
Computing with Infinite Argumentation
Frameworks: the Case of AFRAs

Pietro Baroni1, Federico Cerutti1, Paul E. Dunne2, Massimiliano Giacomin1

1 Dipartimento di Ingegneria dell’Informazione, University of Brescia, via Branze, 38,
25123, Brescia, Italy

{pietro.baroni,federico.cerutti,massimiliano.giacomin}@ing.unibs.it
2 Department of Computer Science, Ashton Building, University of Liverpool,

Liverpool, L69 7ZF, United Kingdom
P.E.Dunne@liverpool.ac.uk

Abstract. In recent years a large corpus of studies has arisen from
Dung’s seminal abstract model of argumentation, including several ex-
tensions aimed at increasing its expressiveness. Most of these works fo-
cus on the case of finite argumentation frameworks, leaving the potential
practical applications of infinite frameworks largely unexplored. In the
context of a recently proposed extension of Dung’s framework called
AFRA (Argumentation Framework with Recursive Attacks), this paper
makes a first step to fill this gap. It is shown that, under some reason-
able restrictions, infinite frameworks admit a compact finite specification
and that, on this basis, computational problems which are tractable for
finite frameworks may preserve the same property in the infinite case.
In particular we provide a polynomial-time algorithm to compute the
finite representation of the (possibly infinite) grounded extension of an
AFRA with infinite attacks. An example concerning the representation of
a moral dilemma is introduced to illustrate and instantiate the proposal
and gives a preliminary idea of its potential applicability.

1 Introduction

Infinite argumentation frameworks, though encompassed by Dung’s theory of
abstract argumentation [6], have received relatively limited attention in the lit-
erature so that their use as a modelling tool and the relevant computational
issues are largely unexplored.

This paper provides a first step towards filling this gap, by considering the
case of existence of infinite attacks in a recently proposed extension of Dung’s
framework called afra (Argumentation Framework with Recursive Attacks) [2]
where “attacks” may themselves be attacked by arguments. The idea of encom-
passing attacks to attacks in abstract argumentation framework has been first
considered in [4], and subsequently investigated and developed, for instance, in
[2, 11, 13]. Computational issues in this kind of extended frameworks have been
first addressed in [8] for the finite case of eaf [13]. In this paper, we show that,
under some mild restrictions, an afra with infinite attacks can be represented

Preprint version. Official version may differ.

2 Pietro Baroni, Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin

through a deterministic finite automaton (dfa), which provides the basis for
the efficient solution of semantics-related computational problems. To demon-
strate this, we show in particular that a dfa representing the (possibly infinite)
grounded extension of an afra with infinite attacks can be derived in polynomial
time from the dfa representing the afra itself.

From a general perspective, the ultimate aim of this paper is to provide an
enabling technique for practical applications of infinite argumentation frame-
works. While this is a largely open issue, we illustrate the theoretical concepts
developed throughout the paper using a preliminary example concerning moral
dilemma representation. Of course, the value of the methodology goes beyond
both the simple example at hand and the use of the afra framework. Indeed
the main contribution of this paper is twofold: on one hand, we address the topic
of representing an Argumentation Framework through a formal language; and,
secondly, we show that this kind of representation can be useful to compute
semantics extensions also in the case of infinite Argumentation Frameworks.

The paper is organized as follows. After recalling the preliminary background
concepts in Sect. 2, we provide an example encompassing infinite attacks in Sect.
3 and discuss specification mechanisms for afras with infinite attacks in Sect.
4. Section 5 describes the actual specification mechanism adopted in the paper,
called dfa+, and Sect. 6 provides a polynomial time algorithm to compute the
(representation of) the (possibly infinite) grounded extension of an afra starting
from its dfa+ specification. Finally Sect. 7 concludes the paper.

2 Preliminary Background

In this section we define the abstract argumentation models which are the core
focus of this article: the af model [6] with a finite set of arguments and the afra
model [2].

Definition 1 A finite argumentation framework (af) is a pair 〈X ,A〉, in which
X is a finite set of arguments and A ⊆ X ×X is the attack relationship. A pair
〈x, y〉 ∈ A is referred to as ‘y is attacked by x’ or ‘x attacks y’; x ∈ X is
acceptable with respect to S ⊆ X if for every y ∈ X that attacks x there is some
z ∈ S that attacks y. The characteristic function, F : 2X → 2X is the mapping
which, given S ⊆ X , returns the set of y ∈ X for which y is acceptable w.r.t.
S. For any set S we define F0(S) = ∅ and for k ≥ 1 Fk(S) = F(Fk−1(S)).
The grounded extension is the (unique) least fixed point of F . We denote by
GE(〈X ,A〉) ⊆ X the grounded extension of 〈X ,A〉.

Definition 2 An Argumentation Framework with Recursive Attacks (afra)
is described by a pair 〈X ,R〉 where X is a (finite) set of arguments and R
consists of pairs of the form 〈x, α〉 where x ∈ X and α ∈ X ∪ R. For α =
〈x, β〉 ∈ R, the source (src) and target (trg) of α are defined by src(α) = x and
trg(α) = β. In order to avoid a surfeit of brackets, we describe elements of R
as finite length sequences of arguments, so that xk xk−1 xk−2 · · · x2 x1 ∈ R
if {x1, . . . , xk} ⊆ X (note that an argument may occur more than once in this

Preprint version. Official version may differ.

Computing with Infinite Argumentation Frameworks: the Case of AFRAs 3

sequence), 〈x2, x1〉 ∈ R (i.e. x2x1 ∈ R) and 〈xj〈xj−1 〈· · · x1〉〉〉 ∈ R, with
2 < j ≤ k. Letting C = R ∪ X , for α ∈ R and β ∈ C, α is said to defeat β
(α→ β) whenever any of the following hold:

1. trg(α) = β
2. trg(α) = src(β) i.e. β ∈ R, α = xy and β = yγ (y ∈ X).

Definition 3 Let 〈X ,R〉 be an afra, α, β ∈ R, V,W ∈ X ∪ R, S ⊆ X ∪ R;
then:

– W is acceptable w.r.t. S (or, equivalently is defended by S) iff ∀α ∈ R s.t.
α→W ∃β ∈ S s.t. β → α;

– the characteristic function F〈X ,R〉 is defined as follows: F〈X ,R〉 : 2X∪R 7→
2X∪R; F〈X ,R〉(S) = {V|Vis acceptable w.r.t. S};

– the grounded extension (denoted as GEafra(〈X ,R〉) is the least fixed point
of F〈X ,R〉.

