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Abstract

We present a new benchmark for testing algorithms that create canonical forms for use in non-rigid 3D shape

retrieval. We have combined two existing datasets to create a varied collection of models for testing. Canonical

forms attempt to factor out a shape’s pose, giving a pose-neutral shape. This opens up the possibility of using meth-

ods originally designed for rigid retrieval for the task of non-rigid shape retrieval. We demonstrate the benchmark

by using it to compare the performance of nine canonical form methods, using three different retrieval algorithms.

1. Introduction

The ability to recognise a deformable object’s shape, re-
gardless of the pose of the object, is an important require-
ment for modern shape retrieval methods. One approach to
this problem is to transform each deforming model into a
canonical form which (ideally) factors out the pose, leav-
ing a standard pose-independent version of the shape. This
allows rigid shape retrieval algorithms to be be used for non-
rigid shape retrieval. Many different methods for automati-
cally computing a canonical form from a 3D mesh have been
proposed. Methods using such approaches along with rigid
retrieval systems have performed well on shape retrieval
benchmarks [LGB∗11]. However, most of these methods
have not been compared using the same dataset, or used
for retrieval with the same rigid retrieval system, so their
relative performance is unclear. We propose a new bench-
mark to provide a meaningful comparison of existing and
new canonical form methods for non-rigid shape retrieval,
and use it to make such a comparison. The website for our
benchmark, containing the data and source code for evalu-
ation can be found here: http://www.cs.cf.ac.uk/
shaperetrieval/shrec15/

2. Datasets

Our benchmark combines some of the models from two
existing datasets. The first is the SHREC’11 non-rigid
dataset [LGB∗11], which contains a wide range of dif-

ferent shape classes. The second is the non-rigid humans
dataset [PSR∗14], which provides a more challenging test
of the performance of the canonical forms, as these shapes
only differ in their minor details. Our dataset is split into
training and testing sets; it has been kept to a reasonable size
to make the tasks listed in Section 3 feasible within the time
available.

The largest mesh resolution within the dataset is 60,210
vertices, with an average mesh resolution of 21,141 vertices.

3. Evaluation

Participants in this track were given two tasks.

1. Submit a canonical form for each mesh within the dataset,
along with a description of the method used to compute
canonical forms.

2. Perform shape retrieval using the canonical forms sub-
mitted for Task 1, and submit a description of the method
used. The retrieval task is formally defined as

Return a list of all models, ordered by decreasing
shape similarity to a query model.

Our track had two rounds of submissions. For the first
round of submissions, participants submitted their entries for
Task 1. All the entries of Task 1 were then sent out to all the
participants for Task 2, and the results of this task were col-
lected in the second round of submissions.
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The evaluation procedure is similar to that used in sev-
eral previous SHREC tracks [LGB∗11]. We evaluated the
retrieval results using various statistical measures: nearest
neighbour (NN), first tier (1-T), second tier (2-T), discounted
cumulative gain (DCG), and precision and recall curves.
Definitions of these measures are given in [SMKF04].

We also discuss the desired qualities of a canonical form.
and test the submitted forms for some of these qualities. We
then analyse whether there is a correlation between exhibit-
ing the proposed desired qualities, and retrieval accuracy.

4. Canonical Form Methods

We now briefly describe each of the canonical form methods
compared in our study.

4.1. Various methods

submitted by D. Pickup, X. Sun, P. L. Rosin, R. R. Martin

As a basis for the study, we entered various canonical form
methods, some of our own, and some implemented from the
literature. Many are variants of the multidimensional scal-
ing (MDS) and geodesic distance based method proposed
by Elad and Kimmel [EK03], but some avoid either or both
of these components.

4.1.1. Classical Multidimensional Scaling

Elad and Kimmel [EK03] proposed computing a canoni-
cal form of a mesh by mapping the geodesic distance be-
tween all pairs of vertices to three-dimensional Euclidean
distances. As the geodesic distances are pose invariant, the
Euclidean embedding is a pose invariant representation of
the shape. We first compute the all-pairs geodesic distance
matrix of the mesh using the fast marching method [KS98].
The Euclidean embedding of these distances is then com-
puted using classical MDS. We do this by first calculating

B =−1
2

JDJ, (1)

where

J = I − 1
n

11
T , (2)

11xn = [1,1, ...,1]T , (3)

