Main aim: **interactivity**.

- Previous MPEG-1/2 were frame based. Virtually no interactivity.
- MPEG-4 is not only aimed to improve compression, but to improve **functionality** and **interactivity**.
- MPEG-4 targets:
 - Digital TV.
 - Interactive graphics, computer games.
 - Interactive multimedia, WWW.
- MPEG-4 addresses the needs of authors, service providers, end users.
Content-based Interactivity

Content-based manipulation and bitstream editing:
- Interactive home shopping.
- Home movie production and editing.
- Insertion of sign language interpreter or subtitles.
- Digital effects (e.g. fade-ins).

Hybrid natural and synthetic data:
- Animation and synthetic sound can be composed with natural audio and video in a game.
- A viewer can translate or remove a graphic overlay to view the video beneath it.
- Graphics and sound can be “rendered” from different points of observation.
Content-based Interactivity

Concurrent data streams of **different modalities**:
- Multimedia entertainment, e.g. virtual reality games, 3D movies.
- Training and flight simulations.
- Multimedia presentations and education.

Scalability:
- User or automated selection of decoded quality of objects in the scene.
- Database browsing at different content levels, scales, resolutions, and qualities.
MPEG-4 Example

- Custom Interface with Personalization
- Full-screen MPEG-4 video
- Interactivity
- Multiple Video Windows
- 2D Graphics alpha-blended
- CD-Quality Audio
- Custom Branding
MPEG-4 Sprite Example

[Diagram showing a sprite example]
Figure 20: The virtual studio scene using arbitrarily shaped video objects in the Authoring tool.
MPEG-4 Scene Example

audiovisual objects

multiplexed downstream control/data

voice

sprite

2D background

multiplexed upstream control/data

scene coordinate system

video compositor projection plane

hypothetical viewer

audio component

display

user input

user events

CM3106 Chapter 13: MPEG-4 Video
Example Applications
MPEG-4 Multiple Streams Example

Presenting video (camera output)

Presentation Description

Laptop screen capture (VGA output)
We look at key ideas here.

- **Object based coding**: offers higher compression ratio, also beneficial for digital video composition, manipulation, indexing and retrieval.

- **Synthetic object coding**: supports 2D mesh object coding, face object coding and animation, body object coding and animation.

- **MPEG-4 Part 10/H.264**: new techniques for improved compression efficiency.
Object Based Coding

Composition and manipulation of MPEG-4 videos.

Scene Segmentation

Encode

Decode

Content-based manipulation

VOP 1

VOP 2

VOP 3

VOP
Compared with MPEG-2, MPEG-4 is an entirely new standard for

- **Composing** media objects to create desirable audiovisual scenes.
- **Multiplexing** and **synchronising** the bitstreams for these media data entities so that they can be transmitted with guaranteed **Quality of Service (QoS)**.
- **Interacting** with the audiovisual scene at the receiving end.

MPEG-4 provides a set of advanced coding modules and algorithms for audio and video compressions. We have discussed MPEG-4 Structured Audio and we will focus on video here.
The hierarchical structure of MPEG-4 visual bitstreams is very different from that of MPEG-2: it is very much **video object-oriented**:

<table>
<thead>
<tr>
<th>Video-object Sequence (VS)</th>
<th>Video Object (VO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Object Layer (VOL)</td>
<td>Group of VOPs (GOV)</td>
</tr>
<tr>
<td>Video Object Plane (VOP)</td>
<td></td>
</tr>
</tbody>
</table>
Object Based Coding

- **Video-object Sequence (VS)**: delivers the complete MPEG4 visual scene; may contain 2D/3D natural or synthetic objects.

- **Video Object (VO)**: a particular object in the scene, which can be of arbitrary (non-rectangular) shape corresponding to an object or background of the scene.

- **Video Object Layer (VOL)**: facilitates a way to support (multi-layered) scalable coding. A VO can have multiple VOLs under scalable (multi-bitrate) coding, or have a single VOL under non-scalable coding.

- **Group of Video Object Planes (GOV)**: groups of video object planes together (optional level).

- **Video Object Plane (VOP)**: a snapshot of a VO at a particular moment.
MPEG-1 and MPEG-2 do not support the VOP concert; their coding method is frame-based (also known as block-based).

For block-based coding, it is possible that multiple potential matches yield small prediction errors. Some may not coincide with the real motion.

For VOP-based coding, each VOP is of arbitrary shape and ideally will obtain a unique motion vector consistent with the actual object motion.
VOP-based vs. Frame-based Coding

(a) Previous frame, Current frame, Next frame

(b) Block-based coding, Block motion estimation

(c) Previous frame, MV1, Potential Match 1, Current frame, MV2, Potential Match 2

(d) VOP1, VOP2, Object (VOP) based coding, Object motions, VOP1, VOP2
MPEG-4 VOP-based coding also employs Motion Compensation technique:

- **I-VOPs**: *Intra-frame* coded VOPs.
- **P-VOPs**: *Inter-frame* coded VOPs if only forward prediction is employed.
- **B-VOPs**: *Inter-frame* coded VOPs if bi-directional predictions are employed.

