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ABSTRACT

The urban transit routing problem (UTRP) is NP-Hard and involves

devising routes for public transport systems. It is a highly complex

multiply constrained problem and the evaluation of candidate route sets

can prove both time consuming and challenging, with many potential

solutions rejected on the grounds of infeasibility. Due to the problem

difficulty, metaheuristic algorithms are highly suitable, yet the success

of such methods depends heavily on: 1) the quality of the chosen rep-

resentation, 2) the effectiveness of the initialization procedures and 3)

the suitability of the chosen neighbourhood moves.

In our research, we focus on these three issues, and concentrate

on developing a metaheuristic framework for solving the UTRP. Em-

bedding simple metaheuristic algorithms (hill-climbing and simulated

annealing) within this framework, we have beaten previously best pub-

lished results for Mandl’s benchmark problem, which is the only gen-

erally available data set. Due to the lack of “standard models” for the

UTRP, and a shortage of benchmark data it is difficult for researchers

to compare their approaches. Thus we introduce a simplified model

and implement a data set generation program to produce realistic test

data sets much larger than Mandl’s problem. Furthermore, some lower

bounds and necessary constraints of the UTRP are also researched,

which we use to help validate the quality of our results, particularly
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Abstract iv

those obtained for our new data sets. Finally, a multi-objective opti-

mization algorithm is designed to solve our urban transit routing prob-

lem in which the operator’s cost is modelled in addition to passenger

quality of service.
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Chapter 1

INTRODUCTION

1.1 Background

Today, the urban transportation system is a key component of the

social, economic and physical framework of an urban area. With the

development of modern cities, and concerns about pollution and the en-

vironment, the design of urban transportation systems has become an

urgent problem. Urban transportation systems can be divided into two

sub-systems: the public transportation system and the private trans-

portation system [102]. Compared with the public transportation sys-

tem, the private transportation system has many advantages [73]:

• The road network is much better developed (more nodes, more

links) than public transport networks. In particular, fewer nodes

(representing small areas within a city) mean that people using

the public transport (e.g., buses) usually have to walk more than

people using cars.

• Public transport passengers usually have to wait for a vehicle at

the beginning of their trip, and may also have to change vehicles

part way through their journey, which involves more waiting.

• Travelling by a public transportation system can be rather incon-

1



Section 1.1. Background 2

venient compared to a comfortable trip in a car.

However, despite the common perception that the private car is the

faster, more comfortable and convenient option, there are many neg-

ative factors that are increasingly challenging this view. The growth

in the number of private cars on our roads has produced more traffic

congestion, leading to increased travel times within urban areas. Ad-

ditionally, more cars produce more air pollution and noise, and lead to

higher energy consumption and more accidents. The importance of pro-

viding good urban public transport systems is increasingly recognized

throughout the world.

Generally, the public transportation system may include various

modes of service, with buses, trains and underground or metro services

being the best known. Good public transport systems can substantially

reduce the negative effects of the private car network: more people

can be carried with fewer vehicles, which can reduce fuel consumption,

traffic congestion, pollution and accidents. In addition, good public

transport systems can invigorate city centres, eliminating traffic jams

in pedestrian shopping areas, reducing the need for inner city parking,

increasing job opportunities and promoting retail sales. Unfortunately

public transport in the UK and some other countries has suffered under-

funding for many years. As a consequence, many people are reluctant

to give up the comfort and privacy of their own vehicles, and they are

prepared to tolerate traffic congestion and parking difficulties rather

than use a service they perceive as inconvenient or unreliable. In order

to attract more people from their cars, firstly good services need to

be provided and secondly, the public will need to be told about them.

According to [47] poor information and marketing was partly to blame
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for poor patronage following bus deregulation in the UK in 1984.

There is no doubt that bus services form a very important well-

established component of a public transportation system. Essential

features of good customer service include the operation of frequent re-

liable services, that minimize waiting and in-vehicle travel times, and

avoid the need to change vehicles en route where possible. Ideally, a

truly efficient service will satisfy customers needs, while keeping the

operator costs in check, such as the total number of buses, bus running

distances and operation hours [105].

In the UK, it is usually the bus companies that design the precise

bus routes and schedules for an area (a notable exception is London,

where Transport for London determines the routes). However, in some

other parts of the world (for example China) it is customary for local

government to determine the routes and schedules. Clearly, the main

goal for a bus company is to maximize its profits. In contrast, local

authorities will prioritize the needs of the travelling public. Neverthe-

less, local transport policies and regulations must also be observed by

all [102], and a satisfactory service must be provided, otherwise it will

not be used. Furthermore, local authorities are usually accountable to

the local community who provide the funding, and may thus find it hard

to justify maintaining excessively underutilized routes. In addition, all

bus operators have to work within their budgets, and this may impose

certain constraints, such as limiting the number of buses available, or

the number and lengths of bus routes that can be operated. On the

other hand, local authorities have a responsibility to ensure an accept-

able level of customer service, and at the same time limit the negative

effects of operating buses, e.g. strictly controlling exhaust emissions
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from buses. In some parts of the world it is customary for public tran-

sit systems run by the private sector to be subsidized, and even in the

UK a local authority will occasionally subsidize a service on a non-profit

making bus route, to ensure a minimum level of service is maintained

even if demand is fairly low (for example, in some rural areas) [92].

Every so often bus routes and schedules will be reviewed. This may be

initiated by a bus company or local authority. On occasion, the whole

public transport system will be reviewed in an area and costly alter-

ations made, to facilitate the introduction of a new pedestrian precinct,

a one way system or to make way for trams or “bendy buses”. Most

of the time, though, adjustments are likely to be relatively minor, to

accommodate minor changes in levels of demand, or comply with new

government policies or regulations.

Through our review of transit route and schedule design, it is clear

that no common methodology is utilized in practice. As far as we know,

in the early years, route networks and schedules were entirely “hand

crafted”, and most of the development procedures were highly depen-

dent on the transit planners’ experience, judgment and knowledge of

existing demand patterns, land use and resource constraints [37]. These

manual methods cannot solve large network problems efficiently. More

recently, commercial software packages such as VISUM, Emme2/3,

SATURN (Simulation and Assignment of Traffic to Urban Road Net-

works) and Cube Voyager have been developed and widely used in the

transporting planning industry, mostly as interactive tools for decision

support and visualization. Indeed, with the emergence of computing

technology, various heuristic and metaheuristic approaches such as ge-

netic algorithms, simulated annealing and tabu search have been de-
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veloped to solve urban routing and scheduling problems [73–75], [19],

[11–13], [88], [20,21], [106], [38] and [39]. Nevertheless, a good scientific

framework is lacking, and researchers have developed their own (of-

ten very specialized) models to solve specific variations of the problem,

using data that is not generally available. Thus it is very difficult to

evaluate the effectiveness of many of the approaches, or make compar-

isons between them.

