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Abstract

A new area-based convexity measure for polygons is de-
scribed. It has the desirable properties that it is not sensitive
to small boundary defects, and it is symmetric with respect
to intrusions and protrusions. The measure requires a max-
imally overlapping convex polygon, and this is efficiently
estimated using a genetic algorithm. Examples of the mea-
sures application to medical image analysis are shown.

1. Introduction

Convexity is a useful attribute of shape, and has appli-
cations in classification, image segmentation, figure/ground
separation, etc. Whereas its mathematical definition pro-
vides a binary property, in image analysis we prefer a con-
tinuous measure, so that a shape can be assigned a degree of
convexity. This provides more information, enabling clas-
sification for example to be more discriminating, and also
allows the concept of convexity to be applied more usefully
and robustly to real life irregular and noisy shape data.
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Figure 1. Measuring convexity of two shapes
(left); middle: standard convex hull based ap-
proach, right: shows proposed approach.

Many convexity measures for polygons in the literature
are either area [1, 11] or perimeter based [15]. The most
common computes the ratio of the area of the polygon to the

. AP .
area of its convex hull [10], C' = ACH(P)" This measure

is nominally area-based, and so narrowing the intrusion (i.e.

decreasing its area) in the polygon in the lower row in fig-
ure 1 increases the measured convexity. In the limit, as the
area of the intrusion tends to zero (an infinitely thin cut),
the convexity tends to one (perfect convexity). However,
there is an obvious asymmetry in the measure since a sim-
ilar but opposite defect, namely the protrusion in the upper
row in figure 1 produces a lower measured convexity. Even
worse, in this example as the protrusion narrows the mea-
sured convexity decreases rather than increases, disagreeing
with our perception. Thus, the measure inherits the convex
hull’s sensitivity to protrusions. Such sensitivity to thin pro-
trusions is more appropriate to perimeter based convexity
measures such as Zunic and Rosin’s [15] method which is
also sensitive to thin intrusions.

2. The New Convexity Measure

In this paper we propose an alternative area-based con-
vexity measure related to C' which has the advantages that
it is not sensitive to small (in area) boundary defects, and
it is symmetric with respect to intrusions and protrusions.
The basic idea is to replace the convex hull of the poly-
gon P by its “robustified” version which we define as the
convex polygon () that best fits P in the sense of maximis-
ing the overlap of P and (), or equivalently minimising the
area of P XOR @). The right column in figure 1 highlights
P XOR @, which is the same for the two shapes. To make
the measure scale invariant it needs to be normalised with
respect to size. This can be done using the area of the input

polygon Ep = A(%%‘Q), or alternatively by the area of
the fitted convex polygon Eg = A(%g?@. The latter en-

sures greater symmetry (see figure 1) but is potentially less
robust than the former if @) is not estimated accurately. To
make the measure maximal for convex shapes Ep is modi-
fied to form the convex measure Cp = 1 — A(%%{Q). We
have tested C'p on hundreds of polygons and confirmed that
it lies in the range [0, 1], although this has not been proven
analytically. Although Ep lies in [0, 1], E is not bounded
from above. This can be demonstrated by the star shaped
polygon in figure 2. For a star with very short arms @) is a
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regular polygon centred on the star. However, as the arms
grow outwards the space between them grows much faster
than the increased area of the arms. This leads to () flip-
ping to fit one of the arms, and so for an n-sided star (n is
odd) Eg = n — 1. We therefore normalise Eq to form the

measure Cgp = 1+A(PX01RQ)/A(Q) to keep it in [0, 1].

Figure 2. The convex polygon ( is fitted to
one arm of the star.