By considering the (Dung) style af, 〈X̃ , R̃〉 constructed from an afra 〈X ,R〉
by X̃ = X ∪ R and R̃ = {〈α, β〉 : α → β} (for further details see [2]), a
correspondence between semantics structures (e.g. the basic notions of conflict-
free and admissible sets and the extensions of various semantics) in an afra
〈X ,R〉 and the analogous (Dung style) structures within 〈X̃ , R̃〉 is obtained.
In particular we will exploit the fact that the grounded extension of an afra
coincides with the (Dung style) grounded extension of the corresponding af, i.e.
with GE(〈X̃ , R̃〉).

3 An Example: Moral Dilemmas

The recursive form of R in an afra, 〈X ,R〉, in principle, admits the capability
of describing infinite attack structures even though X is a finite set. To exemplify
the potential utility of this kind of structures as a modelling tool we consider a
case of moral dilemma.

Fred is the network administrator of a large company and among his duties
he has to release emails, addressed to staff members, that have been accidentally
blocked by the security filters. One day he gets a helpdesk request from Eve, a
staff member and his best friend’s wife, requesting the release of an email. As
part of the procedure he has to ensure that the email is safe by scanning its
contents. He finds out that it’s actually an email addressed to Eve from her
lover. He releases the email, and his initial reaction is to call his friend up and
tell him about the affair. However, the law forbids him to reveal the information.
This is a case of conflict of obligations, and, following [5, 1], we can model this
situation with abstract argumentation3.

3 A detailed comparison of alternative argumentation-based approaches to practical
reasoning is beyond the scope of this paper. The interested reader may refer to [2]
for a comparison between afra and Modgil’s eaf, or to [1] for an illustration of the
modelling approach adopted in the example.

Preprint version. Official version may differ.

4 Pietro Baroni, Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin

First of all, the reasons for the alternative actions can be represented as
practical arguments [14]. Indeed, since Fred wants to be a good friend, then he
should tell his friend what he knows (T), but since Fred wants to be a good citi-
zen, then he should not (D). These two arguments are obviously attacking each
other. Moreover, both D and T are related to values [5], respectively Legality
and Friendship. These values can be represented as arguments (L and F) [14, 1]
which affect the evaluation of the two practical arguments. For instance, in the
case at hand, the value of Friendship would resolve the dilemma by making T
prevail over D. From an argumentation point of view, this means that F would
allow T to defeat D. This can be modelled by making ineffective the attack from
D to T (α in Fig. 1) by attacking it through an attack (β) whose source is the
value of Friendship F. This can be read as: even if the attack from D to T (α)
holds because D and T support conflicting actions, nevertheless, in the case at
hand, α is undermined by the moral commitment of F. Obviously, L states a
similar moral commitment, namely making D prevail over T. This requires L to
undermine both the attack (γ) from T to D and the attack (β) from F against
α. In turn F should make ineffective the latter attacks (δ and η) and L and F
will continue attacking each other’s attacks forever. This infinite construction
reveals an unresolved dilemma.

Finally, let us suppose that Fred chooses to pursue Legality rather than
Friendship. This can be represented by another argument (M) (a “must” argu-
ment in the terminology of [1]). The argument M represents a choice between
values in the case at hand. Therefore, M will undermine any moral commitment
of F over the two actions T and D by attacking the (infinite number of) attacks
whose source is F.

Fig. 1. Fred’s dilemma

An afra representing Fred’s dilemma is shown in Fig. 1. It consists of a
finite set of arguments XF = {D,T,L,F,M} and of an infinite set of attacks
RF = {DT,TD,LTD,FDT,FLTD,LFDT,LFLTD,FLFDT, . . . ,MFDT,
MFLTD,MFLFDT, . . .}.

Preprint version. Official version may differ.

Computing with Infinite Argumentation Frameworks: the Case of AFRAs 5

4 Representing R in afras

Given the potential practical interest in afras with infinite attacks, the following
question arises.

When R is infinite what characterises suitable specification mechanisms
for describing R?

In order to pursue this question, we need some terminology.

Definition 4 For X a finite set of arguments, we denote by X ∗ the set of all
finite length sequences (or words) that can be formed using arguments in X
(noting this includes ε the so-called empty sequence comprising no arguments).
Given w ∈ X ∗, |w| denotes its length, i.e. the number of arguments occurring
in its definition. Note that repetitions of the same arguments contribute to |w|
so that, e.g. |x1x2x1| = 3 (and not 2). Given w ∈ X ∗ we will denote as w̄
the sequence obtained by reversing the order of the symbols in w, namely, given
w = x1x2 . . . xn, w̄ = xn . . . x2x1.

Given u = u1u2 . . . ur and v = v1v2 . . . vk ∈ Σ∗ we denote by u · v (or simply
uv) the word w of length k + r defined by u1u2 . . . urv1v2 . . . vk. We note that
w ·ε = ε ·w = w. We say that L ⊆ X ∗ is an attack language over X if L satisfies
∀ w ∈ L w = xu with x ∈ X and either |u| = 1 or u ∈ L.

If L is an attack language over X , then the pair 〈X ,L〉 certainly describes an
afra. Classical formal language and computability theory, see e.g. [12], provides
a means of capturing the vague concept of “specification mechanism” via Formal
Grammars and their associated machine models. As well known, given a set of
symbols Σ a formal grammar G specifies the derivation of a language L(G) ⊆ Σ∗
called language generated by G. A language, L ⊆ Σ∗, is recognisable if there is a
formal grammar G for which w ∈ L if and only if w ∈ L(G).

As a starting point for “specification mechanisms” for attack languages we
can consider descriptions which are formal grammars (so that Σ = X in such
cases).

Unsurprisingly, arbitrary attack languages have unhelpful computational prop-
erties.

Proposition 1 Let X = {x, y}. There are attack languages, L, over X which
are not recognisable, i.e. for which there is no formal grammar G for which
L(G) = L.

Proof. In view of the correspondence from the fact that L ⊆ Σ∗ is recur-
sively enumerable if and only if there is an unrestricted grammar, G such that
L(G) = L, it suffices to show that there are attack languages which fail to be
r.e. First recall that any TM program, M , can be associated with a finite length
codeword, β(M), (over the alphabet {0, 1}) in such a way that given β(M) the
behaviour of M can be reproduced by another TM program. Furthermore, the
language corresponding to the set of valid encodings, i.e. CODE = {w ∈

Preprint version. Official version may differ.

