident about their assessment of the other. It could also mean that highly confident people will give higher trustworthiness ratings, even when they are not fully confident about their assessment of the other. It could also mean that highly confident people will give higher trustworthiness ratings, even when they receive inconsistent cues. Both possibilities imply that the 'leap of faith' does not come *after* a purely cognitive processing of information but is *already*.

2

part of the process of perceiving trustworthiness in others, i.e. part of the *process of trusting*. Our study explores if this phenomenon can indeed be observed and whether it is associated with certain characteristics of the visual and auditory cues or with certain types of study participants.

Method

Participants

Data were collected from 25 (14 female) representatives of the student population of Jacobs University Bremen, age range 18 - 27 years (M = 19.76, SD = 2.03), who volunteered to take part in this study in return for monetary compensation (5€ per participant) and optional partial credit for one of two introductory methods courses. Informed consent was obtained from all participants prior to their respective individual testing sessions.

Stimuli

The stimulus material used to generate trustworthiness evaluations consisted of short audiovisual clips of various encoders saying the sentence "Hello, my name is Jo". This sentence was chosen because it is gender-neutral and does not contain any inherent trustworthiness cues. Thus, verbal content can be ignored and we can be relatively certain that trustworthiness cues in the audio channel are delivered via a paralinguistic route. Also, as it is an introductory phrase, this sentence adds a certain level of ecological validity to a situation of a first encounter with an unfamiliar person. Three types of recordings were obtained from 12 (six female) adult white Caucasian encoders. In one version encoders were instructed to sound "as neutral as possible", in the second version encoders were asked to sound trustworthy or "as if you are trying to convince somebody or if you want to make somebody believe you", and in the third they were asked to sound non-trustworthy or "as if you are trying to deceive somebody". It is important to note that none of the encoders came from the same student population as the target participant group. This measure was taken to prevent possible confounding effects of familiarity with the encoders as this could have potentially influenced trustworthiness evaluations. Female encoders wore no or minimal amounts of makeup and jewelry. There was variance with respect to facial hair in the case of male encoders, but that was considered a desirable phenomenon as it will allow us to study the effects of the presence or absence of facial hair on perceived trustworthiness.

The video and audio channels of each encoder's recordings were then digitally aligned (audio channel was warped to match video channel where necessary) so that, in addition to the non-warped neutral face + neutral voice, the following four combinations were obtained: neutral face + trustworthy voice, neutral face + non-trustworthy voice, trustworthy face + neutral voice, and non-trustworthy face + neutral voice. These combinations were digitally warped (based on Aubrey, Marshall, & Rosin, 2010) to achieve perfect synchronization of lip movement and voice. The neutral face + neutral voice recording was included as it was available from the neutral recording version, without alignment or warping. Thus, we ended up with a total of 60 stimulus clips (five for each of the 12 encoders). Roughly the duration of the clips was around two seconds each.

Stimuli in this study were presented on a computer via MediaLab 2008.1.33 software (Empirisoft Corporation) using Philips Stereo Headphones SBC HP090.

Procedure

Upon arrival at the lab participants were greeted by the experimenter and seated in the testing room, where they were asked to read and sign the informed consent form. The experimenter then gave a brief introduction to the study and left the room. Detailed instructions about the task were provided on the computer screen. Before the study began participants

4

completed a short practice block to get used the task (the encoder in the practice clips was different from the ones in the actual study, to avoid participants becoming familiar with one of the target persons as this could have an impact on trustworthiness ratings later on). The experimental task required participants to watch each clip carefully, then evaluate the trustworthiness of the person in the clip, and finally provide a confidence rating of their trustworthiness evaluation. The exact phrasing of the trustworthiness and confidence questions was respectively *How trustworthy is this person?* and *How confident are you in this answer?*. Responses were always given sequentially on a seven-point Likert scale ranging from *not at all* to *very much*. The videos were shown in a random order on a within-subject basis. After having seen all videos, participants were asked whether they recognized any of the encoders. Participants were not able to correctly identify any of the actors and it was, therefore, not necessary to exclude any data due to familiarity effects between encoders and decoders.

At the end of the study, basic demographic information about age, gender, country of origin, and ethnicity was obtained from each participant. Upon completion of the experimental session participants were thanked and reimbursed for their help, and were given the opportunity to ask questions regarding the study.

