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Abstract—The urban transit routing problem (UTRP) involves
finding efficient routes in a public transport system. However,
developing effective heuristics and metaheuristics for the UTRP is
hugely challenging because of the vast search space and multiple
constraints that make even the attainment of feasible results
exceedingly difficult, as the problem size increases. Moreover,
progress with academic research on the UTRP appears to be
seriously hampered by: 1) a lack of benchmark data, and 2) the
complex and diverse range of methods used in the literature
to evaluate solution quality. It is not currently possible for
researchers to effectively compare the performance of their
algorithms with anyone else’s. This paper presents new problem-
specific genetic operators within a multi-objective evolutionary
framework, and furthermore proposes an effective and efficient
heuristic method for seeding the population with feasible route
sets. In addition new data sets are provided and made available
for download, to aid future researchers. Excellent results are
presented for Mandl’s problem, which is currently the only
benchmark available, while the results obtained for the new data
sets provide a challenge for future researchers to beat.

Keywords—Route Planning, Transportation, Heuristics, Multi-
objective optimization, Combinatorial optimization

I. INTRODUCTION

The urban transit network design problem (UTNDP) is
concerned with determining a set of routes and schedules for
an urban public transport system: for buses, trains or trams,
for example. The UTNDP is highly complex. For example,
Cedar and Wilson [1] identify five main stages for bus service
planning: network design (i.e., route planning), frequency
setting (of vehicles on each route), timetable development, bus
scheduling and driver scheduling. Ideally all five stages should
be optimized simultaneously, however this is not practical
given that each stage is NP-hard in its own right [2]. With
concerns about traffic congestion, pollution, greenhouse gas
emissions and dwindling oil resources, it is clearly desirable
to improve the usage of public transit systems throughout the
world, and reduce our reliance on the private car. Although
achieving a major increase in public transit usage is an
extremely complex issue, frequent and reliable cost-effective
services are clearly key attributes.

Historically, route planners have relied predominantly on
past experience, simple guidelines, local knowledge and ad
hoc procedures. In recent years however, several major studies
have recommended that more use should be made of computer-
based tools for designing and evaluating public transit net-
works (for example, [3], [4]). In the present paper we are
concerned principally with route planning (i.e., the urban

transit routing problem, UTRP) which, together with frequency
setting, has been identified by Shih and Mahmassani as being
the most challenging of the stages in the UTNDP [5]. Gener-
ally, route planning involves devising efficient transit routes on
an existing road (or rail) network, usually with pickup/dropoff
points (e.g., bus stops) that are known in advance.

Fig. 1. A route set (top) and a typical travel path (bottom)

A major issue with the UTRP is the vast search space. As
illustrated in Fig. 1, multiple routes effectively introduce new
nodes and edges into the transport network, which has major
computation implications due to the route changes and vehicle
transfers needed to enable some passengers to reach their final
destinations. In Fig. 1 the number of nodes grows from 7 to
10, and the number of edges from 6 to 15. As we consider
larger and larger networks, this effect becomes increasingly
pronounced, as is shown in Table I for the test instances used
in the present paper. (We will return to this issue in Section
III.)

The present author believes that establishing a firm foun-
dation for research on route planning is timely. As recently
pointed out by Bagloee and Ceder [6], many public transit
routing networks have not been reappraised from anywhere
between 20 to 50 years. Land use has changed considerably
in recent years, with retail and commercial units moving