6 Pietro Baroni, Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin

{0, 1}∗ : w = β(M) for some TM program, M} is recursive.4 With such encod-
ings it is known that the language Lε

¬HALT ⊂ {0, 1}∗ given by {β(M) : The
TM program, M , fails to halt given the empty word as input} is not r.e.

Now since CODE ⊂ {0, 1}∗ we can order the set of all TM programs simply
by ordering words5 within {0, 1}∗, so that the “first” TM program (M1) is the
first word, w1 in this ordering of {0, 1}∗ for which w1 ∈ CODE, the “second”
program (M2) the second word, w2 in the ordering for which w2 ∈ CODE, and
so on.

We are now ready to define a suitable attack language, R ⊂ {x, y}∗ estab-
lishing the proposition’s claim: R = { xyk : k ≥ 2 and Mk ∈ Lε

¬HALT } ∪
{yn : n ≥ 2} . This is easily seen to be an attack language6 and, furthermore,
cannot be r.e. For suppose, R is r.e. with AL a TM accepting exactly the words
in R then Lε

¬HALT could be shown r.e. as follows: given β(M) determine the
index k for which M is the k’th TM program. Then β(M) ∈ Lε

¬HALT if and
only if xyk is accepted by AL. ut

As a consequence of Propn. 1 there will be attack languages for which it
is not possible to present any specification (as a formal grammar). Of course
the nature of such languages is unlikely to be of practical concern: Propn. 1
merely establishes a technical limitation affecting attack languages but certainly
does not invalidate their use. In practice we would wish to consider only attack
languages that are presented in some “verifiable form”. What is the notion of
“verifiable form” intended to capture here? Presented with a formal grammar G,
there are two immediate issues which we would like to ensure can be addressed:

Q1. How easily can it be verified that L(G) does describe an attack language?
Q2. Assuming L(G) is verified as describing some attack language, R over X ,

given α ∈ X ∗ how easily can it be decided whether α is an attack in 〈X ,R〉,
i.e. whether α ∈ L(G)?

It can be easily derived from Rice’s Theorem (see, e.g. [12, pp. 185–195]) that
unrestricted grammars face problems with respect to Q1.

Proposition 2 Given an unrestricted grammar G, the problem of determining
if L(G) is an attack language is undecidable.

On the other hand the family of regular languages [12] provides the basis for
a positive result, using automata as representation mechanism.

Definition 5 A deterministic finite automaton (dfa) is defined via a 5-tuple,
M = 〈Σ,Q, q0, F, δ〉 where Σ = {σ1, . . . , σk} is a finite set of input symbols,

4 See e.g. [7, Ch. 4] or any standard introductory text on computability, such as [12,
Ch. 8.3].

5 For example using the standard lexicographic ordering under which 0 <lex 1 and
u <lex w whenever |u| < |w|.

6 The reader concerned by the fact that this includes a self-attacking argument (y)
may note that we may use xykx and ynx (n ≥ 1) to achieve the same effect without
self-attacking arguments.

Preprint version. Official version may differ.

Computing with Infinite Argumentation Frameworks: the Case of AFRAs 7

Q = {q0, q1, . . . , qm} a finite set of states; q0 ∈ Q the initial state; F ⊆ Q the
set of accepting states; and δ : Q×Σ → Q the state transition function. For
q ∈ Q and w ∈ Σ∗, the reachable state from q on input w is

ρ(q, w) =

 q if w = ε
δ(q, w) if |w| = 1
δ(ρ(q, u), x) if w = u · x

A sequence w = w1w2 . . . wn ∈ Σ∗ is accepted by the dfa 〈Σ,Q, q0, F, δ〉 if
ρ(q0, w̄) = ρ(q0, wnwn−1 . . . w1) ∈ F , i.e. the sequence of states (consistent with
the state transition function δ) which processes every symbol in w in reverse
order ends in an accepting state. For a dfa, M = 〈Σ,Q, q0, F, δ〉, L(M) is the
subset of Σ∗ accepted by M .

Fact 1 The language L ⊆ Σ is regular if and only if there is a dfa M =
〈Σ,Q, q0, F, δ〉 for which L(M) = L.

The following lemma shows that the conditions for an automaton to recognize
an attack language are relatively simple.

Lemma 1. Let M = 〈X , Q, q0, F, δ〉 be a dfa. Then L(M) is an attack language
if and only if both the following conditions hold:

C1. ∀ w ∈ {ε} ∪ X , ρ(q0, w) 6∈ F .
C2. ∀ q ∈ (Q \ {q0}), ∀x ∈ X if q′ = δ(q, x) 6∈ F then ∀w ∈ X ∗ it holds that

ρ(q′, w̄) 6∈ F .

Proof. Suppose first that L(M) is an attack language. Since every w ∈ L(M)
satisfies |w| ≥ 2 it is immediate that M satisfies C1. To see that C2 must hold,
consider any q ∈ (Q \ {q0}) and x ∈ X such that q′ = δ(q, x) 6∈ F . Furthermore
consider any u ∈ X ∗ such that q = ρ(q0, ū). Since q 6= q0, |u| ≥ 1 and, since
q′ = δ(q, x) 6∈ F , xu 6∈ L(M) and |xu| ≥ 2. Since L(M) is an attack language
@p ∈ X ∗ such that p = vxu ∈ L(M), i.e. it is not possible to reach an accepting
state from q′ = δ(q, x).

For the converse direction, we show that if M satisfies both C1 and C2 then
L(M) is an attack language, i.e. ∀ w = xu ∈ L(M) either |u| = 1 or u ∈ L(M).
Since C1 holds, it is immediate that |w| ≥ 2 for every w ∈ L(M). Suppose
now w = yu ∈ L(M) with |u| > 1. Assume by contradiction u /∈ L(M), i.e.
letting q′ = ρ(q0, ū) it holds that q′ /∈ F . Since |u| > 1 it must be the case
that q′ = δ(q, x) for some x with q 6= q0. By C2, this implies that ∀w ∈ X ∗
ρ(q′, w̄) 6∈ F which contradicts w = yu ∈ L(M), as this would entail δ(q′, y) ∈ F .

ut

The desired result in Theorem 1 follows directly from Fact 1 and Lemma 1.

Theorem 1 Let M = 〈X , Q, q0, F, δ〉 be a dfa defining the regular language,
L(M) ⊆ X ∗. The problem of verifying that L(M) is an attack language is poly-
nomial time decidable.