1.2 Problem Statement

The problem of designing urban transit routes and schedules, while

adhering to practical constraints, is often referred to in the literature

as the urban transit network design problem (UTNDP). The two ma-

jor components of the UTNDP are the urban transit routing problem

(UTRP) and the urban transit scheduling problem (UTSP) [20]. At

the same time, the UTNDP is an example of a broader class of op-

timization problems: vehicle routing problems (VRPs) (introduced in

Section 2.1).

Generally, the urban transit routing problem (UTRP) involves the

development of efficient transit routes (e.g., bus routes) on an ex-

isting transit network, with predefined pick-up/drop-off points (e.g.,

bus stops). On the other hand, the urban transit scheduling problem

(UTSP) is charged with assigning the schedules for the passenger car-

rying vehicles. In practice, the two phases are usually implemented

sequentially, with the routes determined in advance of the schedules.

The UTNDP must optimize many criteria in order to efficiently

meet the needs of passengers, while at the same time minimizing the

costs to the service provider. From a passenger’s viewpoint, an ideal
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public transport system will provide frequent services and rapid travel

times between source and destination, with a minimum of transfers

between vehicles on the way. Operators, on the other hand, aim to

minimize their costs, yet a low cost option may provide a poor service

to the customer. Operator costs usually depend on the fleet size, transit

vehicle size, transit vehicle miles, and vehicle operation hours required

for a particular route configuration [107]. In addition, there are other

stake-holders involved, including national and local government as well

as taxpayers and local business. While many parties will benefit from

an efficient public transport service, each one will evaluate its service

from their own perspective.

1.2.1 Urban Transit Routing Problem (UTRP)

As mentioned above, the urban transit routing problem (UTRP) in-

volves developing a set of routes for an existing urban transit network,

following certain constraints. It can be defined as the physical design of

the UTNDP [69]. In a transit network, adjacent nodes (e.g., bus stops)

are linked by an arc or edge, and a route will consist of several nodes

connected by edges to form a path. One or more such routes can be

combined to form a route set, and when all the routes in a route set are

superimposed, this will form a route network. A route network should

contain all the nodes, but may not contain all the edges present in the

original transit network - i.e., the route network is a subgraph of the

original transit network. Ideally, the route network subgraph should

be connected, so that there is a path in the route network connecting

every node with every other node, in order to satisfy the travel demand.

Accurate estimates of travel demand are essential, and a good route set



Section 1.2. Problem Statement 7

will ensure that travel requirements with a heavy demand are satisfied,

with short travel paths and few vehicle transfers. This will probably

be at the expense of less popular travel locations, which may be less

well served. Travel demand can be estimated in several ways: for ex-

ample, by examining current ticket sales, carrying out a survey on the

local population, or undertaking a public and private vehicles analy-

sis [14]. On the other hand, such predictions are notoriously difficult in

practice, not least because demand is dynamic and highly sensitive to

factors such as pricing and quality of service (see Section 1.2.3 for more

information). In addition to satisfying customer demand, design guide-

lines are determined by many additional factors, including the street

environment in the local area and the transport management policies

of the local government [33].

In our research we will concentrate on the transit routing problem,

and adopt the criteria set out by Chakroborty [20] and Yu et al. [10]

to define an efficient route set for an urban transit network:

1. The entire transit demand is served, that is, the percentage of

unsatisfied demand is zero;

2. A large percentage of transit demand is served through direct

connections, that is, the percentage of demand satisfied with zero

transfers is high;

3. The average travel time per transit user is as low as possible;

4. High network efficiency, i.e. prioritizing the layout of those transit

routes with the highest demand.

At the same time, real world constraints have to be satisfied. It is

usual, for example, for planners to set maximum and minimum route
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lengths, to aid bus schedule adherence [107]. In addition, in order

to simplify the UTRP we will adopt the following constraints in our

research:

• A pre-defined number of routes in the route set.

• No cycles or backtracks will be allowed in individual routes.

1.2.2 Urban Transit Scheduling Problem (UTSP)

The urban transit scheduling problem (UTSP) aims to develop sched-

ules for public vehicles (e.g., buses), to travel along predefined routes.

More specifically, it involves defining arrival times and departure times

at each node on each route in the route set. It can also be defined as the

operational design of the UTNDP [69]. A good schedule will minimize

the time that a passenger has to wait at each node (bus stop) within

the operating resource and service constraints. The total waiting time

accumulated over all passengers has two components [20]:

1. The total initial waiting time of passengers — the sum of the

waiting times of all passengers at their points of origin;

2. The total transfer waiting time — the sum of the transfer times

of all transferring passengers.

In addition, the resource and service constraints may include [20]:

• Limited fleet size — only a fixed number of buses are available

for operating on the different routes.

• Limited bus capacity — each bus has a finite capacity.

• Maximum and minimum stopping time — buses should not stay

at stops for very short or very long times.
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• Policy headway — on a given route, a minimum frequency level

needs to be maintained.

• Maximum and minimum transfer time — no passenger should

have to wait too long for a transfer.

In addition, transfers play a significant role in the transit operations,

therefore some research has been carried out on the transit route trans-

fer coordination problem. Transit route transfer coordination forms

part of the transit scheduling problem in the daily transit system. Ba-

sically it is a function of two decision variables, namely the common

headway of the connecting vehicles (i.e., the time between two vehi-

cles passing the same point travelling in the same direction on a given

route), and the slack times (bus holding times at the transfer stops)

added to their schedule to increase the probability of a successful con-

nection [27]. An increase in the common headway, for instance will

result in longer waiting times for non-transfer passengers waiting at

the stop and higher passengers volumes and consequently longer stop-

page time and longer overall travel time. If the common headway is

decreased, the waiting time times will be reduced but the operator costs

will increase due to the increase in the operational fleet size. For the

slack times, an increase in the slack time will increase the probability of

a successful connection and will minimize the transfer time but at the

same time will increase the stopping time and the overall travel time

of the in-vehicle passengers and will also increase the operator’s costs.

1.2.3 Difficulties in Solving the UTNDP

The urban transit network design problem (UTNDP) is a very chal-

lenging problem:



Section 1.2. Problem Statement 10

1. Due to the need to search for optimal solutions from a large num-

ber of possible solutions, the UTNDP is an NP-hard problem.

The term “NP-hard” (nondeterministic polynomial-time hard),

in computational complexity theory, is a class of problems infor-

mally “at least as hard as the hardest problems in NP” [45].

2. There are so many variants on the UTNDP, and no commonly

agreed “standard models”.

3. Constraints of the UTNDP can be difficult to model and satisfy.

For example, in the transit routing problem, the feasibility of the

route set (i.e., whether the route network is connected) needs to

be ensured, which can involve considerable computation.

4. Different parts of the solution are highly interdependent. For

instance, in the UTRP, the transit routes cannot be evaluated in

isolation. The performance of a route is dependent on the other

routes in the route set. In other words, the entire route set needs

to be evaluated as a whole.

5. Many important tradeoffs among conflicting objectives need to

be addressed, making the UTNDP an inherently multi-objective

problem [37]. For example, minimization of operator costs, max-

imization of coverage of transit service area and service hours,

and minimization of the number of transfers, are objectives that

can conflict with each other, since increasing the transit service

coverage area or reducing passengers’ transfers will increase the

operator costs.