Given the polygon (@ it is now also possible to use it
to define two new shape measures. The amount of pro-
trusions and intrusions can be quantified by A(%C\»Q) and

A(%C\?)P). Only the former needs to be normalised, and so the

measures of protrusiveness and intrusiveness are Cprot =

A(P\Q) . _ AQ\P)
AP+ arg and Cine = gy

3. A Genetic Algorithm for Estimating ()

Finding the convex polygon @ is not a trivial task, and
for convenience we estimate () using a general purpose op-
timiser, namely a genetic algorithm. This approach also en-
abled us to easily experiment with alternative versions of the
criteria for defining (). In our current formulation, for the
input polygon P, the GA’s function is to search the space of
vertex subsets for a derived polygon () with the following
properties:

1. @ is convex (a hard constraint), and

2. @ produces a minimum value when its area is XORed
with P (i.e. the functional).

Vertex subsets are represented in the GA by bit strings in
which bit ¢ is set if and only if vertex ¢, from the original
polygon, is included in the subset.

Figure 3 gives an outline of our simple genetic algorithm.
It is an example of a steady state GA [13], and it uses the
weaker parent replacement strategy first described by Cav-
icchio in [2]. The current GA, first used in [9], is particu-
larly easy to implement because it lacks a requirement for
global selection probabilities: in our GA all parents are se-
lected from a uniform distribution, and all pressure advanc-
ing the genetic search is applied at the replacement stage
of the GA. Similar ideas have been used successfully for
multi-objective GAs [14].

Procedure GA
begin
Generate and repair a population of NV individuals
Evaluate the objective function for each individual and store it
Store best-so-far
Repeat
For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce offspring
Apply a single mutation to the offspring
Repair the offspring
Evaluate the objective function produced by offspring
If offspring is a duplicate, delete it
Else
If offspring better than weaker parent then
it replaces it in population
If offspring better than best-so-far then it replaces
best-so-far
Endfor
Until stopping condition satisfied
Print best-so-far
End

Figure 3. A steady state genetic algorithm.

Each time the GA iterates through its inner loop, it se-
lects two parents and applies one-point crossover to the bit
strings to produce a single offspring. A single point muta-
tion is then applied to the offspring which involves select-
ing a bit at random and flipping it, either from zero to one
or from one to zero. The pairs of parents are selected in the
following way: the first parent is selected deterministically
in sequence, but the second parent is selected uniformly, at
random.

A problem specific repair routine has been developed for
the present application, and this ensures that all candidate
solutions are valid. The routine is needed because without
it the GA will waste vast amounts of time generating and
evaluating large quantities of infeasible solutions. The re-
pair routine is applied to each individual in the initial popu-
lation, and also to every offspring. It accepts, as arguments,
an arbitrary subset of vertices from a polygon generated by
the GA, and returns the convex hull of this subset. The ver-
tices of the convex hull are then written back into the rele-
vant bit string, guaranteeing a valid candidate solution. The
area of the convex derivative polygon is finally XORed with
the area of the original polygon to generate a fitness value.

A final feature of the GA is that no new offspring is al-
lowed to replace its weaker parent until it has been checked
as a duplicate. If a duplicate of the offspring is present in
the population then the new offspring will die immediately.
Our GA deletes phenotypic duplicates i.e., new offspring
are deleted if they duplicate a current population member’s
objective function (although we also check that both indi-
viduals also have the same number of vertices). Ideally
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we should delete genotypic duplicates (i.e. matching bit
strings), but this would involve performing time consuming
pairwise comparisons on long chromosomes.

4. Computational Complexity

The overall running time of the genetic algorithm is de-
pendent on the computational complexity of generating and
evaluating each candidate solution. The crossover and mu-
tation operations have linear complexity, as is generating
the polygon from the vertex bit string defining an individ-
ual. To repair the offspring requires computing the con-
vex hull. For simple (non-intersecting) polygons the com-
putation complexity is O(n) [8], however, the process of
generating individuals does not guarantee that the ordered
sequence of vertices is simple. The more general case of
computing the convex hull of a set of points is O(n logn).
To avoid this extra overhead the candidate polygon ) could
be tested for simplicity. In theory this can be performed
in linear time as a consequence of Chazelle’s linear-time
triangulation algorithm [4]. However, in practise we have
found experimentally that non-simple polygons are gener-
ated fairly rarely, and it is therefore more efficient to use
the linear complexity convex hull algorithm, and check the
final solution produced by the GA. If it self-intersects (this
occurred in less than 1% of the cases during our testing)
then the GA is run again with a more general O(n logn)
convex hull algorithm.