Preprint version. Official version may differ.

8 Pietro Baroni, Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin

Proof. Given a dfa, M = 〈X , Q, q0, δ, F 〉 from Lemma 1, in order to verify that
L(M) is an attack language it suffices to confirm that M satisfies the conditions
C1 and C2 and that these can tested in time polynomial in |Q|.

To check that C1 holds we need only confirm that q0 6∈ F giving ε 6∈ L(M)
and for each x ∈ X that δ(q0, x) 6∈ F , so that x 6∈ L(M). To test condition C2,
for all non-accepting states q′ for which there exists a transition from a state
different from q0, it has to be verified that for all w ∈ X ∗ ρ(q′, w̄) 6∈ F . This,
however, is simply a directed path problem, i.e. verifying that there is no path
from q′ to any state in F which is easily solved in polynomial time, e.g. by
carrying out a breadth-first search of states reachable from q′. ut

Finally, as to question Q2, given M a dfa describing the attack language
L(M) and w ∈ X ∗, we can decide if w is an an attack in the afra 〈X , L(M)〉
in polynomial time simply by confirming that ρ(q0, w̄) ∈ F .

5 The dfa+ Representation of afras

Expressing R within an afra, 〈X ,R〉 via a dfa, M for which L(M) = R turns
out to have some useful computational benefits in addition to verifiability and
deciding whether a specified attack is present. We will demonstrate these advan-
tages as far as the problem of computing the grounded extension is concerned.
To this purpose we have first to introduce a representation of a whole afra
(not just the attack relation) as an automaton and analyze its properties. Given
an afra 〈X ,R〉 where R ⊂ X ∗ is a regular language represented as a dfa
M = 〈X , QM, q0, FM, δ〉, it is easy to obtain a representation of 〈X ,R〉 as a
single dfa M+ = 〈X , QM+ , q0, FM+ , δ+〉 (indicated for the sake of brevity as
dfa+ in the following) such that for any w ∈ X ∗ it holds w ∈ L(M+) if and
only if w ∈ X ∪R. Let us notice that, in general, there are infinite dfa+s repre-
senting a single afra. This may raise the problem of defining a canonical dfa+

representation for each afra. This problem, not considered in the paper, is left
for future work. In the following we will provide some general results that hold
for any dfa+ representing an afra.

Figure 2 shows M+
F , a dfa+ which accepts all the words of the regular

language RF describing Fred’s dilemma.

Fig. 2. A dfa+ for Fred’s dilemma (double circles represent accepting states)

Preprint version. Official version may differ.

Computing with Infinite Argumentation Frameworks: the Case of AFRAs 9

We introduce also some handy notation concerning neighbor states and “in-
put” symbols for a given state. For p ∈ QM+ we define state− out(p) = { q ∈
QM+ : ∃ x ∈ X for which q = δ+(p, x)}. For instance, in M+

F , state −
out(q0) = {q1, q2, q3, q4, q8}. For p ∈ FM+ we define sym − in(p) = {x ∈
X : ∃ q ∈ QM+ for which p = δ+(q, x)} and state − in(p) = { q ∈
QM+ : ∃ x ∈ X for which p = δ+(q, x)}. In M+

F , sym− in(q5) = {D,L} and
state− in(q5) = {q4, q9, q6}.

It is now useful to point out several properties of the dfa+ representation
(we will implicitly assume that each accepting state is reachable from q0, as it
should be in order to avoid useless parts in the automaton).

First we can partition the accepting states in FM+ into two sets: argument
states and attack states.

Argument states are in one-to-one correspondence with the elements of X
and are reachable in one step from the initial state q0: they represent the “ad-
ditional part” of the dfa+ w.r.t. the dfa representation. Formally ∀x ∈ X
∃q ∈ FM+ such that δ+(q0, x) = q and sym − in(q) = {x}. For each x ∈ X
we will denote the corresponding argument state as argst(x) and, conversely, if
q = argst(x) we will say that x = reparg(q). For the whole set of arguments X
in a dfa+ representation we define ArgS(M+) , {argst(x) | x ∈ X}. Hence,
ArgS(M+

F) = {q1, q2, q3, q4, q8}.
In afra an argument can receive only direct defeats from other arguments:

an argument x is defeated by an argument y if and only if 〈x, y〉 ∈ R namely
if the corresponding two-length string in X ∗ is accepted by the dfa+ (and of
course by the original dfa). Formally we can identify the set of direct defeaters
of an argument x as dirdef(x) , {y ∈ X | δ+(argst(x), y) ∈ FM+}. Of course
an argument x is unattacked in afra if and only if dirdef(x) = ∅. The set of
unattacked arguments will be denoted as unatt− args(M+). The above defini-
tions can be extended from arguments to argument states in the obvious way.

Attack states are all the accepting states which are not argument states
and are defined as AttS(M+) , FM+ \ ArgS(M+). Hence, AttS(M+

F) =
{q5, q6, q7, q9}. Every attack state q in a dfa+ (and in the original dfa) cor-
responds to a (possibly infinite) subset of R, namely to a (nonempty) set of
elements of the corresponding attack language, denoted as AttL(q). Formally,
for any q ∈ AttS(M+) AttL(q) , {r ∈ R | ρ(q0, r̄) = q}. Given r ∈ AttL(q)
we will say that q is the representative state of r, denoted as q = repst(r). Of
course, ∀r ∈ R ∃!q ∈ AttS(M+) | q = repst(r).

An element r of R can have both direct defeaters and indirect defeaters (see
1. and 2. in Def. 2). A direct defeater is any argument x which is the source of an
attack whose target is r, and then xr ∈ R. It can then be observed that given an
attack state q all elements of AttL(q) have the same direct defeaters. Formally,
for any q ∈ AttS(M+) we define dirdef(q) , {x ∈ X | δ+(q, x) ∈ FM+} and for
any r ∈ R dirdef(r) , dirdef(repst(r)).

An indirect defeater is any argument x which is the source of an attack whose
target is the source of r: indirdef(r) , dirdef(src(r)).

Preprint version. Official version may differ.

10 Pietro Baroni, Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin

Given an attack state q it can be noted that the source of any attack repre-
sented by q corresponds to one of the elements of sym−in(q): in fact any element
of sym− in(q) is the first symbol of some of the elements of the attack language
accepted by q. By extension, we can hence define the indirect defeaters of any q ∈
AttS(M+): indirdef(q) ,

⋃
r∈AttL(q) indirdef(r) =

⋃
x∈sym−in(q) dirdef(x).