D is the matrix of squared geodesic distances, and n is the
number of mesh vertices. We then compute the four largest
eigenvalues (λ0 > λ1 > λ2 > λ3) and their associated eigen-
vectors (φ0,φ1,φ2,φ3) of B. Given a point p on the mesh, the
MDS embedding is calculated as

MDS(p) =
(

λ
1
2
1 φ1(p),λ

1
2
2 φ2(p),λ

1
2
3 φ3(p)

)

. (4)

Given the geodesic distances, the MDS method has a com-
plexity of O(N2), where N is the number of vertices. How-
ever, the computation of geodesic distances has a time com-

plexity of O(N2 logN). Due to this high computational ex-
pense the meshes are simplified to approximately 2000 ver-
tices before computing the canonical forms. The methods
proposed in subsections 4.1.2 – 4.1.4 also need to compute
the geodesic distances, so we also simplify the meshes to
approximately 2000 vertices in those methods.

4.1.2. Fast Multidimensional Scaling

The fast MDS canonical form method [FL95] uses a variant
of the method described in Section 4.1.1, where the geodesic
distances are projected into Euclidean space one dimension
at a time. We first compute the geodesic distance between
each pair of vertices i and j as di j . For each of the three
dimensions in turn we select the two most distant vertices
Oa and Ob. All the other vertices are then projected onto the
line defined by (Oa,Ob):

xi =
d2

ai +d2
ab −d2

bi

2dab

. (5)

xi is used as the embedded vertex coordinates in the current
dimension. The distances are then updated as

d
2
i′ j′ = d

2
i j −||xi − x j||2. (6)

This MDS method has a lower time complexity of O(N).

4.1.3. Least Squares Multidimensional Scaling

This is another variant on the method described in Sec-
tion 4.1.1, also proposed by Elad and Kimmel [EK03]. We
use the SMACOF (scaling by majorizing a complicated func-
tion) algorithm to compute the MDS. SMACOF minimises
the following functional:

S(X) =
N

∑
i=1

N

∑
j=i+1

wi, j(δi, j −di, j(X))2, (7)

where N is the number of vertices, wi, j are weighting coef-
ficients, δi, j is the geodesic distance between vertices i and
j of the original mesh, and di, j is the Euclidean distance be-
tween vertices i and j of the resulting canonical mesh X .
The stress function is minimised iteratively using the code
provided by Bronstein et al. [BBK08].

This MDS algorithm has a complexity of O(N2 ·
NumOfIterations).

4.1.4. Non-metric Multidimensional Scaling

This method is very similar to Section 4.1.3, but instead of
matching the Euclidean distances to the exact geodesic dis-
tances, we only match the ordering of the distances. The
stress function we minimise for this method is

S(X) =
∑

N
i=1 ∑

N
j=i+1( f (δi, j)−di, j(X))2

∑N
i=1 ∑N

j=i+1 di, j(X)2
, (8)

where N is the number of vertices, δi, j is the geodesic dis-
tance between vertices i and j of the original mesh, di, j is the
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Euclidean distance between vertices i and j of the resulting
canonical mesh X , and f is an optimal monotonic function
of the dissimilarities. This MDS method is less restrictive
than metric MDS, and some researchers have found that it
produces more desirable results [KLT05].

4.1.5. Global Point Signatures

We have implemented the method to compute the
Global Point Signatures (GPS) embedding of mesh
proposed by Rustamov [Rus07]. Firstly we calculate
the discrete Laplace-Beltrami operator with cotangent
weights [HPW06]. We then compute the four smallest eigen-
values (λ0 < λ1 < λ2 < λ3) and their associated eigenvec-
tors (φ0,φ1,φ2,φ3) of the Laplace-Beltrami operator. Given
a point p on the mesh, the GPS embedding is calculated as

GPS(p) =

(

1
√

λ1
φ1(p),

1
√

λ2
φ2(p),

1
√

λ3
φ3(p)

)

. (9)

The eigendecomposition of the Laplace-Beltrami operator
is invariant to isometry preserving deformations, and there-
fore the GPS embedding is a pose invariant representation
of the mesh. The GPS embedding is faster to compute than
the MDS based method by Elad and Kimmel [EK03] as it
avoids the use of geodesic distances. We are therefore able
to compute the GPS canonical forms using the full resolution
meshes, without any simplification.