6. Accurate data for designing route sets can be difficult to obtain
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- particularly travel demand, as previously mentioned. For this

reason, designs will be seriously flawed if the data is of poor qual-

ity, no matter how good the optimization techniques. In reality,

the demand is quite different at every hour of the day, and this

can make the problem enormously more complex [31]. In addi-

tion, passengers could become confused and dissatisfied with too

many changes to travel routes at different times of day.

Ideally one would like to solve the UTNDP in one go, and produce

a route network and an associated set of vehicle frequencies simulta-

neously. In practice, the nature of a route network means that, once

established it is much more stable and difficult to change than a vehi-

cle schedule. As mentioned above, travel demand varies considerably

at different times of the day, and it is relatively easy to schedule more

buses at busy times. According to [10], the level of service require-

ment is highly sensitive to factors such as passenger flow, weather and

road conditions, and needs to be adjusted in accordance with the dif-

ferent situations. Therefore, the quality of the network design may be

adversely influenced if transit route network and frequencies are simul-

taneously optimized. We take the same view and tackle the UTRP as

a strategic problem, dealing with averaged demands.

1.3 Research Statement

Through our review of research on the UTNDP, we note that most

researchers have focussed on specific real world instances, each one

requiring a highly specialized model to comply with specific local regu-

lations and conditions (for example, see [88], [107], [94], [57] and [38]).

While good solutions to real-world instances are obviously the ultimate
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goal, more generic (often simplified) models are required to gain in-

sight into a problem at a scientific level, and to make it possible to

compare different methodologies for optimization. These models are

in short supply in the literature. Furthermore, the data used by most

researchers is not generally available to others. Only one small network

of 15 nodes (Mandl’s network, see below) seems have been used by a

few researchers to make comparisons.

For the reasons stated above, we believe that establishing a more

generic framework for basic research into the UTNDP is timely. We are

fortunate that a limited number of researchers, such as Mandl [73–75],

Baaj and Mahmassani [12], Kidwai [64] and Chakroborty [21], have

already laid the foundations for a more fundamental approach to the

problem. In our research we concentrate on the UTRP and build on

the work of these earlier authors. Our main research contributions are

summarized below:

• A simplified model of the UTRP, building on the work of Mandl

etc., but applying a different objective function that explicitly

penalizes the number of times a passenger changes vehicles in

addition to minimizing the total travel time.

• A basic metaheuristic framework, focussing on four key compo-

nents of the UTRP: 1) representation, 2) initialization 3) neigh-

borhood moves and 4) feasibility checks. Further, we have imple-

mented hill-climbing and simulated annealing within our frame-

work, and applying this to our simple model we have beaten some

previously best published results for Mandl’s 15 node problem,

using common assessment criteria to compare our results with
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others. Our results have been published in an international jour-

nal (reference to JOH paper).

• Software for generating new test instances has been built, match-

ing user requirements, and using the principle of minimum span-

ning trees to ensure connectedness. From this software, we have

generated a new suite of test problems, of various sizes, with re-

alistic properties (informed by our study of some real bus route

networks).

• We have demonstrated the scalability of our metaheuristic ap-

proach using instances from our test suite.

• We have established good lower bounds to make it possible to ef-

fectively assess the quality of the solutions obtained by our meta-

heuristic approach on our test suite instances.

• Given the ease with which infeasible solutions are generated by

“random” methods, especially as the problem size increases, we

have demonstrated that our procedures “scale up” by recording

the ratio of feasible/infeasible solutions that are generated by our

methods.

• In addition, some important relationships are investigated, such

as the number of routes in a route set, in relation to the maximum

and minimum numbers of nodes in each route.

• Finally, a prototype multi-objective optimization algorithm is im-

plemented, in which the operator’s cost and the passenger quality

of service are both considered.
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We have noted that many key publications in the literature lack

important detail regarding vital procedures that they rely on in their

optimization processes. For example, in Chakroborty’s papers [20, 21]

details of his “external procedure” ensuring the feasibility of route sets

have not been given. In contrast, we will state the precise details of

all the processes we use in our research, to ensure our experiments are

repeatable. A further limitation of many previous works is, in our view,

their reliance on shortest path algorithms to optimize individual routes

(for example, see [88], [94] and [57]). We believe (like Chakroborty

[20,21,81]) that it is better to allow a heuristic or metaheuristic method

determine the routes, as a shortest path may be inefficient if there is

low demand between its terminal vertices.

Throughout our research we will evaluate our work against the fol-

lowing criteria, wherever possible;

• Solution quality - using common assessment criteria to compare

our results with previously published results on Mandl’s bench-

mark, and also ensuring that the techniques “scale up” by assess-

ing results for larger data sets against lower bounds.

• Efficiency - we will record run times, and address the scalability

issue and the limitations of the current approach in Chapter 6.

• Robustness - To demonstrate reliability, we will carry out 10 repli-

cate runs per experiment, recording average, best and standard

deviation. We will also ensure that our main routines “scale

up” by recording % feasible/infeasible route sets generated for

instances of various sizes.

The main purpose of our research is to explore and better under-
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stand the underlying scientific concepts involved in the URTP. For this

reason, we simplify the UTRP so that the differences between our model

and realistic problems will inevitably exist. Firstly as mentioned be-

fore, travel demand is a key variable in the UTRP. However, detailed

investigations into measuring and predicting travel demand is an enor-

mously complex research problem in its own right, and is beyond the

scope of this thesis. Demand values are all provided for Mandl’s in-

stance [reference], and in the case of our generated instances, we use

randomized demand from a uniform distribution, imposing upper and

lower bounds. It is worth mentioning that absolute values for demand

are not important for our model - it is the only the relative values

that influence the quality of the solution. Clearly temporal variations

in demand are important in practice. Yet, bus routes tend to result

from strategic planning, with variations in demand largely catered for

by scheduling more or less vehicles at different times of the day, rather

than implementing a modified route set for busy or slack periods. Nev-

ertheless, our techniques are capable of providing modified route sets if

required, simply by rerunning with different demand data.

Another important practical issue is the consideration of the geo-

graphical regions in which people live, work and shop, etc.. For ex-

ample, in some areas city planners stipulate that a bus stop must be

positioned where local people reach it within 10 minutes by walking [92].

Basing travel demand on geographical regions is common practice when

undertaking surveys of the local population. Clearly, if more realistic

travel demand can be provided in our research, better solutions can be

obtained using our approaches.
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1.4 Organization

This thesis is divided into six chapters. In the present chapter, we have

introduced the UTNDP and described some of the difficulties in solv-

ing it. We then outlined our research and summarized the motivation

for the work. Chapter 2 presents a comprehensive literature review of

previous approaches to solve the UTNDP, such as manual approaches,

mathematical approaches, and heuristic and metaheuristic methods.

Furthermore, we put our research in context with some related prob-

lems, including various vehicle routing problems. In addition, we in-

troduce the software tools widely used today in transportation plan-

ning. Chapter 3 presents our simple model of the UTRP and describes

our data set generation method and our test set of problem instances.