Computing the XORed area for evaluating individuals is
the most complex operation in the processing pipeline. Per-
forming polygon intersection operations takes O(n logn +
klogn) time, where the two polygons have n; and n» ver-
tices, n = ny +ne, and k is the complexity of the output [5].
The number of intersection between a concave and convex
polygon is max(2n1, 2n,) [12], and so the overall complex-
ity of intersection is O(n logn).

5. Qualitative Evaluation

The new convexity measure was applied to 250 polygons
from a variety of sources, covering both large and small
shapes (between 200 and 5000 pixels), real and synthetic,
and computation typically took a few seconds. A sample of
the results is shown in figure 4, ranked in order of increas-
ing convexity. The first point is that the results appear intu-
itively perceptually correct. It is also of interest to note that
for polygons consisting of a mainly convex part with intru-
sions then the fitted polygon ) (shown shaded) is roughly
the convex hull of P. Likewise, for polygons consisting
of a mainly convex part with protrusions, () is roughly the
convex skull (i.e. the largest convex subpolygon) of P. Al-
though the concept of the convex skull might be considered
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Figure 4. Some polygons P with their convex-
ity values Cg shown below. P is overlaid on
a filled version of ().

similar to the convex hull, its computation is much more dif-
ficult and expensive — the fastest known algorithm [3] runs
in O(n?) time!

6. Experiments

6.1. Lesions

We demonstrate the convexity measure on a medical im-
age analysis task. Lee et. al [7] presented results for clas-
sifying lesions as either benign or malignant melanomas
based on the irregularity of their boundaries. They had 14
dermatologists rate a set of 40 lesions from a four point
scale according to their probability of being a melanoma.
These ratings were averaged over the 14 experts and then
compared against various shape measures by computing the
Spearman rank correlation between them. Their “overall ir-
regularity index” achieved a correlation value of 0.88 out-
performing the alternative measures they considered. How-
ever, we have found that the standard convexity measure C'
performs just as well. Moreover, applying our new mea-
sures we see that they do substantially better (table 1). It is
interesting to note that in this application intrusions appear
to be substantially more salient than protrusions.
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| c | CQ | CP | Cint, | Cprot |
[0.888 [ 0.952 | 0.959 | 0.952 | 0.745 |

Table 1. Absolute Spearman rank correlation
scores for lesion data.

' 2800

0.860 0.935 0.956 0962 0978
(4.00) (3.57) (2.28) (135)  (1.00)

Figure 5. Examples of lesions with Cy values
and the mean expert score underneath.

6.2. Greebles

Among the 250 polygons tested were 49 “greebles”;
some examples are shown in figure 6. Since the appear-
ance of members within this class is qualitatively similar,
despite their individual differences, their measured shape
attributes should also be similar. C' was compared with Cg
by determining the ranks of the greebles in the set of 250
polygons ordered by each of the convexity measures. The
standard deviation of the greeble ranks was 27.66 for C' and
22.99 for Cg; the lower value demonstrating the improved
stability and consistency of Cyg.

EXRAR |

0.885 0908 0.924 0932 0.937 0971

Figure 6. A selection of greebles covering
their full range of convexity values.

7. Conclusions

A new area-based convexity measure for polygons has
been defined, and a genetic algorithm based solution has
been described to efficiently compute the measure. Com-
pared to the traditional convexity measure it is more robust

!Greebles are a popular source of test objects used in psychology,
e.g. [6]. They are objects synthesised to a standard configuration: a
vertically-oriented body with four protrusions: two “boges”, a “quiff”” and
a “dunth”.

and symmetric, and was shown to outperform it on a med-
ical analysis task involving the estimation of the likelihood
of melanoma from lesion boundaries.
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