The whole set of defeaters of an element r ofR will be denoted as totdef(r) ,
dirdef(r) ∪ indirdef(r). Analogously, for a state q, totdef(q) , dirdef(q) ∪
indirdef(q). We say that an attack state q is unattacked if totdef(q) = ∅. For
instance in Fig. 2 q7 is unattacked while totdef(q5) = {F,T}. In the following we
will use the term unattacked states to refer collectively to both unattacked argu-
ment states and unattacked attack states. It can be noted that if an attack state
q is unattacked then all elements of AttL(q) are unattacked, but it does not hold
that if r ∈ R is unattacked then repst(r) is unattacked. In fact totdef(r) =
∅ implies dirdef(repst(r)) = ∅ but does not imply indirdef(repst(r)) = ∅
since repst(r) might have indirect defeaters due to other elements of AttL(q).
On the other hand it can easily be observed that totdef(r) = ∅ implies also
indirdef(repst(r)) = ∅ if |sym− in(repst(r))| = 1. Under this condition r ∈ R
is unattacked if and only if repst(r) is unattacked.

Since this is a desirable property, we need to introduce a transformation
of dfa+ aimed at ensuring the above condition while leaving unmodified the
accepted language. This will be achieved by splitting some attack states of the
dfa+.

Definition 6 An attack state p is splittable if |sym − in(p)| > 1. The set of
splittable states of a dfa+ M+ will be denoted as split− states(M+).

In M+
F , q5 is splittable since sym− in(q5) = {L,D}.

As explained above we need a complete split (csplit in the following) operator
whose goal is transforming a dfa+ (without affecting the language it accepts)
so that in the resulting dfa+ there are no splittable states. This is achieved by
adding, for each splittable state p, a number |sym − in(p)| − 1 new accepting
states. Accordingly a split operation w.r.t a splittable state can be defined as
follows.

Definition 7 For M+ = 〈X , QM+ , q0, FM+ , δ+〉 let p be a splittable state with
sym − in(p) = {x1, . . . , xn}, (n > 1). The dfa+ resulting by splitting p,

split(M+, p) = 〈X , Qspl
M+ , q0, F

spl
M+ , δ

+spl〉 is obtained by:

S1. Qspl
M+ = QM+ ∪ {p2, . . . , pn} where p2, . . . , pn are new (accepting) states

hence included also in F spl
M+ .

S2. Letting p1 = p the transition function δ+spl has, for i = 1 . . . n:
δspl(q′, xi) = pi if q′ ∈ state− in(p) ∧ δ(q′, xi) = p
δspl(pi, y) = δ(p, y)
δspl(q, y) = δ(q, y) if q ∈ QM+ \ state− in(p)

In words, a splittable state p is partitioned into several states pi each with
sym−in(pi) = {xi} and the transitions from p to other states are replicated from
each pi to them. It can be observed that the application of the split operation:

Preprint version. Official version may differ.

Computing with Infinite Argumentation Frameworks: the Case of AFRAs 11

– does not affect the language accepted by the dfa+: for any splittable state
p L(M+) = L(split(M+, p));

– does not affect the cardinality of sym − in(q) for any state q 6= p: in fact q
may have additional incoming transitions from the elements pi but they all
correspond to elements already present in sym− in(q);

– for each state pi, letting xi be the only element of sym−in(pi), in split(M+, p)
it holds that dirdef(pi) = dirdef(p) and indirdef(pi) = indirdef(xi).

In virtue of the second point above, it can be noted that it is possible to
extend the definition of the split operation to a set of splittable states: given a
set P of splittable states of a dfa+M+, the result of the operation split(M+, P)
is the dfa+ resulting from the application of split(M+, p) for each p ∈ P (the
order of application of the operations split(M+, p) does not matter).

Of course the csplit operation is obtained by applying the split operation to
all splittable states of a dfa+M+: csplit(M+) , split(M+, split−states(M+)).
It is easy to observe that the number of states of split(M+, split−states(M+))
is upper bounded by |QM+ | ∗ |X | hence the csplit operation can be carried out
in polynomial time with respect to the number of states and arguments ofM+.

Figure 3 depicts the result of the application of the csplit operator to M+
F .

As we noticed before, q5 is a splittable state (and it is the only one in M+
F).

csplit(M+
F) has an additional state w.r.t.M+

F , namely q′5 with sym− in(q′5) =
{L} while, after splitting, sym − in(q5) = {D}. Moreover, as required by Def.
7, any outgoing transitions from the split state is replicated, giving rise to the
transitions from q5 to q6 and from q′5 to q6, both triggered by F .

Fig. 3. Graphical representation of csplit(M+
F)

6 Computing the Grounded Extension with the dfa+

Representation

In this section we show that the grounded extension of afras with dfa+ repre-
sentation can be computed in polynomial time. Since the grounded extension of
an afra includes both arguments and attacks, it may be infinite and therefore
will, in turn, be expressed through a dfa+, algorithmically derived from the one
of the afra.

Preprint version. Official version may differ.

12 Pietro Baroni, Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin

Before illustrating the algorithm we need to consider some properties of
afras and of the grounded extension.

First recall a characterization of the grounded extension for finitary argu-
mentation frameworks [6].

Definition 8 An argumentation framework 〈X ,A〉 is finitary iff for each argu-
ment x there are only finitely many arguments in X which attack x.

Proposition 3 If an argumentation framework af is finitary then GE(af) =⋃
i=1...∞ F i(∅) where F is the characteristic function of af (Def. 1).

It is now easy to see that, for any afra, the corresponding af 〈X̃ , R̃〉 (see
Sect. 2) is finitary:

– the attackers of each element x of X̃ ∩ X correspond to the direct defeaters
of x in afra, which are at most |X |;

– the attackers of each element r of X̃ ∩R correspond to the direct and indirect
defeaters of r in afra, which are at most 2 ∗ |X |.

On this basis we can now state some relatively straightforward conditions
concerning the membership of afra arguments and attacks to GE(〈X̃ , R̃〉) =
GEafra(〈X ,R〉), drawing relations between the characteristic function and de-
featers in the dfa+ representation.