Moreover, a lower bound is introduced, against which we later eval-

uate the results obtained using our metaheuristic approach. Finally,

necessary constraints for the UTRP are also discussed. In Chapter

4 we introduce our metaheuristic framework. Hill-climbing and sim-

ulated annealing are each tried within the framework and the results

compared. Finally, our results are evaluated against state-of-the-art al-

gorithms from the literature. Chapter 5 introduces an improved route

set initialization procedure and a simple multi-objective optimization

algorithm for the UTRP, including two objectives, namely, passengers’

costs and operators’ costs. Finally, Chapter 6 summarizes the general

conclusions from the study and provides recommendations for future

work.
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1.5 Summary

This chapter has introduced the background and definition of the urban

transit network design problem (UTNDP), and the difficulties of solving

it. Furthermore, our research statement has been presented and the

structure of the thesis has been described.



Chapter 2

LITERATURE REVIEW

In this chapter we first put the UTNDP in context with other vehi-

cle routing problems. Next, many approaches used to solve the urban

transit network design problem (UTNDP) are summarized, focussing

particularly on the urban transit routing problem (UTRP). In addi-

tion, software tools popularly used in transportation planning are also

introduced. Therefore, the literature review will be carried out under

six headings:

1. Vehicle routing problems;

2. Manual approaches using service standards and practical guide-

lines;

3. Mathematical approaches;

4. Heuristic approaches;

5. Metaheuristic approaches;

6. Commercial software packages in transport planning.

First we survey vehicle routing problems and put the UTNDP in

context. For the manual approaches, common guidelines adopted in

public transport planning are reviewed and summarized. Next, we sur-

vey key research on mathematical approaches and heuristic approaches

18
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for the UTNDP, and this is followed by an overview of important meta-

heuristic techniques that have been applied to the problem, such as

genetic algorithms, simulated annealing and tabu search. In addition,

formulations of the UTNDP, objectives and feasible constraints in these

works are also reviewed. Finally, commercial software packages pop-

ularly used in today’s transport planning industry such as VISUM,

Emme2/3, SATURN and Cube Voyager are briefly introduced.

2.1 Vehicle Routing Problems

The urban transit routing problem is an example of broader class of

problems called vehicle routing problems (VRPs). However, it is not

so clearly defined as most other VRPs, and differs insofar as solutions

to the UTRP tend to involve long-term strategic planning based on es-

timated demand, while most other vehicle routing problems are solved

on a daily basis to satisfy known demands. Routes for buses and trains

often remain unchanged for decades. Logistics companies, on the other

hand, may deliver to different customers every day and thus need to

travel by different routes. Nevertheless, there is some commonality,

as all vehicle routing problems involve determining a set of routes for

a fleet of vehicles based at one or more depots for a number of geo-

graphically dispersed cities or customers [85]. The main objective of

“standard” VRPs is to make deliveries to (or pick ups from) a set of

customers with known demands on minimum-cost vehicle routes origi-

nating and terminating at one or more depots. The VRP is NP-hard,

and many variations exist. Some of these are summarized below [95]:

• The capacitated Vehicle Routing Problem (with or without Time

Windows): CVRP or CVRPTW. Goods are delivered to a number
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of customers using homogeneous vehicles with limited carrying

capacity.

• Multiple Depot Vehicle Routing Problem (MDVRP): The vendor

uses many depots to supply the customers.

• Vehicle Routing Problem with Pickup and Delivery (with or with-

out Time Windows) (VRPPD): A number of goods need to be

moved from certain pickup locations to other delivery locations.

The goal is to find optimal routes for a fleet of vehicles to visit

the pick-up and drop-off locations.

• The Dial-a-Ride Problem (DARP) consists of designing vehicle

routes and schedules for users who specify pick-up and drop-off

requests between origins and destinations. The aim is to plan a

set of minimum cost vehicle routes capable of accommodating as

many users as possible, under a set of constraints.

• Split Delivery Vehicle Routing Problem (SDVRP): Individual cus-

tomers may be served by more than one vehicle.

• Arc Routing Problems (ARPs) are a special kind of vehicle rout-

ing problem in which the vehicles are constrained to traverse cer-

tain arcs, rather than visit certain nodes as in the standard VRP.

Typically, the arcs represent streets which require some kind of

treatment or service. Examples include the Chinese Postman

Problem, the Rural Postman Problem, garbage collection, winter

gritting and street cleaning.

• Stochastic Vehicle Routing Problem (SVRP): Some values (like

the number of customers, theirs demands, serve time or travel
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time) are unpredictable.

Over the years, many techniques have been developed to solve vehi-

cle routing problems. For example, exact approaches (e.g., Branch and

Bound [40] and Branch and Cut [15]), heuristics approaches (e.g., these

can be seen in the work of Clarke and Wright [23], Gillet and Miller [46]

and Fisher and Jaikumar [41], etc.), metaheuristics approaches such as

simulated annealing, genetic algorithms and tabu search (e.g., these

can be seen in the work of Arbelaitz et al. [79], Czech and Czarnas [26],

Jih and Hsu [60], Tan et al. [63], Toth and Vigo [96] and Amberg et

al. [5], etc.) and multi-objective approaches (e.g., these can be seen in

the work of tan et al. [62] and Saadah and Paechter [87], etc.).

In the current research on the VRPs, some benchmark data are

available for researchers, these can be seen in some websites, such as

TSPLIB and OR-Library. However, for the UTNDP, Mandl’s network

seems the only benchmark instance popularly used by researchers.

The Dial-a-Ride Problem (DARP) has some similarities with the

UTNDP, insofar as passengers embark at the start of their journey

and and alight at the end. However, the DARP operates to fulfil the

precise needs of individual travellers on a day to day basis. Because of

the unique nature of the UTNDP, specific algorithms designed for other

VRPs are not generally useful for UTNDP. However, broad classes of

approaches, such as mathematical, heuristic and metaheuristic methods

(described above) have been applied equally to the UTNDP and other

VRPs, and these are introduced in the following sections.
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2.2 Manual Approaches to the UTNDP

For many years transport planners devised reasonable bus route net-

works and schedules entirely manually, relying on past experience, fol-

lowing practical guidelines and utilizing local knowledge. Regarding

service patterns and service levels, important practical guidelines in-

clude service area and route coverage, route structure and spacing,

route directness, route length, service period, policy headway and road

speeds, etc. [80]. A summary of these planning guidelines is presented

below:

• Service area and route coverage is usually defined by the local

authorities, and the public transport system should serve major

employment concentrations, schools and hospitals. Besides, the

transit route set has to cover areas of high density population [72].

• For route structure and spacing, the transit routes must fit into

major streets and comply with the land use patterns in the local

area. On the other hand, the urban development goals of the

local government need to be met in the design process [103].

• For route directness, usually routes should avoid circuitous rout-

ing and should be not be significantly longer than could be achieved

by car [80].

• The length of the route should be as short as possible to serve their

markets; excessively long routes should be avoided. Long routes

require more travel time because of the difficulty in maintaining

reliable schedules [80].