Predictions

The predictions we put forward in this study were twofold: first regarding the relationship between perceived trustworthiness and different combinations of visual and auditory cues; second about the relationship between confidence and perceived trustworthiness, and possible 'leap-of-faith' evidence. With respect to the relative role of facial and paralinguistic information in trustworthiness judgments, we took an explorative approach. We already knew from Krumhuber, Manstead, Cosker, Marshall, Rosin, and Kappas (2007) that trustworthiness information is conveyed via facial dynamics. However, it is not so trivial to put forward a specific hypothesis about the degree to which visual and auditory information affect the perception of trustworthiness. There exists a large body of research on cross-modal integration in person identification (for example, Kamachi, Hill, Lander, & Vatikiotis-Bateson, 2003; Lachs & Pisoni, 2004; and many others), but not so much on face-voice information interaction in the case of person evaluation. But since trustworthiness has been shown to be closely related to emotional valence (e.g., Oosterhof & Todorov, 2008), we expected that previous findings on cross-modal integration in the case of emotion expression would apply to the perception of trustworthiness as well. Hess, Kappas, and Scherer (1988) showed that both facial and vocal information play a role in the communication of emotion, but the influence of facial information is bigger. Based on their report one would expect that in the present study facial information will bias trustworthiness judgments in the following way: The trustworthy face + neutral voice combinations would receive the highest trustworthiness ratings, followed by the remaining combinations in the order neutral face + trustworthy voice, neutral face + neutral voice, neutral face + non-trustworthy voice, and non-trustworthy face + neutral voice.

With respect to the relationship between confidence and perceived trustworthiness, we did not expect a linear correlation but rather a bifurcation effect whereby very confident people would generally give more extreme trustworthiness ratings (very high or very low) whereas less confident people would tend towards more moderate ratings. We expected confidence to be lower when the visual and paralinguistic trustworthiness cues are inconsistent. For the 'leap of faith' argument, we would test whether high trustworthiness ratings occur in spite of lower confidence ratings or in spite of inconsistent cues and under which conditions this happens, e.g.

specific patterns in terms of demographic variables or combinations of cues. The underlying idea here is that, in trusting, people overcome their uncertainty and lack of confidence. We were not aware of any experimental study that has analyzed these effects.

Results

All ratings on the variables of interest were converted to standardized scores. Three participants who scored beyond the range ± 2.5 were treated as outliers and were not included in any further analyses reported here. The current report is, therefore, based on the data of 22 participants (12 female), age range 18 – 27 years (M = 19.82, SD = 2.15).

To address the questions of interest we computed a trustworthiness and a confidence score for all encoders taken together. The trustworthiness score was the mean average trustworthiness rating across all actors, and the confidence score was the mean average confidence rating. Both trustworthiness and confidence scores were obtained for all five videoaudio stimulus combinations.

In the next step of the analyses we conducted a repeated measures analysis of variance (RM-ANOVA) on the trustworthiness scores with video-audio combination entered as a within-subject factor. The results indicated a main effect of channel combination on the mean trustworthiness ratings, F(4, 18) = 27.70, p < .001, $\eta_p^2 = .86$ (see Figure 1).

Figure 1. Mean average trustworthiness ratings per channel combination. Error bars indicate ± 1 Standard Error.

We also computed a RM-ANOVA on the confidence scores (again, with video-audio combination as a within-subject factor), but this analysis revealed no significant effect of channel combination on participants' confidence ratings, p > .1

Next, in view of the 'leap-of-faith' hypothesis we plotted the trustworthiness scores against the confidence scores for each channel combination (see Appendix A). In this way we could obtain a more comprehensive view of our data distribution.

Clearly, participants tended towards high confidence ratings and low to medium perceived trustworthiness ratings in all channel combinations. This data pattern posed a challenge for testing the predicted bifurcation model since there were no data points reflecting extremely low confidence or extremely high trustworthiness ratings. It did, however, seem likely that the relationship between perceived trustworthiness and confidence scores follows a linear trend. We tested this possibility in a simple linear regression model, where confidence was entered as an independent variable and perceived trustworthiness as a dependent variable. The test was performed for all five channel combinations, but returned a significant result only in the case of the non-trustworthy face + neutral voice condition, b = -.42, t(20) = -2.07, p = .05. In that case confidence score explained some of the variance in perceived trustworthiness, $R^2 = .18$, F(1, 20) = 4.28, p = .05.