TABLE I. NUMBER OF NODES IN THE ORIGINAL TRANSPORT

GRAPH, VERSUS THE NUMBER OF NODES TAKING ACCOUNT OF

ROUTE CHANGES AND TRANSFER LINKS

Instance Original Nodes Approx. Nodes in Effective Graph

Mandl 15 30
Mumford0 30 102
Mumford1 70 300
Mumford2 110 896
Mumford3 127 1110

increasingly away from town centres and into surrounding
suburban areas, yet public transport systems have been slow
to respond to these changes. Plainly, transport planners could
greatly benefit from new metaheuristic approaches to help
design transit network systems fit for the 21st Century. How-
ever, it would appear that current research in route planning
and related network design problems is seriously hampered
by two specific shortcomings: 1) a lack of benchmark data,
and 2) the diverse and complex variety of schemes reported
for evaluating solution quality. Because of these issues, it is
currently impossible to effectively compare the performance
of the various algorithms that have been developed in recent
years. Presently Mandl’s 15 node Swiss network instance (Fig.
2) is the only published instance that comes with all necessary
information. Furthermore, because most previously published
work has been funded to improve specific real world travel
networks, the procedures used to evaluate the solutions tend
to be highly specific, very complex and impossible to replicate.
More benchmark data sets are urgently needed and “text book”
variants of the UTRP must be established, if a firm foundation
for academic research is to be laid down.
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Fig. 2. Mandl’s problem (top) and a route set with disconnected
components (bottom).

Given that metaheuristic methods typically require (at least)
many thousands of route set evaluations, it can be argued that
the establishment of fast and effective schemes for route set
evaluation is timely. In the present study, a relatively simple
model is used, which seems suitable for testing and comparing
algorithms. It consists of two objectives:

1) average passenger travel time, incorporating in-vehicle
travel time and transfer penalty, and

2) the sum of the lengths of all the transit routes.

Objective 1 is optimized for service level, to ensure that
passengers reach their destinations as quickly as possible.
Objective 2 is a simple sum of the lengths of all the routes in
a route set, measured in travel time. The longer the routes, the
more distance will be covered by the vehicles and the more
vehicles will be needed to maintain a reasonable frequency,
thus a higher cost for the operator. The research described in
the present paper builds on earlier work by Fan and Mumford
[7] for route planning covering a single objective, and work
by Fan, Mumford and Evans [8] on multiple objectives. The
present multi-objective evolutionary algorithm (MOEA) is
more sophisticated and efficient and includes an “intelligent”
genetic crossover and also a repair mechanism to correct
infeasible solutions that do not comply with the problem
constraints, as well as new mutation operators and an effective
mechanism for seeding the population with feasible solutions.
Perhaps the main contribution of this paper however, will prove
to be the new data sets, all based firmly on the characteristics
of some real-world transit networks. All data and results files
can be downloaded [9] to encourage other researchers to try
to improve on our results.

Prior to 1979, the few papers published on the UTNDP
considered only specific problem instances [10], [11]. In 1979,
Christoph Mandl [12], [13] approached the problem in a
rather more generic form. He concentrated on the UTRP, and
developed a two-stage solution; first a feasible set of routes was
generated, then heuristics were applied to improve the quality
of the initial route set. Following Mandl’s pioneering work,
heuristic methods have been widely used to solve the UTNDP,
for example [1], [14]. With the advancement of computing
technology over the last two decades however, metaheuristic
techniques have become increasingly popular for solving these
problems, particularly genetic algorithms [15], [16], [17], [18],
[19]. For other metaheuristic methods, examples can be seen
in [20], [21]. Nevertheless, comparative work is limited to
Mandl’s 15 node instance.

The remainder of this paper, begins with a description
of the UTRP, including the key objectives and constraints
along with the method used here for evaluating candidate
solutions. Next, in Section III the various genetic operators
and heuristics are presented, which are the key contributions
of this paper. These are presented within a simple evolutionary
multi-objective algorithm framework. Following on from this
is Section IV which gives a brief description of the data sets
used. Sections V, VI and VII complete the paper with the ex-
perimental method, results and brief conclusions, respectively.

II. PROBLEM DESCRIPTION

For simplicity, only symmetrical travel networks are con-
sidered here, in which the travel time, distance and demand



between any two nodes is the same regardless of the travel
direction. We define a transport network (e.g., Fig. 2 top) as
an undirected graph where the nodes represent access points
(e.g. bus stops), and the edges represent direct transport links
(i.e, roads) between two access points. We also define a route
network (look back to Fig. 1 top) associated with a given route
set to be the subgraph of the transport network containing
precisely those edges that appear in at least one route of
the route set. Finally, to evaluate a candidate route set, we
construct the associated transit network (Fig. 1 bottom) as
follows: transport edges correspond to transport links between
two nodes on the same route, while transfer edges correspond
to transfers from one route to another.