• For the service period, different countries have different criteria.
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For example, in the UK buses usually operate between 5 a.m. and

12 p.m. on weekdays and between 7 a.m. and 10 p.m. at week-

ends [29]. However, in the USA buses tend to operate between 6

a.m. and 12 p.m. on weekdays and between 7 a.m. and 7 p.m.

at weekends [80].

• Policy headway is the minimum frequency level that needs to be

maintained on a bus route [20].

• For road speeds, they are determined in different areas accord-

ing to different situations. For example, in the UK bus speed is

usually not allowed to exceed 30 mph in urban areas [29], but

in the USA bus speed is between 10 mph and 12 mph in urban

areas [80].

• In addition, all transit routes need to be designed and operated

in a safe manner [7]. The negative effects on the urban environ-

ment such as car pollution emission and noise pollution must be

controlled [51].

Historically, transit planners have done a reasonable job without the

aid of scientific tools or systematic procedures, just using their experi-

ence and professional judgement, while adhering to planning guidelines.

However, as pointed out in [107], for a really large network it is almost

impossible to design an efficient transit route network configuration and

bus schedules relying only on past experience and guidelines: in a large

urban area the number of bus routes may be over a hundred and the

number of bus stops in the thousands, for example. In order to over-

come this problem, research efforts have increased in recent decades,

coinciding with developments in information and computer technology.
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2.3 Mathematical Approaches to the UTNDP

In 1980, Scheele [89] dealt with the UTNDP using mathematical re-

sources. A nonlinear model was proposed with the objective of mini-

mizing the total passenger travel time, including the passenger travel

in-vehicle time and the transfer time. At the same time, the passenger

trip assignment was solved simultaneously with setting the frequen-

cies. Furth and Wilson [43] in 1982 presented another mathematical

method for the UTNDP. The objective was to maximize the network

social benefit, consisting of the passenger’s benefit (reducing the pas-

senger’s travel time) and waiting saving. Constraints were imposed on

the fleet size, maximum headway and total budget. The problem was

solved through an algorithm using the Kuhn-Tucker conditions on a

relaxation of a nonlinear program, where the maximum headway and

fleet size constraints were relaxed. The result was an optimal allocation

of buses to routes. In a later study, in 1985 Koutsopoulos et al. [53]

also proposed a mathematical modelling and resolution method for a

simplified UNTDP. Passengers waiting time costs, operating costs and

vehicle crowding costs constituted the objective function to minimize.

More recently, in 1995 Constantin and Florian [25] presented a

model and resolution method for the UTNDP with the goal to min-

imize the passengers total expected travel and waiting time under fleet

size constraints. A nonlinear nonconvex mixed integer programming

model was formulated. A projected sub-gradient algorithm was then

used to find optimal bus route frequencies considering the passenger’s

route choices. In 1998, Bussieck [18] also proposed mathematical mod-

els to create routes and frequencies that can more generally be applied

to the mass transit system. In the first part, the objective consisted
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of maximizing the number of direct passengers under resource-related

constraints. In the second part, he sought to minimize the operator’s

costs with respect to a given level of service and quality. Mathematical

programming methods such as relaxation and branch-and-bound were

applied in combination with commercial solvers. In a complementary

manner, Wan and Lo [99] in 2003 studied the problem of modifying the

structure of an existing transit network. A mixed integer formulation

was proposed and linearized so it can be solved by commercial solvers

on small size instances.

Although some mathematical approaches have been used to solved

the UTNDP, they tend to be limited in scope. The UTNDP is NP-

hard [107], thus exact methods can be considered only for small in-

stances. Further, as a constrained nonlinear optimization problem,

traditional mathematical methods have difficulty solving the UTNDP

and have to rely on successive linearizations, which add significantly

to the computation burden [20]. In addition, mathematical methods

cannot incorporate some external procedure-based declarations in the

optimization process [20].

2.4 Heuristic Developments to the UTNDP

Heuristic methods are based upon intelligent search strategies for com-

puter problem solving, using several alternative approaches [61]. Heuris-

tics are typically used when there is no known exact method, or when

it is prudent to give up searching for the optimal solution in favour

of an improvement in run time [9]. As the UTNDP is an NP-hard

combinatorial problem, heuristic methods seem appropriate for solving

it.
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Despite the enormous practical importance of the UTNDP, very lit-

tle research appears to have been published prior to 1979. A few papers

studied some operational research approaches to very specific instances.

For example, Lampkin and Saalmans [68] in 1967 proposed an opti-

mization model to design a transit network in an attempt to transport

a maximum number of passengers, given a fixed travel demand ma-

trix. In their approach, they considered trips without transfers first,

and then assigned frequencies to the generated set of routes in a second

stage. In 1974, Silmman el al. [67] also presented a two-staged approach

to minimize the sum of journey times, accumulated over the total de-

mand. However, their model was a little more sophisticated than that

of Lampkin and Saalmans and included transfer time between vehicles

and incorporated penalties to take account of passengers who could

not find seats. Firstly, the candidate route set was established through

several repetitions of a route addition and deletion process. Secondly,

the frequencies were decided for the route set, constrained by a given

number of available buses.

In 1979, the pioneering researcher Christoph Mandl [73–75] started

to tackle the problem in a more generic form, and implemented his

optimization techniques on a computer. Indeed, his common-sense ac-

count of the UTNDP in [73] makes remarkably contemporary reading,

despite its early publication date. Mandl concentrated on the UTRP,

and developed a solution in two stages: first, a feasible set of routes

was generated, and then heuristics were applied to improve the qual-

ity of the initial route set. The route generation phase involved first

computing shortest paths between all pairs of vertices by Dijkstra’s

algorithm [30] or Floyd’s algorithm [42], and then seeding the route
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set with those shortest paths that contained the most nodes, respect-

ing the position of any nodes designated as terminals. Unserved nodes

were then iteratively incorporated into routes in the most favourable

way, or new routes created with unserved nodes as route terminals. In

this first phase, Mandl considered only in-vehicle travel costs when as-

sessing route quality. He went on to suggest several heuristic methods

whereby improvements could be made to an initial route set, and used

these in his second phase:

• Obtaining new routes by exchanging parts of routes at an inter-

section node;

• Including a node that is close to a route, if travel demand between

this node and the nodes on the route is high;

• Excluding a node from a route that is already served by another

route, if the travel demand between this node and the other nodes

on the route is low.

In this second phase waiting costs were considered, in addition to

in-vehicle travel costs. Waiting times were fixed at constant values,

according to specified vehicle frequencies.