Proposition 4 Let 〈X ,R〉 be an afra with dfa+ representation and 〈X̃ , R̃〉 be
its corresponding af with characteristic function F , x be an element of X̃ ∩ X ,
r be an element of X̃ ∩ R. It holds that:

1. x ∈ F1(∅) iff dirdef(x) = ∅
2. r ∈ F1(∅) iff totdef(r) = ∅
3. for i ≥ 2, x ∈ F i(∅) \ F i−1(∅) iff ∀y ∈ dirdef(x) (totdef(yx) ∩ F i−1(∅)) 6=
∅ ∧ ∃y ∈ dirdef(x) | (totdef(yx) ∩ F i−2(∅)) = ∅

4. for i ≥ 2, r ∈ F i(∅) \ F i−1(∅) iff ∀y ∈ totdef(r) (totdef(yr) ∩ F i−1(∅)) 6=
∅ ∧ ∃y ∈ totdef(r) | (totdef(yr) ∩ F i−2(∅)) = ∅

We can now introduce an algorithm (Alg. 1) which builds a dfa accepting the
grounded extension of 〈X ,R〉. The result of its execution on M+

F is illustrated
in Fig. 4. After splitting, in the first iteration of the repeat cycle the unattacked
states q1, q2, q3, q7 are marked in(1) (note that q7 has no indirect defeaters since
q1 is unattacked). Then, since state − in(q7) = {q6}, q6 is marked out and
removed from the set of accepting states. As a consequence, during the second
iteration, q′5 is unattacked and is marked in(2). Then, q9 is marked out at
line 9 of Alg. 1 and removed from the set of accepting states. Finally, in the third
iteration, both q5 and q8 are unattacked (note in particular that q5 is unattacked
since argst(D) = q8 is unattacked). As a consequence they are marked in(3) and
q4 is marked out at line 9 of Alg. 1. The algorithm will then terminate at the
following iteration.

Preprint version. Official version may differ.

Computing with Infinite Argumentation Frameworks: the Case of AFRAs 13

Algorithm 1 Determining GE(〈X ,R〉) in afras

1: Input: dfa+ M+ = 〈X , QM+ , q0, FM+ , δ+〉 with α ∈ L(M+)⇔ α ∈ X ∪R.
2: Output: dfaMG = 〈X , QG, q0, FG, δG〉 with α ∈ L(MG)⇔ α ∈ GE(〈X̃ , R̃〉)
3: i := 0
4: Mi := csplit(M+); with Mi = 〈X , Qi, q0, Fi, δi〉
5: repeat
6: i := i+ 1; Mi := Mi−1;
7: For each (unmarked) unattacked state q of Mi mark q as in(i).
8: for each unattacked state q and every q′ ∈ state− in(q) ∩ Fi do
9: Mark q′ as out and remove q′ from Fi.

10: end for
11: for each x ∈ X s.t. argst(x) is marked out do
12: For each state q ∈ Fi with x ∈ sym− in(q) mark q as out and remove q from

Fi.
13: end for
14: untilMi =Mi−1

15: for any q ∈ Fi which is not marked in() do
16: remove q from Fi

17: end for
18: return 〈X , Qi, q0, Fi, δi〉

Fig. 4. The dfa+ after the execution of Alg. 1 on M+
F

From an argumentation point of view, this result means that the arguments
M, L, F and D are in the afra grounded extension, along with any attack
whose source is one of M, L, and D. Therefore, the dilemma’s solution is that
Fred should not tell his friend what he knows, because in this situation the value
of legality prevails over the value of friendship.

Turning back to technical results, correctness of Algorithm 1 follows from
the following proposition.

Proposition 5 Let M+ = 〈X , QM+ , q0, FM+ , δ+〉 with α ∈ L(M+) ⇔ α ∈
X ∪ R be a dfa+ describing the afra 〈X ,R〉, with corresponding af 〈X̃ , R̃〉,
and Mi = 〈X , Qi, q0, Fi, δi〉 the automaton produced by Algorithm 1 at the i-th

Preprint version. Official version may differ.

14 Pietro Baroni, Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin

iteration of the repeat cycle. For i ≥ 0, let Ti ⊆ Fi be the set of states

Ti =

i⋃
k=1

{ q ∈ Fi : q is labelled in(k) by Algorithm 1}

and Li = {α ∈ X ∗ : ρ(q0, ᾱ) ∈ Ti}. For every i ≥ 1 α ∈ X ∪R is in Li if and
only if α ∈ Fi(∅), i.e. α is acceptable w.r.t. Fi−1(∅) in 〈X̃ , R̃〉.

Proof. The proof proceeds by induction on i ≥ 1. For the inductive base we need
α ∈ L1 if and only if α ∈ F1(∅). Assume first that α ∈ L1: from l. 7 of Alg. 1 it
follows that q = ρ(q0, ᾱ) is unattacked after the csplit operation has been applied
to M0 = M+. If q is an argument state (not affected by the csplit operation)
it follows that dirdef(α) = ∅ both in M0 = M+ and in M1: hence, by Prop.
4, α ∈ F1(∅). If q is an attack state it either was unattacked in M0 = M+ or
it became unattacked in M1 as a consequence of the splitting of a splittable
state inM0. Taking into account the properties of the split operation discussed
in Sec. 5, in both cases it holds that α ∈ AttL(q) and totdef(α) = ∅: again by
Prop. 4, α ∈ F1(∅).

Assume now that α ∈ F1(∅). From Prop. 4 one of the following two conditions
holds: α is an argument with dirdef(α) = ∅ or α is an attack with totdef(α) = ∅.
In the first case the state q = argst(α) is unattacked in M0 =M+ (and hence
also inM1) and is marked as in(1) by l. 8, hence q ∈ T1 and α ∈ L1. In the second
case it follows that the state q = repst(α) is either unattacked or splittable in
M0 =M+. In fact q can not have direct defeaters (since α has not), and either
has not indirect defeaters (hence being unattacked) or has indirect defeaters (due
to other elements of AttL(q)) hence being splittable. As a consequence, in both
cases after the csplit operation on M0, in M1 q = repst(α) is unattacked and
is marked as in(1) by l. 7, hence q ∈ T1 and α ∈ L1.

Now inductively assume, for some k ≥ 1, that for all i ≤ k α ∈ Li if and only
if α ∈ Fi(∅). We show α ∈ Lk+1 if and only if α ∈ Fk+1(∅).

Consider any α ∈ Lk+1: without loss of generality we may assume α ∈
Lk+1 \ Lk (since Fk(∅) ⊆ Fk+1(∅) and, via induction, we have α ∈ Lk if and
only if α ∈ Fk(∅)).