Constraints: We will assume that there are sufficient
vehicles on each route to ensure that the demand between
every pair of nodes is satisfied, provided the route network
is connected (unlike Fig. 2 bottom). Furthermore, each route
should have a maximum length, based on considerations such
as driver fatigue and the difficulty of maintaining the schedule
[4]. We also define a minimum length, and stipulate that
individual routes should contain no loops or cycles. Our
complete list of constraints is presented below.

1 The route network is connected.
2 No route is longer than a predefined maximum number of

nodes (MAX).
3 No route is shorter that a predefined minimum number of

nodes (MIN ).
4 No route should contain any loops or cycles.
5 The route set will contain exactly r routes, where r is

specified in advance.
6 The demand, travel time and distance matrices are symmet-

rical, and we assume that a vehicle will travel back and
forth along the same route, reversing its direction each time
it reaches a terminal node.

7 The demand level remains the same throughout the period
of study.

8 The transfer penalty (representing the inconvenience of
moving from one vehicle to another) is set at 5 minutes,
in line with previous studies (for example, [5], [16])

9 In our simplified model, we do not consider vehicle fre-
quency/headway, but assume that there are sufficient vehi-
cles and capacity, and total travel time consists only of in
vehicle transit time plus transfer penalties at 5 minutes for
each transfer.

10 Passenger choice of routes is based on shortest travel time.

Evaluation: We consider both passenger cost and op-
erator cost. In general, passengers want to travel to their
destination in the shortest possible time, but avoiding the
inconvenience of making too many transfers. Fig. 1 (bottom)
shows a typical shortest path from node 1 to node 7, α1,7. The
path includes transport links where a passenger is travelling in
a vehicle, and transfer links representing the need to change
vehicles. Fig. 1 (bottom) illustrates two locations for changes
at nodes 2 and 6. The minimum journey time, αod = αod(R),
from any given pair of nodes, o = origin to d = destination,
is thus made up of two components: in vehicle travel time
and transfer penalty. In this study we will assume that the
transfer penalty is a constant (5 minutes), and that passengers
will choose to travel on the shortest-time paths. Let dij denote
the transit demand from node i to node j (defined in terms of
the number of passengers wishing to travel from i to j). We
define the passenger cost for a route set R to be the mean

journey time over all passengers,

CP (R) =

∑n

i,j=1 dijαij(R)
∑n

i,j=1 dij
(1)

where αij is the shortest journey time from i to j using route
set R.

Operator costs depend on many factors, such as the number
of vehicles needed to maintain the required level of service,
the daily distance travelled by the vehicles and the costs of
employing sufficient drivers. We shall use a simple proxy for
operator costs: the sum of the costs (in time) for traversing all
the routes in one direction. We will call this the total route set
length, R(L), defined as:

CO = R(L) =

r∑

a=1

∑

(i,j)∈r

tij(a) (2)

where a is a typical route in R, r = |R| is the number of routes
in the route set, and tij(a) refers to transport link (i, j) ∈ a.
The passenger cost CP (average travel time) and the operator
cost CO (total route length) will be traded off as conflicting
objectives by our multi-objective optimization algorithm.

Other Parameters: In addition to passenger costs CP

and operator costs CO , the following parameters are used to
evaluate some route sets more extensively:

• d0 - Percentage demand satisfied without any transfers.
• d1 - Percentage demand satisfied with one transfer.
• d2 - Percentage demand satisfied with two transfers.

• dun - Percentage demand unsatisfied (we assume that more

than two transfers per journey is unacceptable).

III. HEURISTICS, GENETIC OPERATORS AND THE MOEA
FRAMEWORK

Before the heuristics and genetic operators are presented,
the simple MOEA framework that was used is outlined in
this Section. SEAMO2 [22], [23] is chosen for this work
principally because of its speedy run time and ease of imple-
mentation. SEAMO2 is a steady-state MOEA that uses simple
replacement strategies such that an offspring replaces a weaker
parent in the population, if that offspring dominates it. For this
reason the need for the sophisticated global fitness calculations
or complex dominance rankings typical of other state-of-the-
art MOEAs is avoided. Nevertheless, results produced by
the SEAMO algorithms have proven competitive on several
problems and have the advantage of faster run times (for
example see [24], [25]). Besides the precise choice of MOEA
is not considered important for the purpose of the present
paper, as the focus is on the supporting genetic operators
and construction heuristics that are easily transferable to other
algorithms such as NSGAII. The SEAMO2 framework is
outlined for the UTRP in Fig. 3.