The above mentioned shortest path algorithms are very useful com-

ponents in solving the UTNDP. Dijkstra’s algorithm [30] works by vis-

iting vertices in the graph starting with the object’s starting point. It

then repeatedly examines the closest not-yet-examined vertex, adding

it to the set of vertices to be examined. It expands outwards from the

starting point until it reaches the goal. Dijkstra’s algorithm is guaran-

teed to find a shortest path from the starting point to the goal, as long

as none of the edges have a negative cost. Floyd’s algorithm [42] works
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by looking for all non-direct paths between two vertices that have a

less-expensive total cost than the best way yet found to move between

said vertices. If such a path is found, it becomes the value against

which future indirect paths between these vertices are tested. In the

end, each element of the matrix represents the lowest-cost traversal be-

tween the vertices that its row and column represent. According to

Van Vliet’s [98]: for networks with more than 75 nodes the algorithm

of Dijkstra is the fastest for computing shortest paths, while for net-

works with less than 75 nodes, Floyd’s algorithm performs better. As

researchers prefer to use methods that scale to solve large problems,

Dijkstra’s algorithm would appear to be the more suitable for solving

the UTNDP.

Furthermore, Dijkstra’s shortest path algorithm has also been im-

proved by many researchers and specially tailored for transit route net-

works. For example, Wang and Li [101] in 2004 and Wang [100] in 2005

proposed best-routing algorithms by integrating a routine for finding

the least transfers between two nodes in the network into Dijkstra’s

shortest path algorithm, in order to find a best path while considering

the path length and the number of transfers simultaneously.

In 1981, Hasselstrom [52] tried to design a set of optimal bus routes

and frequencies simultaneously. Firstly he employed a complex two-

level optimization model to generate routes by assigning desired trips

onto a network with all possible transit links, then he used certain crite-

ria to form routes. A direct model was also used to estimate a demand

matrix that could provide a service of high quality throughout the area.

Note that the disadvantage of the models presented in this work was

that although the bus routes and frequencies were determined simulta-
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neously, two different optimization problems had to be formulated.

Ceder and Wilson [19] in 1986 and Israeli and Ceder [56] in 1989

published models for simultaneously solving the transit route design

and scheduling problems. Appreciating the enormous complexity of

real-world problems, they took a modular approach in an attempt to

break down the problem into manageable and interrelated components.

They considered multiple constraints and multiple objectives. However,

their models were not implemented and only the simpler steps were

tested on very small instances. More details of these models are given

below.

First, the 1986 model [19] focussed on two routines for generating

and testing candidate route sets: Level I considered only the passen-

ger’s viewpoint, and was aimed at minimizing the total travel time,

while Level II considered both passengers’ and operator’s viewpoint,

and balanced travel time and waiting time with the number of vehi-

cles required. Vehicle frequencies and timetables were also set at Level

II. The general idea of the route construction algorithms was to start

from the terminal nodes having the largest demand and expand the

routes incrementally by including more nodes. Ceder with Israeli [56]

in their 1989 paper, introduced a much more complex seven-stage sys-

tem. It included several steps to create routes, identify transfers, and

calculate frequencies. Finally, various objectives such as travel time,

waiting time, empty space and fleet size were identified as a set of

multi-objective tradeoff solutions to be presented to a human decision

maker.

More recently Baaj and Mahmassani [11–13] described an artificial

intelligence-based solution approach including three major components.
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Firstly, they implemented a heuristic route generation algorithm for the

route network design. Generally it determined an initial set of skeletons

and expanded them to form transit routes, which heavily depend on the

travel demand matrix. In this algorithm, the designer’s knowledge and

experience were also used to reduce the search space. Secondly, an

analytic procedure (TRUST) is used to compute an array of network-

level, route-level, and node-level descriptors, as well as the frequencies

of buses on all routes needed to maintain load factors under a predefined

maximum. Thirdly, a route improvement algorithm is used to obtain

feasible route networks.

Shih and Mahmassani [77, 90] also proposed a similar approach to

that of Baaj, in which an artificial intelligence-based search approach

guided by expert knowledge was used to solve the UTNDP. The ap-

proach consists of four components: a route generation procedure, a

network evaluation procedure, a transit centre selection procedure and

a network improvement procedure. Compared with Baaj’s work, Shih’s

work incorporated three additional service concepts including route co-

ordination, variable vehicle size, and a demand responsive service to

solve the UTNDP, making the method more practical.

2.5 Metaheuristic Approaches to the UTNDP

A metaheuristic is a heuristic method for solving a very general class

of computational problems by combining user-given procedures (usu-

ally heuristics themselves) in the hope of obtaining a more efficient or

more robust procedure [49]. Some characteristics of metaheuristics are

summarized as follows [49]:

• Metaheuristics are strategies that guide the search process.
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• Metaheuristic algorithms are usually non-deterministic.

• The basic concepts of metaheuristics permit an abstract level de-

scription.

• Metaheuristics are not problem-specific.

• Metaheuristics make use of domain-specific knowledge controlled

by the upper level strategy.

Generally, metaheuristics encompass and combine constructive meth-

ods (e.g., random, heuristic, adaptive, etc.), local search-based methods

(e.g., tabu search, simulated annealing, iterated local search, etc.) and

population-based methods (e.g., evolutionary algorithms, ant colony

optimization, scatter search, etc.) [16]. At the same time, they have

most frequently applied to combinatorial optimization problems and

constraint satisfaction problems [58]. Hence metaheuristic approaches

such as genetic algorithms, simulated annealing, tabu search and ant

colony algorithm have all played important roles in recent research on

the UTNDP.

2.5.1 Evolutionary Algorithms for the UTNDP

Genetic algorithms are particularly popular, and several researchers

have used them to solve the UTNDP. Genetic algorithms are search

algorithms that are based on concepts of natural selection and genet-

ics [54]. A genetic algorithm is a local search algorithm, which starts

with an initial collection of strings (a population) representing possi-

ble solutions to the problem in hand. Each string of the population

is called a chromosome, and has associated with it a value called a

fitness function. Offspring are created from members of the initial
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and subsequent populations by processes of selection and reproduc-

tion, with genetic operators, such as crossover and mutation, ensuring

that offspring are similar to yet subtly different from their parents. The

purpose of the reproduction operator is to make more copies of fitter

(better) individuals in a new population. In the crossover operation,

a recombination process creates different individuals in the successive

generation by combining material from two individuals of the previous

generation [50]. Mutation adds new information in a random way to

the genetic search process and ultimately helps to avoid getting trapped

at local optima [50]. An individual position in a chromosome is called

a gene. The genetic algorithm method differs from most other search

methods in that it searches among a population of points and works

with codings of a parameter set, rather than with the parameter values

themselves [50]. Because of these features, genetic algorithms are being

used as general purpose optimization algorithms. The basic structure

of the genetic algorithm is illustrated as follows (see Algorithm 1):

Algorithm 1 A Generic Genetic Algorithm (GA)

Generate N random strings {N is the population size}
Evaluate and store the fitness of each string
repeat

for i = 1 to N/2 do
Select a pair of parents at random {The selection probability is
in direct proportion to the fitness}
Apply crossover with probability pc to produce two offspring
if no crossover takes place then

Form two offspring that are exact copies of their parents
Mutate the two offspring at a rate of pm at each locus
Evaluate and store the fitness for the two offspring

Replace the current population with the new population
until stopping condition satisfied