4.1.6. Skeleton driven canonical forms

A variant on the canonical forms presented by Elad and Kim-
mel [EK03] is used. A canonical form is produced by ex-
tracting a curve skeleton from a mesh, using the method by
Au at al. [ATC∗08]. The SMACOF Multidimensional Scal-
ing method used by [EK03] is then applied to the skeleton,
to put the skeleton into a canonical pose. The skeleton driven
shape deformation method by Yan et al. [YHMY08] is then
used to deform the mesh to the new pose defined by the
canonical skeleton. This produces a similar canonical form
to [EK03], but with the local features better preserved. The
models in the dataset are simplified to approximately 15000
vertices before computing the canonical forms.

4.1.7. Euclidean Distance Based Canonical Forms

We compute a canonical form of a mesh by stretching out
its limbs so that its extremities are distant from one an-
other. We achieve this effect more efficiently than the com-
mon method of computing multidimensional scaling (MDS)
on the geodesic distances [EK03]. We instead maximise the
Euclidean distances between feature points on the extremi-
ties of the mesh, whilst preserving the original edge lengths
to ensure isometric deformation. Our method has been ac-
cepted for publication [PSRM15].

We first scale the mesh so that the maximum distance of
any point on its surface to the centroid of all vertices is one.

We then use the method of Ben-Chen and Gotsman [BCG08]
to calculate the conformal factor of the mesh. The conformal
factor increases along the length of mesh protrusions, which
results in high values at the extremities of the mesh. To ob-
tain a set of feature points for a mesh with N vertices, we
sample the

√
N vertices which have the largest conformal

factors and also satisfy the requirement that they are local
maxima. A vertex is defined to be a local maximum if its
conformal factor is greater than that of all its neighbours in a
2-ring neighbourhood. We select

√
N feature points, as this

is the largest number of features we can have whilst being
able to compute the Euclidean distances between all pairs of
feature points in linear time (with respect to the number of
mesh vertices).

We compute the canonical form of the mesh by adapting
the least-squares MDS formulation used by [EK03]

S(X) =
N

∑
i=1

N

∑
j=i+1

wi, j(δi, j −di, j(X))2, (10)

where N is the number of vertices, wi, j are weighting coef-
ficients, and di, j is the Euclidean distance between vertices i

and j of the resulting canonical mesh X . We set the value of
δi, j for all connected vertices i and j equal to the length of
the edge connecting them. This aims to preserve the edge
lengths of the mesh, to ensure isometric deformation. In
order to maximise the distance between feature points, the
value of δi, j for each pair of the

√
N sampled vertices is set

to a high value α. We want this value to be large enough to
straighten all the limbs of the model, and our experiments
show 10 is large enough. As long as α is large enough and
the parameter β discussed below is optimised accordingly,
any value of α can be chosen.

If the two vertices i and j are neither a pair of feature
points nor connected by an edge, we do not enforce a target
distance between them, so wi, j is set to zero for such cases.
Not having to compute and optimise the distances between
these points is crucial in keeping the linear time complex-
ity of our distance calculations. The weights wi, j in Equa-
tion 10 for all i and j that are connected by an edge are set
to β/δ2

i, j , where β is a user defined parameter for preserving

edge lengths. We divide by the square of the edge length δ2
i, j

so that the distance in Equation 10 becomes a relative, rather
than absolute, difference, making the weighting independent
of the length of the edge. The conformal factor is normalised
to lie in the interval [0,1], and the entries in the weighting
matrix wi, j for each pair of feature points are set to the mean
of their conformal factors. This results in vertices which are
nearer the ends of long ‘limbs’ of the object having a higher
impact on the resulting canonical form, and avoids stretch-
ing out inappropriate parts of the mesh. The SMACOF algo-
rithm can then be used to minimise Equation 10 as described
in [EK03].

In many cases the number of local maxima of the confor-
mal factor is less than

√
N. We want the number of feature
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points to be exactly
√

N so that the number of edges con-
necting pairs of feature points grows at the same rate as the
number of mesh vertices. This in turn ensures that we can
use the same value for the parameter β regardless of mesh
resolution. We offer two different solutions to handling this
issue. The first is to increase the number of feature points
to

√
N by adding extra randomly selected vertices as feature

points. We refer to this method as “Euclidean Random” in
Section 6.