Each individual in the population is selected in turn to
serve as a first parent for crossover. A second parent is then
selected at random (uniformly) from the population (excluding
the first parent), and crossover is applied (explained later). In
our case this is followed by an application of a specialized
repair procedure, which replaces nodes that may be absent
from the route set, having been removed by the crossover



Fig. 3. SEAMO2 AlGORITHM
1: Generate initial population of feasible route sets
2: Calculate passenger and operator costs for each route set
3: Record the best-routeset-so-far for each objective
4: repeat
5: for each individual in the population do
6: This individual is Parent1
7: Select a second individual at random (Parent2)
8: Offspring ← Crossover(Parent1,Parent2)
9: Repair(Offspring)

10: Apply mutation(Offspring)
11: if Offspring is a duplicate then
12: Delete offspring
13: else if Offspring dominates either parent then
14: Offspring replaces the dominated parent, testing Parent 1 first,

then Parent 2
15: else if Offspring dominates either vector containing the best-so-far

objective or Offspring improves on a best-so-far objective then
16: Offspring replaces a parent, ensuring the other best-so-far objec-

tive is not lost
17: else if Offspring and parent(s) are mutually non-dominating then
18: Find an individual in the population that is dominated by the

Offspring and replace it with the Offspring
19: else
20: Delete Offspring
21: until the stopping condition is satisfied
22: print All non-dominated solutions in the final population.

operator. Next, mutation is applied and carefully controlled
to avoid loss of feasibility in the route sets. The two objective
values for passenger cost and operator cost are then computed
for the offspring, and a decision is made as to whether the new
offspring replaces an existing population member. We will now
describe the main operations in more detail.

Generating the initial population (Fig. 3 line 1):
Route set sizes, maximum (MAX) and minimum (MIN )
route lengths and the population size are controlled by the
user. The route generation procedure is designed to encourage
coverage and connectivity of the route network. Within an
individual route set, the routes are produced one at a time,
with nodes added one by one. The initial length of each
route is determined by generating a random integer to give a
length between the MIN and MAX . First a node is randomly
selected to seed route 1. A second node is then selected from
the set of nodes adjacent to the first node in the transport
network. If there is more than one node to choose from, a
random selection is made. Provided the specified route length
is destined to be greater than two nodes, a third node will be
selected as a random unused (to avoid cycles) adjacent node
to the second node, if one exists. If none exist, the route is
reversed and grown in the other direction (if possible). Nodes
are added to the first route in this way, until one (or more)
of the following conditions is met: 1) a situation is reached
where the terminal nodes both have degree 1 in the transport
network; 2) a cycle would be formed if another node was
added; 3) the route length reaches its predetermined value. If
the first route fails to reach its predetermined length, all the
nodes are removed except for the initially selected node, and
another attempt is made to grow the route. This is repeated
until success is achieved.

Once the first route has reached its required length, the
second will then be seeded from a randomly selected node
present in the first route. The second route is then grown
in a similar way as described above until it too reaches its
predetermined length. The third and any subsequent routes will
be seeded by a node used in ANY previously generated routes,
to ensure connectivity. Thus the third route will be seeded

Fig. 4. Generate a routeset
1: {n = number of nodes; r = number of routes, MAX, MIN = maximum,

minimum number of routes in route set, ADJ(i) = adjacency list for
node i in transit network}

2: Initialize set Chosen← ∅ {Nodes used so far in least one route}
3: for count ← 1 to r do
4: Determine the length of current route l at random from ∈