Generally, the most important characteristic of genetic algorithms

is the coding of variables that describe the problem efficiently.
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In 1998, Pattnaik et al. [88] formulated the UTNDP with fixed tran-

sit demand as an optimization problem for minimizing the overall cost,

composed of the user cost plus the operator cost. The user cost in-

cluded components for the in-vehicle time, waiting time and also a

transfer penalty, and the operator’s cost was determined from the total

bus running distance. Feasibility constraints consisted of minimum and

maximum length of routes and bus frequencies, maximum load factor,

allowable fleet size, etc. In the paper Pattnaik et al. used a genetic

algorithm to determine the transit route network and associated fre-

quencies simultaneously, based on their model. Firstly, they used a

candidate route set generation algorithm (CRGA) to produce a set of

candidate routes. The routes selected by the CRGA were heavily influ-

enced by the demand matrix, the constraints for routes and the shortest

path computations (here the Dijakstra’s shortest path algorithm was

used). Secondly, these candidate routes were listed and labelled. Next,

a unique binary number was associated with every route in the list, and

a predetermined number of the routes was then selected, at random, to

form each chromosome (or string). On the chromosome binary codes

for the selected routes were placed end-to-end. Sufficient chromosomes

were generated in this way to make up the initial population. Following

the generation of the initial population, the objective function of each

individual was calculated. Next, the genetic operators - reproduction,

crossover and mutation - were applied to find the best route set as the

solution.

In 2002, Fusco et al. [44] combined methods developed by Baaj and

Mahmassani [13] and Pattnaik et al. [88] and proposed their basic ideas

to solve the UTNDP. Generally, three steps were included:
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1. A heuristic algorithm to generate a set of feasible routes; for ex-

ample, composed of the the shortest paths between the node pairs

with demand flows larger than a given minimum value.

2. A genetic algorithm to find a good sub-set of routes with associ-

ated frequencies. Each bus route selected by the genetic algorithm

can be verified according to the impact of the following actions:

route extension, route shortening, and route expansion including

other nodes based on some criteria.

3. Final improvement of the network configuration. The suitable

route modifications are examined in terms of total demand served,

network effectiveness and efficiency.

Chakroborty [21] in 2002 introduced his approaches based on a ge-

netic algorithm to design an (optimal) route network for a transit sys-

tem. First of all, his proposed methodology was presented as follow

(see Algorithm 2):

Algorithm 2 Chakroborty’s Proposed Algorithm

Input road network data, travel time data, and demand matrix
Determine a group of initial route sets using the procedure IRSG
repeat

Evaluate each route set using the evaluation procedure EVAL
Modify the group of route sets using the procedure MODIFY in
order to evolve better route sets

until the optimal route sets are obtained

The initial route set generation procedure (IRSG) was used to gen-

erate efficient initial route sets. Three steps were included in the IRSG:

• Procedure to select the first node of a route

• Procedure to select any other node of route
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• Termination of route and route set generation

In the procedure for selecting the first node of a route, firstly the

activity level for each node was calculated; where the activity level refers

to the number of transit trips culminating in this node or originating

from it. Then, all nodes were listed in descending order of activity

levels. Secondly, the user-defined number of nodes were chosen from

the list to form the initial node set, INS. Finally, the first node of a

route was obtained by randomly selecting a node from INS using a

given probability. Once a node was selected it could be removed from

the INS.

The procedure to select all other nodes of a route (given the first

node has been chosen), is based on making a random choice from a node

set called the vicinity node set VNS. Denote the most recent node to be

added to a route as the previous node, PN. PN will be initialized as the

first (and only) node in the route. A node can qualify as a vicinity node

of PN if a single link joins PN to that node, provided that this node has

not already been included in the route being currently generated. Then,

based on a given probability, the next node of the route was obtained by

randomly selecting a node from the VNS. This new node is then itself

denoted PN, and the process is repeated. This process will iteratively

add more nodes until one of the following stopping conditions becomes

true:

1. the number of nodes in the route equals a pre-defined maximum

number of nodes;

2. the route length (either in travel time or travel distance units)

reaches a pre-defined maximum route length;
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3. the cardinality of the VNS falls to zero.

In the evaluation procedure, EVAL, Chakroborty proposed some cri-

teria to evaluate the route set, including the total travel time summed

over all passengers, the percentage of satisfied demand with no vehi-

cle transfers and with one and two transfers needed. Finally in the

modification procedure, MODIFY, a genetic algorithm was utilized.

In 2003, Chakroborty [20] in his paper systematically introduced

the urban transit network design problem, and divided the UTNDP

into two components: the urban transit routing problem, UTRP and

the urban transit scheduling problem, UTSP. At the same time, the

definitions, characteristics, assessment criteria and feasible constraints

of the UTRP and UTSP were described in detail (see details in Chap-

ter 1). He also summarized the approaches for solving the UTRP and

UTSP respectively based on the genetic algorithm in his previous pub-

lication [21, 81, 82]. Finally, he published the results obtained using

his methods for the Mandl’s network and compared them with other

researchers’.

In 2002, Bielli et al. [70] also presented a genetic algorithm to solve

the UTNDP. Their goal was to design the best bus network and associ-

ated frequencies satisfying both the customer demand and the require-

ments of operators. In their paper, they used a distinct representation

which explicitly stored the frequencies of buses along each bus route,

and also an on/off switch to enable or disable the use of that route in

the corresponding network.

In papers by Tom and Mohan [94] and Agrawal and Mathew [57],

a binary encoding scheme was used which identified candidate routes

rather than individual nodes: i.e., a gene represents an entire route
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(similar to Pattnaik et al. [88]). In this way candidate routes can be

pre-determined and stored in a list, and it is the job of the genetic algo-

rithm to select routes from this list to make up a route set. In general,

their initial candidate route sets were produced using heuristic proce-

dures, applying shortest path calculations moderated by user-defined

guidelines. The genetic operators, mutation and crossover, produced

new route set variations for selection, giving the population scope to

improve over time, provided selection was biased towards saving the

better solutions over the poorer ones. When the entity for encoding is

an entire route, it is important that similar routes should be identified

by similar binary codes, so that a simple mutation to a binary code for

a particular route, for example, will tend to produce a mutated route

with many nodes in common with its parent. Frequencies were also

encoded as part of the chromosome in their methods.

2.5.2 Other Metaheuristic Approaches to the UTNDP

Though genetic algorithms seem to predominate in the literature, other

metaheuristic approaches have been tried by some researchers. In 2004

and 2006, Zhao and Ubaka [106, 108] attempted the optimization of

large-scale transit route networks. The objectives they used were to

minimize the transfers and optimize route directness, while maximiz-

ing service coverage. For the constraints, the number of bus routes,

the route lengths and the number of transit stops on individual routes

were predetermined. For the solution search schemes, in 2004 Zhao and

Ubaka [108] utilized a hill-climbing algorithm, and in 2006 they [106]

used a simulated annealing algorithm. These two approaches are out-

lined below.
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Hill-climbing

Hill-climbing is a mathematical optimization technique which be-

longs to the family of local search. It is relatively simple to implement,

making it a popular first choice. Although more advanced algorithms

may give better results, in some situations hill-climbing works just as

well [86].