The new difficulty for VOPs: may have *arbitrary shapes*. Shape information must be coded in addition to the texture (luminance or chroma) of the VOP.
MC-based VOP coding in MPEG-4 again involves three steps:

1. Motion Estimation
2. MC-based Prediction
3. Coding of the Prediction Error

Only pixels within the VOP of the current (target) VOP are considered for matching in MC. To facilitate MC, each VOP is divided into macroblocks with 16×16 luminance and 8×8 chrominance images.
VOP-based Motion Compensation: Alpha Map

[Diagram showing scene segmentation & depth layering, VOPs, layered encoding, separate decoding, content-based scalability, and SA DCT for Alpha map.]
VOP-based Motion Compensation (MC)

- Let \(C(x + k, y + l) \) be pixels of the MB in target VOP, and \(R(x + i + k, y + j + l) \) be pixels of the MB in Reference VOP.

- A **Sum of Absolute Difference (SAD)** for measuring the difference between the two MBs can be defined as:

\[
SAD(i, j) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} |C(x + k, y + l) - R(x + i + k, y + j + l)| \times \text{Map}(x + k, y + l).
\]

\(N \) — the size of the MB, \(\text{Map}(p, q) = 1 \) when \(C(p, q) \) is a pixel within the target VOP otherwise \(\text{Map}(p, q) = 0 \).

- The vector \((i, j)\) that yields the minimum SAD is adopted as the motion vector \((u, v)\).
Texture Coding (luminance and chrominance):

- I-VOP: the gray values of the pixels in each MB of the VOP are directly coded using DCT followed by VLC (Variable Length Coding), such as Huffman or Arithmetic Coding.
- P-VOP/B-VOP: MC-based coding is employed — the prediction error is coded similar to I-VOP.
- Boundary MBs need appropriate treatment. May also use improved Shape Adaptive DCT.
Shape Coding (shape of the VOPs)

- Binary shape information: in the form of a binary map. A value ‘1’ (opaque) or ‘0’ (transparent) in the bitmap indicates whether the pixel is inside or outside the VOP.
- Greyscale shape information: value refers to the transparency of the shape ranging from 0 (completely transparent) and 255 (opaque).
- Specific encoding algorithms are designed to code in both cases.
Synthetic Object Coding: 2D Mesh

- 2D Mesh Object: a tessellation (or partition) of a 2D planar region using **polygonal patches**.
- Mesh based texture mapping can be used for 2D object animation.

(a)
(b)
Synthetic Object Coding: 2D Mesh
MPEG-4 has defined special **3D models** for **face objects** and **body objects** because of the frequent appearances of human faces and bodies in videos.

Some of the potential **applications**: teleconferencing, human-computer interfaces, games and e-commerce.

MPEG-4 goes beyond wireframes so that the surfaces of the face or body objects can be shaded or texture-mapped.
Face Object Coding and Animation

- MPEG-4 adopted a generic default face model, developed by VRML Consortium.
- **Face Animation Parameters (FAPs)** can be specified to achieve desirable animation.
- **Face Definition Parameters (FDPs)**: feature points better describe individual faces.
Synthetic Object Coding: Face Object

[Diagram of a face with labeled parts such as right eye, left eye, nose, teeth, mouth, and tongue, each labeled with numbers from 3.1 to 9.15.]
Improved video coding techniques, identical standards: ISO MPEG-4 Part 10 (Advanced Video Coding / AVC) and ITU-T H.264.

Preliminary studies using software based on this new standard suggests that H.264 offers up to 30-50% better compression than MPEG-2 and up to 30% over H.263+ and MPEG-4 advanced simple profile.

H.264 is currently used to carry High Definition TV (HDTV) video content on many applications, e.g. Blu-ray.

Involves various technical improvements. We mainly look at improved inter-frame encoding.
MPEG-4 AVC: Flexible Block Partition

Macroblock in MPEG-2 uses 16×16 luminance values. MPEG-4 AVC uses a tree-structured motion segmentation down to 4×4 block sizes ($16 \times 16, 16 \times 8, 8 \times 16, 8 \times 8, 8 \times 4, 4 \times 8, 4 \times 4$). This allows much more accurate motion compensation of moving objects.
MPEG-4 AVC: Up to Quarter-Pixel MC

Motion vectors can be up to half-pixel or quarter-pixel accuracy. Pixels at quarter-pixel position are obtained by bilinear interpolation.

- Improves the possibility of finding a block in the reference frame that better matches the target block.
MPEG-4 AVC: Multiple References

- Multiple references to motion estimation. Allows finding the best reference in 2 possible buffers (past pictures and future pictures) each contains up to 16 frames.
- Block prediction is done by a weighted sum of blocks from the reference picture. It allows enhanced picture quality in scenes where there are changes of plane, zoom, or when new objects are revealed.
Further Reading

- Overview of the MPEG-4 Standard
- The H.264/MPEG4 AVC Standard and its Applications