The second is to separately normalise the weightings wi, j

used for pairs of feature points, and for adjacent vertices.
We normalise the weights for adjacent vertices by dividing
by the total number of edges, and we normalise the feature
point pair weights by dividing by the sum of all feature point
pair weights. Thus, we may rewrite the final functional to be
minimised as

S(X) =

∑
i∈F

∑
j∈F, j 6=i

0.5(Φi +Φ j)

∑i∈F ∑ j∈F, j 6=i 0.5(Φi +Φ j)
(δi, j −di, j(X))2

+ ∑
(i, j)∈E

β

|E|δ2
i, j

(δi, j −di, j(X))2,

(11)

where F is the set of all feature points, E is the set of all
edges, and Φi is the conformal factor of vertex i. We refer to
this second method as “Euclidean Normalised” in Section 6.

This method eliminates the need for the expensive
geodesic distance computation. The feature point selection
and Euclidean distance calculations have a time complexity
of O(N), and the distance computations for each iteration of
the MDS stress minimisation algorithm are also computed in
O(N) time. We are therefore able to compute these canonical
forms using the full resolution meshes.

4.2. Least Squares MDS B

submitted by S.-P. Nie, L.-C. Jin

This method is identical to the Least Squares MDS method
described in Section 4.1.3, but with one minor alteration.
Normally at the end of each iteration of the SMACOF algo-
rithm the change in the stress function (Equation 7) is mea-
sured, and if the change is less than a small value ε the al-
gorithm terminates. In this method we instead measure the
change in the following sum of absolute differences between
the original geodesic and current Euclidean distances:

S(X) =
N

∑
i=1

N

∑
j=i+1

wi, j|δi, j −di, j(X)|. (12)

This results in an earlier termination of the algorithm.

This method retains the O(N2 logN) time complexity, as
it still requires the use of geodesic distances. We simplify the
meshes to approximately 2500 vertices before computing the
canonical forms.

5. Retrieval Methods

We now briefly describe each of the retrieval methods com-
pared in our study.

5.1. CM-BOF and 3DSP

submitted by D. Pickup, X. Sun, P. L. Rosin, R. R. Martin

We use two local feature based methods from existing litera-
ture to produce retrieval results, one based on extracting fea-
tures from rendered depth maps of the shape (Section 5.1.1),
and another based on extracting features from the 3D mesh
itself (Section 5.1.2).

5.1.1. Clock Matching and Bag-of-Features

The Clock Matching and Bag-of-Features (CM-BOF)
method was proposed by Lian et al. [LGSX13], and has
been shown to perform extremely well at non-rigid 3D shape
retrieval when combined with a canonical form method
[LGB∗11]. To compute a descriptor of a 3D shape we first
centre the mesh, normalise its scale, and use a combination
of Principle Component Analysis (PCA) and Rectilinear-
ity [LRS10] to normalise its orientation. We then render 66
depth images of the mesh from viewpoints on the vertices of
a geodesic sphere. SIFT features [Low04] are then extracted
from the depth images. A 1000 length histogram descriptor
of each image of the shape is then created using the bag-of-
words method. The similarity of two shapes is calculated as
the sum of the similarities of their matching views.

5.1.2. 3D Spatial Pyramids

We use the 3D Spatial Pyramids (3DSP) method proposed
by Redondo-Cabrera et al. [RCLSARMB14]. To describe a
shape, we first extract a set of 3D SURF features [KPW∗10]
from the 3D mesh itself. The volume containing the mesh
is recursively broken down into sub-cubes, forming a spa-
tial pyramid. A bag-of-words is then computed for each part
of the pyramid and then the histograms are concatenated
to form the shape’s final descriptor. The similarity of two
shapes is computed as the similarity of their descriptors.

5.2. Histogram of Mean Curvature

submitted by S.-P. Nie, L.-C. Jin

To produce a shape’s descriptor we first use the code made
available by Dirk-Jan Kroon [Kro] to compute the mean cur-
vature for every vertex of the mesh. This code computes the
mean curvature for a mesh vertex by first rotating the mesh
so that the vertex’s normal lies in the direction (−1,0,0), and
the local neighbourhood is then treated as two-dimensional.
A quadratic patch is then fitted to this local neighbourhood:
f (x,y) = ax2 + by2 + cxy + dx + ey + f . The eigenvectors
and eigenvalues of the Hessian are then used to calculate the
mean curvature. We generate a 64 bin histogram of the mean
curvatures, and normalise it to sum to 1000. The similarity
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between two shapes is calculated as the similarity between
their curvature histograms.

This method fails on the canonical forms produced by the
GPS method (Section 4.1.5).