{MIN, ..MAX}
5: if count = 1 then
6: Choose a node, i, at random ∈ {1, .., n} {Seed the first route}
7: Initialize route, route(1)(1) ← i
8: else
9: Choose a node, i, at random ∈ Chosen {Seed the next route,

ensuring connectivity}
10: Chosen← Chosen ∪ {i}
11: Initialize route, route(count)(1) ← i
12: length← 1
13: while {Current route length less than l} AND {route has not been

reversed more than once} do
14: Unused ← ADJ(i) \ route(count){Unused contains nodes

adjacent to i, but currently absent from route(count)}
15: if Unused 6= ∅ then
16: length← length+ 1
17: Select a node, j adjacent to i ∈ Unused at random
18: route(count)(length) ← j {Add it to the end of the current

route}
19: i← j
20: Chosen← Chosen ∪ {j}
21: else
22: Reverse the route, so that i← route(1)
{Finally, if not all nodes are yet present in the routeset, add them here}

23: if |Chosen| < n then
24: Call Repair{routeset, Chosen, n, r, MAX , MIN}
25: if routeset successfully repaired then
26: return routeset feasible
27: else
28: return routeset infeasible

from a node occurring in routes 1 or 2, and the forth route
from any node in routes 1, 2 or 3, etc. After initial seeding,
the selection process favours nodes that have not yet been
included in ANY previously constructed route. Throughout
the construction process loops and cycles are prevented and
connectivity is assured. Nevertheless, the process does not
ensure completeness (all the nodes present), and a final Repair
stage is applied when needed, to add the nodes that are absent.
Repair is also used to replace missing nodes following the
application of crossover. Pseudocode is given for this routine
in Fig. 4.

Calculating passenger and operator costs (Fig. 3 line
2): The evaluation of the passenger costs, CP (R), (i.e., the
average travel time) is the most time consuming part of the
implementation, requiring execution of an all pairs shortest
paths (time complexity O(n3) for n nodes in a network) for
each new candidate route set. It is worth noting at this point
that the size of a transit network (Fig. 1 bottom) will generally
greatly exceed the size of its underlying transport or route
network (Fig. 1 top), as can be observed earlier in the paper
(Table I) and also later on (Table II). The size of a given transit
network can be obtained by adding together all the nodes on
all the routes including duplicates (Fig. 1 top: 2a, 2b, 5a, 5b, 6a
and 6b). For another example, suppose that a transport network
consists of 8 nodes, and the following routes make up a route
set for this network: {1− 2− 3− 4− 5}; {1− 2− 3− 8− 7};
{8 − 7 − 5 − 4} and {6 − 2 − 1}. Although the size of the
transport network is only 8 nodes, the transit network has 5+
5+4+3 = 17 nodes. The passenger costs are evaluated using
the dynamic programming algorithm of Floyd-Warshall [26] to
compute the shortest paths (in terms of travel time) through the
transit network between each pair of points. These travel times



are then weighted according to the level of demand between
each pair of origin/destination points to obtain CP (R).

Crossover (Fig. 3 line 8): Crossover produces an
offspring by selecting approximately half of the routes from
each of its two parents, choosing alternate routes from each
parent in turn, until the required number of routes have been
selected. At each stage, routes are favoured if they contain
nodes that have not been previously included in the offspring
under construction. However, steps are taken to ensure that the
offspring route set will be connected. In more detail, a random
route from the first parent seeds the offspring. Next a route is
chosen from the second parent. However, only those routes
from the second parent with at least one node in common
with the “seed” route are eligible for selection, to ensure
connectivity. From these eligible routes, the route selected will
be the one that has the largest proportion of nodes absent
from the first route. For example, suppose we have an 8 node
transport network, and the first route selected from parent 1
contains nodes 1, 2, 3 and 4. If we are then considering a
route from parent 2 containing nodes 1, 2, 4, 5 and 6, we
note that nodes 1, 2, and 4 are common to the two routes,
making the new route eligible (because the routes have at least
one node in common). However, the route under consideration
also has two nodes, 5 and 6, that are not present in the “seed”
route. Thus, from the total length of the candidate route of
5 nodes, 2 nodes are new, making new node proportion for
this route = 2/5. An eligible route in parent 2 producing the
highest value for this fraction will be selected as the second
route for the offspring. Attention will then revert to parent
1, and a third route selected using newly computed fractions
for the unused routes in parent 1. This time the fraction will
measure the proportion of nodes absent from both the routes
previously selected for the offspring. To ensure connectivity,
though, eligible routes in parent one will have at least one node
in common with at least one route already selected for the
offspring. In the case of a tie (i.e., the new node fractions for
two routes are the same), a random choice is made between the
tied routes. The process is repeated until the required number
of routes is chosen.