If α is an argument, namely α ∈ X̃ ∩X , it follows that q = argst(α) ∈ Tk+1 \
Tk. If α is an attack, namely α ∈ X̃ ∩R, it follows that q = repst(α) ∈ Tk+1 \Tk.

In both cases, it holds that q is marked as in(k + 1) by l. 7, hence q is
unattacked in Mk+1 while it is not unattacked in Mk. This means that any
p ∈ state− out(q) has already been marked as out. Moreover if α is an attack,
also any argument state t such that reparg(t) ∈ indirdef(α) has already been
marked as out.

The out marking can be carried out at l. 9 or l. 12 of Alg. 1. In the case
of l. 9 p is marked as out since a state q′ ∈ state − out(p) has been marked as
in(i) with i ≤ k. This means that for any β ∈ dirdef(α) (with βα ∈ AttL(p)
for some p ∈ state − out(q) marked as out at l. 9) ∃γ ∈ dirdef(βα) such that
repst(γβα) = q′ is marked as in(i) with i ≤ k. By the inductive hypothesis,
we have that a (direct) defeater γ of the attack βα is in Fk(∅), hence α is

Preprint version. Official version may differ.

Computing with Infinite Argumentation Frameworks: the Case of AFRAs 15

defended by Fk(∅) with respect to any β ∈ dirdef(α) (with βα ∈ AttL(p) for
some p ∈ state− out(q) marked as out at l. 9). With a similar reasoning, in the
case α is an attack, we may also conclude that for any β ∈ indirdef(α) (with
β = reparg(t) for some argument state t marked as out at l. 9) ∃γ ∈ dirdef(β)
such that repst(γβ) = q′ is marked as in(i) with i ≤ k and hence α is defended
by Fk(∅) with respect to any β ∈ indirdef(α) (with β = reparg(t) for some
argument state t marked as out at l. 9).

In the case of l. 12 p is marked out since q′ = argst(β) has been marked out
with β the (only) element of sym− in(p). It can be observed that any argument
state can be marked as out only at l. 9 (to satisfy the condition for marking at
l. 12 an argument state should be already marked as out according to l. 11).
This means that ∃q′′ ∈ state−out(q′) with q′′ marked as in(i) with i ≤ k. By the
inductive hypothesis ∃γ ∈ dirdef(β) such that γβ ∈ AttL(q′′) and γβ ∈ Fk(∅).
This means that an (indirect) defeater of all elements of AttL(p) belongs to
Fk(∅), hence α is defended by Fk(∅) with respect to any attack in AttL(p).

Summing up, it follows that Fk(∅) defends α against any β ∈ dirdef(α)
(either βα is attacked, case of l. 9, or β is attacked, case of l. 12) and, if α is
an attack, Fk(∅) defends α against any β ∈ indirdef(α) (β is attacked, case of
l. 9). It ensues α ∈ Fk+1(∅).

Turning to the other side of the proof of the inductive step, assume now
α ∈ Fk+1(∅). Again, without loss of generality, we may consider only the case
α ∈ Fk+1(∅) \ Fk(∅).

If α is an argument, from case 3. of Prop. 4 it follows that ∀β ∈ dirdef(α)
(totdef(βα)∩Fk(∅)) 6= ∅∧∃β ∈ dirdef(α) | (totdef(βα)∩ (Fk(∅)\Fk−1(∅))) 6=
∅. This implies that ∀β ∈ dirdef(α) α is defended by Fk(∅) against β, namely
there is an argument γ such that γβα or γβ belongs to Fk(∅) (in both cases it
must also hold γ ∈ Fk(∅)). Moreover, for one of these elements γ it must hold
that either γβα or γβ belongs to Fk(∅) \ Fk−1(∅).

By the inductive hypothesis, if follows that for any such γ, argst(γ) is marked
as in(i) with i ≤ k and either repst(γβα) or repst(γβ) is marked as in(i) with
i ≤ k (again, for at least one of these elements, the mark is exactly in(k)). It
follows that ∀β ∈ dirdef(α) repst(βα) is marked out at an iteration i ≤ k and
one of these repst(βα) is marked out exactly at the iteration k. Hence argst(α)
becomes unattacked, and hence is marked in, exactly at the iteration k+ 1 and
α ∈ Lk+1 as desired.

If α is an attack, from case 4. of Prop. 4 it follows that ∀β ∈ totdef(α)
(totdef(βα)∩Fk(∅)) 6= ∅∧∃β ∈ totdef(α) | (totdef(βα)∩(Fk(∅)\Fk−1(∅))) 6= ∅.
This implies that:

– ∀β ∈ dirdef(α) α is defended by Fk(∅) against β, namely there is an argu-
ment γ such that γβα or γβ belongs to Fk(∅) (in both cases it must also
hold γ ∈ Fk(∅));

– letting ε = src(α), ∀β ∈ indirdef(α) = dirdef(ε) α is defended by Fk(∅)
against β, namely there is an argument γ such that γβε or γβ belongs to
Fk(∅) (in other words ε is defended by Fk(∅)).

Preprint version. Official version may differ.

16 Pietro Baroni, Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin

In all cases it must also hold γ ∈ Fk(∅) and for at least one of these elements
γ it must hold that either γβα or γβε or γβ belongs to Fk(∅) \ Fk−1(∅).

By the inductive hypothesis, if follows that for any such γ, argst(γ) is marked
as in(i) with i ≤ k and either repst(γβα) or repst(γβε) or repst(γβ) is marked
as in(i) with i ≤ k (again, for at least one of these elements, the mark is exactly
in(k)). It follows that ∀β ∈ totdef(α) repst(βα) is marked out at an iteration
i ≤ k and one of these repst(βα) is marked out exactly at the iteration k. Hence
repst(α) becomes unattacked, and hence is marked in, exactly at the iteration
k + 1 and α ∈ Lk+1 as desired.

On this basis we obtain one of the main results of the paper.

Theorem 2 Let M+ = 〈X , QM+ , q0, FM+ , δ+〉 with α ∈ L(M+)⇔ α ∈ X ∪R
be a dfa+ describing the afra, 〈X ,R〉 with corresponding af 〈X̃ , R̃〉. It is
possible to construct in polynomial time a dfa MG = 〈X , QG, q0, FG, δG〉 with
α ∈ L(MG)⇔ α ∈ GE(〈X̃ , R̃〉)

Proof. Given Prop. 5, we have only to show that Alg. 1 terminates in polynomial
time. We have already commented that the csplit operation (l. 4) can be carried
out in polynomial time and gives rise to a total number of states #Q ≤ |QM+ | ∗
|X |. The repeat cycle terminates when Mi = Mi−1, which occurs when no
unmarked unattacked states are detected at iteration i. Identifying whether a
state q is unattacked requires the following checks (check (ii) only applies to
attack states): (i) for any state p ∈ state−out(q) is p in Fi? (ii) for any argument
x ∈ sym− in(q) is any defeater of x in Fi?