6. Results

We divide this section into two parts. First we look at the
properties of the canonical forms themselves in Section 6.1,
and then we evaluate the retrieval results in Section 6.2.

6.1. Canonical Forms

Objects which have the same shape, but are in different
poses, should have identical canonical forms. Objects which
differ in shape should have different canonical forms, even if
they are in a similar pose. Therefore a canonical form should
remove any traces of the pose of the original shape, but pre-
serve the features of the shape which are pose invariant.

Figure 1 shows a selection of meshes and their canoni-
cal forms produced by each of the participating methods.
The common feature we see in these canonical forms is that
the mesh is “straightened out” and the extremities are placed
distant from one another. The different methods vary in de-
gree of straightening, and how much high frequency detail
from the original shape is preserved. The two variants of the
Euclidean distance based method (Section 4.1.7) allow an
explicit trade-off between these two properties by adjusting
a weight.

We have attempted to quantify how much the canonical
forms distort the mesh’s original shape, and the consistency
of the different canonical forms of the same shape in dif-
ferent poses. To quantify the amount of distortion of the
original shape, we calculate the difference in the compact-
ness measure between the original mesh and the canonical
form (Table 1). The compactness measure is calculated as
V 2/A3, where V is the mesh volume and A is the mesh sur-
face area. To quantify the consistency of the canonical forms
across models of the same shape, we use iterative closest
point matching to align each pair of shapes of the same class
and compute their Haussdorf distance using the Metro soft-
ware [CRS98] (Table 2).

The Skeletons method submitted by Pickup et al. has the
smallest error using the compactness measure, suggesting it
is best at preserving the shape of the original model. Fig-
ure 1 shows that this method does appear to preserve much
of the local detail of the mesh, especially relative to many of
the other methods. It is interesting to note however, that the
Skeletons method has the largest within-class Haussdorf dis-
tance, indicating that the canonical forms are not as consis-
tent as the other methods. The two variants of the Euclidean
method by Pickup et al. also perform better than most meth-
ods at preserving compactness, but worse than most methods
at producing a small Haussdorf distance. These results may

CM-BOF 3DSP Curvature

Original Meshes 0.50 0.47 0.16
Classic MDS 0.73 0.56 0.10

Fast MDS 0.66 0.57 0.14
Least Squares MDS 0.75 0.69 0.11

Non-Metric MDS 0.77 0.68 0.10
GPS 0.72 0.50 —

Skeletons 0.74 0.66 0.15
Euclidean Random 0.54 0.56 0.07

Euclidean Normalised 0.61 0.58 0.18
Least Squares MDS B 0.66 0.60 0.04

Table 3: Nearest neighbour.

CM-BOF 3DSP Curvature

Original Meshes 0.567 0.451 0.098
Classic MDS 0.597 0.366 0.104

Fast MDS 0.590 0.332 0.110
Least Squares MDS 0.694 0.468 0.103

Non-Metric MDS 0.687 0.478 0.099
GPS 0.556 0.368 —

Skeletons 0.682 0.462 0.101
Euclidean Random 0.640 0.469 0.069

Euclidean Normalised 0.673 0.468 0.108
Least Squares MDS B 0.662 0.454 0.087

Table 4: First tier.

indicate that there is a trade-off between producing a consis-
tent canonical form, and preserving the details of the shape.

6.2. Retrieval

Tables 3–6 show the retrieval accuracy of the three differ-
ent retrieval methods on each set of canonical forms, using
the nearest neighbour (NN), first tier (FT), second tier (ST)
and discounted cumulative gain (DCG) measures. Figure 2
shows the precision-recall (PR) curves for each of the three
retrieval algorithms on the different sets of canonical forms.

For the CM-BOF method submitted by Pickup et al., all
the canonical forms, except the GPS canonical forms, per-

CM-BOF 3DSP Curvature

Original Meshes 0.702 0.610 0.199
Classic MDS 0.741 0.532 0.178

Fast MDS 0.718 0.482 0.183
Least Squares MDS 0.829 0.622 0.189

Non-Metric MDS 0.811 0.640 0.188
GPS 0.697 0.546 —

Skeletons 0.791 0.602 0.206
Euclidean Random 0.783 0.644 0.142

Euclidean Normalised 0.796 0.637 0.202
Least Squares MDS B 0.788 0.620 0.172

Table 5: Second tier.
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(a) Original Meshes (b) Classical MDS

(c) Fast MDS (d) Least Squares MDS

(e) Non-Metric MDS (f) GPS

(g) Skeletons (h) Euclidean Random

(i) Euclidean Normalised (j) Least Squares MDS B

Figure 1: Example canonical forms produced by each method.