Repair (Fig. 3 line 9): The purpose of repair is to
attempt to add any nodes absent from an offspring route
network, following route set generation or crossover. This is
achieved by augmenting the terminal nodes of the initial routes
with nodes currently missing from a route set, where suitable
adjacency relationships exist in the transport network. Routes
are selected one by one at random without replacement from
the route set, and attempts are made to add absent nodes to
the ends of the routes. As many unused nodes as possible
will be added to a selected route, until it is not possible to
add further unused nodes. This will happen if a lack of an
adjacency relationship precludes the addition of further unused
nodes to the ends of the route, or if the route length reaches
MAX nodes. Once all the missing nodes have been added,
the process will terminate. If a route set remains incomplete
following an attempt to augment the first route selected, a
second route will be chosen and an attempt made to augment
it, as before. Routes will continue to be selected in this way,
without replacement, until all the nodes have been added, or
attempts at adding them exhausted. In the latter case, a route set
will be rejected and will not be allowed to enter the population
(observations indicate that this does not occur very often).

Fig. 5. Repair routeset
1: {routeset, Chosen, n, r, MAX , MIN} {Chosen lists nodes used

in routeset}
2: repeat
3: Choose a route at random without replacement
4: if length of this route < MAX then
5: If possible add unused nodes to either end
6: until {|Chosen| = n} OR {|Chosen| < n AND possibilities

exhausted}
7: return routeset

Mutation (Fig. 3 line 10): Initially the mutation used
was based on the Make-Small-Change procedure, described
in and earlier paper [7], which modifies an existing route
set to produce a new feasible route set, either by adding or
deleting a single node to or from one of the routes. However
this approach was found to be ineffective in dealing with
a “bloating” phenomenon intrinsic within the current work.
“Bloating” results from a gradual build up of “extra nodes”
added during the repair process. To counterbalance “bloating”,
a new mutation has been developed.

The new mutation operator calls either add-nodes or del-
nodes routines each with equal probability. At the start of
the routine a random integer I is generated in the range
[1, r ×MAX/2], to select the number of nodes to attempt to
add or remove. The add-nodes procedure attempts to add nodes
to either or both ends of the routes until I nodes have been
added, or it is not possible to add further nodes whilst adhering
to all the constraints. Routes are selected in turn, at random
and without replacement, and as many nodes as possible
are added to the end of each selected route before moving
onto the next route. The delete-nodes procedure proceeds in
a similar way but with as many nodes as possible up to a
maximum of I this time being deleted from the ends of the
routes. Once again, the procedure ensures that no constraint is
violated (i.e., routes must not be reduced beyond the minimum
number of nodes stipulated, only nodes that are duplicated
elsewhere are candidates for removal, and the route set should
remain connected). In extensive tests, the above add and delete
operations have worked well.

IV. THE DATA SETS

Four new instances were created for the present work, three
of which (Mumford1, Mumford2 and Mumford3) are based
on information manually extracted from bus route network
maps for real cities: one in China (Yubei) and two in the
UK (Brighton and Cardiff), respectively. The other instance
(Mumford0), is a smaller network. In addition, Mandl’s 15
city Swiss network [13] is also used here. Features of all
the data sets used in the experiments are outlined in Table
II. For all our data sets the input matrices for both vehicle
travel times and demand are symmetrical. The data sets and
details of how they were generated can be downloaded from
[9], as well as the results files and full definitions of the lower
bounds used in Table II. Lower bounds can be useful for
estimating the solution quality of minimization problems when
true optima are not known. The lower bound for the passenger
cost is computed by simply assuming that each passenger can
travel from source to destination along the shortest path in the
transport network (with no transfers). For the operator cost, a
lower bound is computed on the basis of a minimum spanning
tree of travel times with extra links added to take account of the
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Fig. 6. Transport Networks for our new Data Sets

number of routes in the route set and their minimum lengths.
Careful attention was paid to the generation of links in the
design of our software to ensure that it visually resembles a
real road network. Visual representations of our newly created
data (Mumford0 - Mumford3) are presented in Fig. 6.