Check (i) requires at most #Q constant time operations for each state q, so
its complexity in a single iteration of the repeat cycle is O(#Q2). Check (ii)
requires at most |X |2 constant time operations for each state q, so its complexity
in a single iteration of the repeat cycle is O(#Q ∗ |X |2).

Given the identification of unattacked states for granted, in a single iteration
of the repeat cycle:

– at most #Q mark operation are executed at l. 7;
– at most #Q checks on membership to state − in(q) ∩ Fi are carried out at

l. 8 and at most the same number of marking and removal operations are
executed at l. 9;

– the for cycle at l. 11 is executed at most |X | times and for each of these
iterations at most #Q marking and removal operations are executed at l. 12.

Noting that the algorithm never adds accepting states, it follows that the
number of removals and, hence, the number of iterations of the repeat cycle is
bounded by #Q. Finally the for cycle at l. 15 is executed at most #Q times.

Summing up, the order of magnitude of the computational complexity of
Alg. 1 is determined by checks (i) and (ii) within the repeat cycle, which turn
out to be respectively O(#Q3) = O(|QM+ |3 ∗ |X |3) and O(#Q ∗#Q ∗ |X |2) =
O(|QM+ |2 ∗ |X |4). ut

Preprint version. Official version may differ.

Computing with Infinite Argumentation Frameworks: the Case of AFRAs 17

7 Conclusions

This paper proposes a methodology and provides some initial results in the
largely unexplored field of computing with infinite argumentation frameworks,
using as a starting point the possible existence of infinite attacks in the recently
introduced afra formalism, exemplified by a case of moral dilemma. While other
approaches (for instance, Modgil’s eaf [13]) may provide a different formaliza-
tion of this specific example, from a general point of view it is worth noting
that the notion of unlimited recursive attacks, as in the afra formalism, may
encompass infinite attack sequences even with a finite set of arguments. This
can be easily seen as a finite alphabet able to describe infinite attack structures.

In fact, the proposal is built on the main idea of drawing correspondences be-
tween the specification of argumentation frameworks and well-known notions and
results in formal language theory. While there are cases of infinite attacks which
can not be represented with formal grammars, deterministic finite automata
provide a convenient way to represent infinite attack relations with potential
practical use. In particular we show that, with this representation, the problem
of computing the grounded extension, which is tractable in the finite case, pre-
serves its tractability in the infinite case. We are already extending this kind of
analysis to other “standard” computational problems in abstract argumentation,
like checking whether a set is conflict-free, is admissible or is a stable extension.
The representation of special reasoning cases, like dilemmas, is an example of
motivation for this kind of studies. In a similar spirit, one might consider the
representation of dialogues where the repetition of previous moves is allowed:
while this is normally forbidden, in order to ensure dialogue termination, the
proposed approach might be used to define a sound semantics for some kinds of
non-terminating dialogues, which represent the formal counterpart of situations
where dialogue participants decide to keep (some of) their positions forever [10,
9].

In the perspective of enlarging its applicability domain, the proposed method-
ology and techniques could also be applied to other cases of infinite frameworks,
either in the context of traditional Dung’s af or in some of its extended ver-
sions. In particular, it can be noted that the proposed approach implicitly deals
with a family of infinite Dung’s afs since any afra with infinite attacks can
be translated into a traditional af with infinite arguments (see Sect. 2). From
a more general perspective, one can consider using the DFA representation to
specify an infinite set of arguments (so that each accepted word corresponds to
an argument) complemented by a compact definition of the attack relation. Just
to give an example, one simple option is to state that if both words xw and w are
accepted (i.e. both of them represent arguments) then xw attacks w. In this way
it is possible, for instance, to represent an infinite chain of attacks with a simple
DFA, accepting the words x, xx, xxx, A more general option is to specify
the attack relations through an expression constructed by a set of operators. A
variant of Algorithm 1 could then be devised to compute the grounded extension
of this kind of frameworks. A deep investigation of these issues is the subject of
ongoing work [3].

Preprint version. Official version may differ.

18 Pietro Baroni, Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin

References

1. Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: An argumentation-based ap-
proach to modeling decision support contexts with what-if capabilities. In: AAAI
Fall Symposium. Technical Report SS-09-06. pp. 2–7 (2009)

2. Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: AFRA: argumentation framework
with recursive attacks. International Journal of Approximate Reasoning 51(1), 19–
37 (2011)

3. Baroni, P., Cerutti, F., Dunne, P.E., Giacomin, M.: Automata for infinite argumen-
tation structures. Technical Report, Department of Computer Science, University
of Liverpool, UK (2011)

4. Barringer, H., Gabbay, D., Woods, J.: Temporal dynamics of support and attack
networks: From argumentation to zoology. In: Hutter, D., Stephan, W. (eds.) Mech-
anizing Mathematical Reasoning, Lecture Notes in Computer Science, vol. 2605,
pp. 59–98. Springer Berlin / Heidelberg (2005)

5. Bench-Capon, T.J.M.: Persuasion in practical argument using value based argu-
mentation frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

6. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming, and N -person games. Artificial Intelli-
gence 77, 321–357 (1995)

7. Dunne, P.E.: Computability Theory – concepts and applications. Ellis–Horwood
(1991)

8. Dunne, P.E., Modgil, S., Bench-Capon, T.: Computation in extended argumen-
tation frameworks. In: Proceedings of 19th European Conference on Artificial In-
teligence (ECAI 2010). pp. 119–124. Lisbon, P (2010)

9. Gabbay, D., Woods, J.: More on non-cooperation in dialogue logic. Logic Journal
of IGPL 9(1), 305–323 (2001)

10. Gabbay, D., Woods, J.: Non-cooperation in dialogue logic. Synthese 127, 161–186
(2001)

11. Gabbay, D.: Semantics for higher level attacks in extended argumentation frames
part 1: Overview. Studia Logica 93, 357–381 (2009)

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

13. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artificial
Intelligence 173(9–10), 901–934 (2009)

14. Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University
Press, NY (2008)

Preprint version. Official version may differ.