Classical Fast Least Squares Non-Metric GPS Skeletons Euclidean Euclidean 1-Form
MDS MDS MDS MDS Random Normalised MDS

Mean Error 8.44 6.60 4.77 5.17 9.38 0.71 1.86 2.97 4.89
Standard

4.420 3.384 3.595 3.754 2.641 0.907 1.362 1.231 3.712
Deviation

Table 1: Error in compactness between the canonical forms and the original meshes. The values have been multiplied by 104.

Classical Fast Least Squares Non-Metric GPS Skeletons Euclidean Euclidean 1-Form
MDS MDS MDS MDS Random Normalised MDS

Mean Error 0.339 0.393 0.346 0.276 0.460 0.543 0.463 0.469 0.322
Standard

0.243 0.227 0.183 0.155 0.378 0.835 0.308 0.193 0.170
Deviation

Table 2: Haussdorff distances between canonical forms of the same class.
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CM-BOF 3DSP Curvature

Original Meshes 0.753 0.684 0.422
Classic MDS 0.796 0.653 0.402

Fast MDS 0.789 0.640 0.414
Least Squares MDS 0.838 0.739 0.410

Non-Metric MDS 0.836 0.749 0.403
GPS 0.783 0.646 —

Skeletons 0.825 0.710 0.409
Euclidean Random 0.793 0.714 0.382

Euclidean Normalised 0.816 0.717 0.427
Least Squares MDS B 0.813 0.701 0.388

Table 6: Discounted cumulative gain.

formed better than using the original meshes. This high-
lights the advantage of using canonical forms for non-rigid
retrieval. The PR curves show that the GPS canonical forms
improved the precision for low recall values, but caused a
worse performance for higher recall values. The GPS canon-
ical forms are outperformed by the original meshes for both
the other retrieval methods as well, indicating that these
canonical forms may be better suited to other applications
than retrieval, such as segmentation.

When using the 3DSP retrieval method submitted by
Pickup et al., both the Fast and Classic MDS methods cause
a worse performance than when using the original meshes.
This shows that these canonical forms are not suitable to
achieve an increase in performance when using 3DSP.

For the Curvature retrieval method submitted by Nie et al.,
using the original meshes outperformed many of the canon-
ical forms. The Euclidean Normalised method by Pickup et
al. was the only method to outperform the original meshes on
all of the performance measures. This shows that the Cur-
vature method may not be suitable for use with canonical
forms. This is also the worst performing retrieval method we
tested overall.

Overall the GPS, Fast MDS and Classic MDS methods are
outperformed by the other canonical form methods. These
three canonical forms have the highest error in preserving
compactness (Table 1), which may indicate that they cause
too much distortion to the mesh’s shape. The rest of canon-
ical form methods result in very similar retrieval accura-
cies. The Least Squares MDS and Non-Metric MDS meth-
ods submitted by Pickup et al. both outperformed all other
canonical forms when using CM-BOF retrieval, and per-
formed amongst the top methods when using 3DSP retrieval.

All the MDS based methods which use geodesic distances
had to simplify the meshes to either 2000 or 2500 vertices
due to their high computational complexity. The Skeleton
method only required simplification to 15000 vertices to per-
form the computation within a reasonable time. Only the Eu-
clidean methods and the GPS method are efficient enough
to use the full resolution meshes. The Euclidean methods

demonstrate a competitive retrieval performance with a sig-
nificant increase in efficiency.

7. Conclusion

This paper compared the canonical forms produced by nine
different methods. This is the first attempt at comparing a
range of different canonical forms for non-rigid shape re-
trieval. We used three different retrieval methods to evalu-
ate the advantages of using the canonical forms for retrieval,
avoiding any biases caused by a single retrieval method.

We have found that the best canonical form methods pro-
duce very similar performance, and it is therefore difficult
to rank their effectiveness. Some of the older MDS based
methods [EK03] are still as effective as the more recent al-
gorithms submitted, but have been surpassed in terms of ef-
ficiency. The choice of which algorithm is better is there-
fore still questionable, and dependent upon the individual
requirements of each user.
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