V. EXPERIMENTAL METHOD

This paper reports the results from two sets of experiments.
For the first we compare results obtained by the approach
proposed in the present paper with the results reported in [8],
using the same run time parameters (Although many more
generations were used than is strictly necessary to obtain a
good set of results): 10 runs, population of 200, number of
generations 1000, 3000, 4000 and 5000 for 4, 6, 7, and 8
routes respectively. In the second set of experiments we test
the new approach on all our data sets. This time we use sets
of 20 replicate runs on each instance, with a population size
of 200 and 200 generations.

VI. RESULTS

Unfortunately it is not possible to generate meaningful
statistics or quality metrics in this paper, because there are
no published results with which to make statistical compar-
isons. Neither are there any known optimum solutions. One
contribution of this author is a mechanism for producing
lower bounds on the passenger cost, Cp, and operator cost,
Co (see supplementary material, [9]). Looking at the results,
however, the lower bounds for passenger costs would seem
to be better than those computed for operator costs, although
the divergence of the best operator costs away from the
lower bounds could just as easily be explained by a lack of
exploration of the necessary part of the Pareto space.
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Table III shows the best objectives obtained for passen-
gers (Cp) and operators (Co) and the corresponding routes
for Mandl’s Problem using sets of 10 replicate runs of the
SEAMO2 algorithm. These are compared with results from [8],
as explained above. In every case SEAMO2 has obtained better
results for the passenger objectives, although the operator
objective cannot be improved because 63 is equal to the lower
bound for R(L).

Table IV shows the best cost for passengers (Cp) and
operators (Co) extracted from the 20 replicate runs for each
problem instance, along with the computed lower bounds
shown in brackets. Notably, the passenger cost values, Cp are
much closer to their lower bound values than is the case for
the operator costs, Co.

Fig. 7 illustrates the approximate Pareto fronts obtained
from a single run (*) and extracted from the 20 sets of replicate
runs (o) for two of the instances. The solution quality and
spread along the Pareto Front appear to be reasonable for a
single run, when compared to the non-dominated solutions
extracted from all 20 replicate runs.

VII. CONCLUSIONS

This paper has presented some new sophisticated problem-
specific heuristics and genetic operators for the UTRP in a
multi-objective evolutionary framework. The approach bal-
ances user and operator costs. Excellent results have been ob-
tained using Mandl’s benchmark, beating previously published
results for passenger costs and equaling the lower bound for
operator costs. Results are also presented for larger instances
created by the author. The new instances and results files are
all available for download, providing future authors with much
needed benchmarks. To ensure comparability of computational
routines with other authors, sample route sets obtained by
the present evolutionary algorithm are included complete with
respective passenger and operator costs. Furthermore, the test
data is supplied with (x, y) coordinates so the the networks
and route sets can be visualized.

Work is currently underway to introduce additional spe-
cialist heuristics to seed the population, and this is producing
encouraging results, especially for larger instances. In addition,
we are collecting real-world data and experimenting with a
range of metaheuristics in addition to EAs.
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TABLE II. OUR DATA SETS

Instance Nodes and Links Number of Nodes Nodes in typical LBpass (mins) LBop = Minimum
Transport net. Routes /Route Transit net. R(L) (mins)

Mandl 15 & 20 6 2-8 6 ∗ (2 + 8)/2 = 30 10.0058 63
Mumford0 30 & 90 12 2-15 102 13.0121 94
Mumford1 70 & 210 15 10 - 30 300 19.2695 294
Mumford2 110 & 385 56 10 - 22 896 22.1689 749
Mumford3 127 & 425 60 12 - 25 1110 24.7453 928

TABLE III. ROUTES AND BEST PARAMETERS FOR PASSENGERS AND OPERATOR OBTAINED FOR MANDL’S PROBLEM USING THE

SEAMO2 ALGORITHM, COMPARED TO [8] IN BRACKETS.