Discussion

With respect to the relative role of visual and auditory cues in explicit judgments of trustworthiness, our data clearly indicate a superiority effect of facial over paralinguistic information. Impression targets received highest trustworthiness ratings in the trustworthy face + neutral voice condition, and lowest ratings in the non-trustworthy face + neutral voice condition. The conditions where the trustworthiness of the voice was varied (e.g., neutral face + trustworthy voice) did not differ significantly from each other and from the neutral face + neutral voice condition. These three conditions (neutral face +

trustworthy voice, neutral face + non-trustworthy voice, and neutral face + neutral voice) all received higher trustworthiness ratings than the non-trustworthy face + neutral voice condition, and lower trustworthiness ratings than the trustworthy face + neutral voice condition. Therefore, we can conclude that the trustworthiness information in this study was in fact conveyed via the facial cues. Our results are in line with Hess et al. (1988; see also Kappas, Hess, & Scherer, 1991), indicating a superior role of facial over vocal information in nonverbal communication, and thus provide further support for Oosterhof and Todorov's notion (2008) of strong coupling between trustworthiness information and emotional valence.

We were interested in observing the relationship between confidence ratings and perceived trustworthiness ratings in order to assess whether higher confidence leads to more extreme trustworthiness ratings. We also hoped to find out whether lower confidence ratings might coincide with relatively high trustworthiness ratings that could be interpreted as being the result of a 'leap of faith'. Our results were not very clear in either respect. For the nontrustworthy face + neutral voice condition, we have evidence that some participants with relatively low confidence have given relatively high trustworthiness ratings and we could also see the expected effect that highly confident participants rated trustworthiness extremely low. Several explanations need to be considered. On the one hand, it is possible that what we conceptualized as a 'leap of faith', i.e. a form of suspending uncertainty, had already occurred when people were asked to indicate their level of confidence. This is supported by the fact that we did not press them in any way to give their ratings as quickly as possible. Participants could take their time and thus any 'leap-of-faith' effect would be contained in the ratings already. On the other hand, it is possible that initial trustworthiness ratings do not trigger a 'leap of faith' yet. Only when it comes to interaction with the target and decisions to make one vulnerable or not are required, is there a need to suspend uncertainty. Thus our ratings would have been collected at a point before any observable 'leap of faith'. Finally, with a larger and more diverse sample, especially including more participants with low confidence in their trustworthiness ratings, it might have been possible to analyze why people with the same confidence rating give different trustworthiness scores for the same target (condition). A preliminary analysis of this kind may be possible, but the sample and model are a limiting factor in this. Further research can take our approach as inspiration for observing how people develop positive (or, negative) expectations in the face of uncertainty.

Future analysis of the current dataset could focus on the outliers and present case studies of specific response patterns. It is possible that the 'leap of faith', in the way defined earlier in this report, is only observed in participants who tend to give extreme responses and is, therefore lost with the exclusion of statistical outliers.

The present study looks only at explicit judgments of trustworthiness, and it is possible that this creates a response bias in our participants – i.e., when asked repeatedly to evaluate the trustworthiness level of targets they might become suspicious and assume that there is something non-trustworthy about the targets to begin with. Therefore, we propose another measure which could provide a more implicit measure of perceived trustworthiness that could be introduced in addition to the explicit one and could eliminate the bias – reaction times (e.g., Burns & Conchie, 2011). The link between reaction times and confidence then could provide further empirical insights on the 'leap of faith' phenomenon.

11

Contributions

The study contributes new evidence on visual and paralinguistic influences on perceived trustworthiness, with particular emphasis on first impressions. Most trust research to date has investigated perceived trustworthiness in established relationships, but first impressions may determine who establishes relationships with whom. Hence prior research may be biased toward interactions that lasted beyond the initial encounter. Our research accounts for relationships that never formed and the relative role of visual and paralinguistic cues in this. Practical implications are derived as to the superiority of facial over vocal information in the communication of trustworthiness (for example, sending a photo could be more powerful than giving a phone call).