Number
of Routes

Best Routes
for Passengers

Parameters for
Passenger Routes

Best Routes
for Operators

Parameters for
Operator Routes

4 1-2-3-6-8-10-11-13 Cp = 10.57 (10.65) 9-15 Cp = 13.88 (13.88)
9-15-6-4-12-11-13-14 Co = 149 (126) 1-2-4-5 Co = 63 (63)
14-10-7-15-6-4-2-1 d0 = 90.43 (90.88) 11-10-7-15-8-6-3-2 d0 = 61.08 (61.08)
12-11-10-8-6-4-5-2 d1 = 9.57 (8.35) 14-13-11-12 d1 = 36.61 (36.61)

d2 = 0.00 (0.77) d2 = 2.31 (2.31)
dun = 0.00 (0.00) dun = 0.00 (0.00)

6 1-2-3-6-15-7-10-11 Cp = 10.27 (10.46) 10-11-13 Cp = 13.48 (13.34)
12-11-13-14-10-7-15-9 Co = 221 (148) 1-2-3-6-8-15-7-10 Co = 63 (63)
1-2-5-4-6-8-10-11 d0 = 95.38 (93.19) 5-4-2 d0 = 70.91 (66.09)
1-2-3-6-8-10-13-11 d1 = 4.56 (6.23) 14-13 d1 = 25.50 (30.38)
1-2-4-12-11-10-14-13 d2 = 0.06 (0.58) 12-11 d2 = 2.95 (3.53)
1-2-5-4-6-8-15-7 dun = 0.00 (0.00) 9-15 dun = 0.64 (0.00)

7 1-2-5-4-12-11-10-13 Cp = 10.22 (10.44) 12-11-13 Cp = 14.25 (13.54)
9-15-7-10-14-13-11-12 Co = 264 (166) 14-13 Co = 63 (63)
3-2-5-4-6-8-10-14 d0 = 96.47 (92.55) 5-4 d0 = 65.13 (65.64)
8-10-11-12-4-2-3-6 d1 = 3.34 (6.68) 11-10 d1 = 22.93 (26.20)
1-2-3-6-8-10-11-13 d2 = 0.19 (0.77) 10-7-15-8-6-3-2-1 d2 = 10.34 (8.16)
14-10-7-15-6-3-2-1 dun = 0.00 (0.00) 4-2 dun = 1.61 (0.00)
10-7-15-8-6-4-2-1 9-15

8 1-2-3-6-15-7-10-13 Cp = 10.17 (10.45) 12-11 Cp = 14.45 (13.57)
9-15-8-6-3-2-5-4 Co =291 (245) 5-4 Co = 63 (63)
15-7-10-14-13-11-12-4 d0 = 97.56 (91.33) 13-14 d0 = 57.93 (59.92)
1-2-4-6-8-15-7-10 d1 = 2.31(8.67) 9-15 d1 = 31.92 (21.97)
13-11-10-8-6-3-2-1 d2 = 0.13 (0.00) 1-2 d2 = 9.70 (18.11)
1-2-5-4-12-11-13-14 dun = 0.00 (0.00) 11-13 dun = 0.45 (0.00)
11-13-14-10-8-6-4-5 2-4
9-15-7-10-11-12-4-5 11-10-7-15-8-6-3-2

TABLE IV. BEST COSTS FOR PASSENGERS (Cp) AND OPERATORS (Co) EXTRACTED FROM THE 20 REPLICATE RUNS FOR EACH

PROBLEM INSTANCE. LOWER BOUNDS ARE INCLUDED IN BRACKETS.

Mandl Mumford0 Mumford1 Mumford2 Mumford3

Best Cp 10.33(10.01) 16.05(13.01) 24.79(19.27) 28.65(22.17) 31.44(24.75)
for CO 224 759 2038 5632 6665
passenger d0 94.54 63.20 36.60 30.92 27.46

d1 5.14 35.82 52.42 51.29 50.97
d2 0.32 0.98 10.71 16.36 18.76
dun 0.00 0.00 0.26 1.44 2.81

Best Cp 15.13 32.40 34.69 36.54 36.92
for CO 63(63) 111(94) 568(294) 2244(749) 2830(928)
operator d0 59.34 18.42 16.35 13.76 16.71

d1 30.57 23.40 29.06 27.69 33.69
d2 9.06 20.78 29.93 29.53 29.18
dun 1.03 37.40 24.66 29.02 20.42