Moreover, the study contributes exploratory insights on the possibility to observe the 'leap of faith' in an experimental set-up and to clarify to some extent whether already the perception of another's trustworthiness, on not only trusting behavior later on, is based on "overdrawn information" (Luhmann, 1979, p. 32). Even though the results on the leap of faith in the narrower sense are inconclusive our study extends and possibly challenges prior research by combining the question of perceived trustworthiness in the other with one's own confidence in making such an assessment.

In short, we believe the current study sets constitute a stimulating trans-disciplinary approach to trust research, bridging experimental psychology methodology and sociologicalphilosophical research questions, and promising novel research designs.

References

- Aubrey, A., Marshall, D., & Rosin, P. L. (2010). Behaviour transfer between expressive talking heads. Proceedings of the ACM/SSPNET 2nd International Symposium on Facial Analysis and Animation, 9-9. doi:10.1145/1924035.1924037
- Ballew, C. C., & Todorov, A. (2007). Predicting political elections from rapid and unreflective face judgments. *Proceedings of the National Academy of Sciences of the United States of America, 104*, 17948-17953. doi:10.1073/pnas.0705435104
- Burns, C., & Conchie, S. (2011). Measuring implicit trust and automatic attitude activation. In F.
 Lyon, G. Möllering, & M. N. K. Sanders (Eds.), *Handbook of research methods on trust* (pp. 239-248). Cheltenham: Edward Elgar.
- Giddens, A. (1990). The Consequences of Modernity. Stanford: Stanford University Press.
- Giddens, A. (1991). Modernity and Self-Identity. Cambridge: Polity Press.
- Hess, U., Kappas, A., & Scherer, K. R. (1988). Multichannel communication of emotion:Synthetic signal production. In K. R. Scherer (Ed.), *Facets of emotion: Recent research* (pp. 161-182). Hillsdale, NJ: Erlbaum.
- Jarvis, B. G. (2008). MediaLab (Version 2008.1.33) [Computer Software]. New York, NY: Empirisoft Corporation.
- Kamachi, M., Hill, H., Lander, K., & Vatikiotis-Bateson, E. (2003). "Putting the face to the voice": Matching identity across modality. *Current Biology*, *13*, 1709-1714. doi:10.1016/j.cub.2003.09.005
- Kappas, A., Hess, U., & Scherer, K.R., (1991). Voice and emotion. In R. S. Feldman & B. Rimé (Eds.), *Fundamentals of nonverbal behavior* (pp. 200-238). Cambridge: University Press.

- Krumhuber, E., Manstead, A. S. R., Cosker. D., Marshall, D., Rosin, P. L., & Kappas, A. (2007).
 Facial dynamics as indicators of trustworthiness and cooperative behavior. *Emotion*, *7*, 730-735. doi: 10.1037/1528-3542.7.4.730
- Lachs, L. & Pisoni, D. B. (2004). Crossmodal source identification in speech identification. *Ecological Psychology*, *16*, 159-187. doi:10.1207/s15326969eco1603_1
- Lewis, J. D. & Weigert, A. (1985). Trust as a social reality. Social Forces, 63, 967-985.
- Luhmann (1979). Trust and Power. Two Works by Niklas Luhmann. Chichester: Wiley.
- Möllering, G. 2001. The nature of trust: From Georg Simmel to a theory of expectation, interpretation and suspension. *Sociology*, *35*, 403-420.
- Möllering, G. (2006). Trust: Reason, Routine, Reflexivity. Oxford: Elsevier.
- Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face evaluation. Proceedings of the National Academy of Sciences of the USA, 105, 11087-11092.
- Surawski, M. K., & Ossoff, E. P. (2006). The effects of physical and vocal attractiveness on impression formation of politicians. *Current Psychology*, 25, 15-27. doi: 10.1007/s12144-006-1013-5
- Willis, J., & Todorov, A. (2006). First impressions: Making up your mind after 100 ms exposure to a face. *Psychological Science*, *17*, 592-598. doi:10.1111/j.1467-9280.2006.01750.x

Appendix A

Confidence Scores Plotted Against Perceived Trustworthiness

Scores for All Channel Combinations