Generally, a hill-climbing algorithm begins with one initial solution

to the problem at hand, usually chosen at random. This initial solution

is then subjected to a neighbourhood move (mutation), and if the new

solution is better than the current one, the new solution is kept; oth-

erwise, the previous solution is retained. This process is then repeated

until no neighbourhood move can be found that will improve the solu-

tion quality of the current solution, and this solution is returned as the

result [59]. Hill-climbing are very good in finding local optima. How-

ever, difficulties arise when the global optima is different from the local

optima. Since all the immediate neighbouring points around a local

optima are worse than it in the performance value, local search can not

proceed once trapped in a local optima point. Hence it is necessary to

find some mechanism that can help us escape the trap of local optima.

Simulated Annealing

In contrast to hill-climbing, simulated annealing has the capability

to escape local optima. The name of simulated annealing origins from

the simulation of annealing process of heated solids. In simulated an-

nealing [91], the concept of “temperature” is added. This is a global

numerical quantity which gradually decreases over time. At each step

of the algorithm, a neighbourhood move is used to generate a new so-

lution. The solution quality of the new result is then compared with
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the previous solution; if it is better, the new solution is kept and the

old one discarded, in the same way as in hill-climbing. Otherwise, the

algorithm makes a decision whether to keep or discard the new solution

based on temperature and probability. If the temperature is high, as

it is initially, even changes that cause significant decreases in solution

quality may be kept and used as the basis for the next round of the

algorithm, but as temperature decreases, the algorithm becomes more

and more inclined to only accept improving changes. Finally, the tem-

perature reaches zero and the system “freezes”; whatever configuration

it is in at that point becomes the solution. As can be seen, simulated

annealing consists of:

1. An initial value for the temperature T ;

2. a cooling function (such as T = Tα, 0 < α < 1);

3. a predefined number of iterations to be performed at each tem-

perature;

4. a stopping criterion to terminate the algorithm.

The basic structure of the simulated annealing will be introduced in

Section 4.2.

In addition to the work of Zhao and Ubaka [106], in 2006, Fan and

Machemehl [38] also used a simulated annealing algorithm to solve their

UTNDP. Similar to the work of Pattnaik et al. [88], they firstly gener-

ated candidate routes by finding all shortest paths for each node pair

using the Dijkstra’s shortest path algorithm and the Yen’s k-shortest

path algorithm [104], and checking them against the constraints, e.g.

the minimum and maximum permitted route length. Then all candi-

date routes were kept and labelled. Finally the simulated annealing
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algorithm was implemented to find the best route set from these can-

didate routes. On the other hand, in the paper it was claimed that the

cost of unsatisfied demand is included in an objective function for the

first time also including the sum of user cost and operator cost for the

UTNDP. The user costs consisted of four components, including walk-

ing cost, waiting cost, transfer cost, and in-vehicle travel cost. The

operator costs referred to the cost of operating the required buses. At

the same time, some feasibility constraints such as the headway, load

factor constraints, fleet size, trip length constraints, maximum number

of routes constraint, and maximum allowed unsatisfied demand also

needed to be satisfied in their model.

Tabu Search

Algorithm 3 Tabu Search Algorithm [6]

Set k = 1 and generate initial solution s
repeat

Identify N(s) (neighborhood set of solution s )
Identify T (s, k) (tabu set of solution s)
Identify A(s, k) (aspirant set of solution s)
Choose the best solution s∗ from N(s, k) = {N(s) - T (s, k)} +
A(s, k)
Memorize s∗ if it improves the previous best known solution
s = s∗
k = k + 1

until a stopping condition is satisfied

In 1986, Glover [48] proposed a new approach, which he called tabu

search, to allow local search methods to overcome local optima. The

general ingredients of tabu search include [34]:

• A neighborhood is constructed to identify adjacent solutions that

can be reached from the current solution.

• A tabu list records forbidden moves, which are referred to as tabu
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moves.

• Tabu restrictions are subject to an important exception. When a

tabu move has a sufficiently attractive evaluation where it would

result in a solution better than any visited so far, then its tabu

classification may be overridden. A condition that allows such an

override to occur is called an aspiration criterion .

The basic structure of tabu search is shown in Algorithm 3. Re-

cently, in 2008, Fan and Machemehl [39] also implemented a tabu search

algorithm to solve their UTNDP.

Ant Colony Algorithm

Ant colony optimization, ACO, introduced by Dorigo [32] in 1992, is

a probabilistic technique for solving computational problems which can

be reduced to finding good paths through graphs. The principles of this

algorithm can be illustrated by examining the food searching process of

an ant colony. Along their way from the food source to the nest, ants

communicate with each other with pheromone (a chemical substance).

As the ants move, a certain amount of pheromone is deposited on the

ground along the path they follow. Then the ants determine their

movements by judging the density of the chemical substance on a path.

The process can be described as loop of positive information feedback,

in which the more ants that follow a given trail, the more pheromone

is deposited on that trail, and the larger the probability that this trail

will be followed by other ants.

Some researchers have used this algorithm to solve the UTRP (e.g.

the work of Yu et al. [10]). In the paper by Yu et al., firstly they

proposed some criteria to define an efficient transit network, such as

reachability, low transfer rate, short travel time, and high network ef-
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ficiency. Secondly, both the length of the route and the corresponding

travel demand were taken into account as objectives, i.e. minimum

transfer rate and maximum travel demand per length served. Finally

their ant colony optimization procedures were introduced.

2.5.3 Limitations and Gaps in Previous Research

From the above literature review, it is clear that most heuristic and

metaheuristic approaches rely very heavily on the use of standard short-

est path algorithms to generate individual candidate routes. Most

methods then make selections from this initial pool of shortest paths,

to build their route sets, perhaps iteratively making some minor adjust-

ments to some of the routes, to improve the overall solution or to ensure

connectivity of the route network. We are not convinced, however, that

building route sets from pre-computed shortest paths produces the best

route sets in practice, thus we do not use this technique in our work.

(Indeed we have beaten some best published results in this way). De-

pending on the pattern of travel demand, we believe that longer travel

paths may be appropriate between some sources and destinations where

travel demand is low, in the interests of efficiency. It is the quality of

the route set as a whole that is important, rather than that of the

individual routes.

Another problem is that many papers have not fully described their

methodology for representation, initialization or neighbourhood moves.

In particular, authors have skated over the important issue of ensuring

route set feasibility. Chakroborty’s [21], for example, simply refers to an

“external procedure” for ensuring feasibility, without giving any details.

In our work we describe all our routines and data structures in detail,
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to ensure that our experiments are repeatable. Furthermore, we take

particular care to make sure that route set feasibility is achieved with

reasonable computation costs.

A lack of standard (simplified) models for the UTRP, is anther weak-

ness in current literature. Fundamental research on such models is

essential to gain a proper scientific understanding of the problem. To

date, most work has and focussed on particular urban areas with unique

properties. Although some excellent ideas have been put forward by

various researchers, it is difficult to properly assess most of this work,

or compare one approach with another. An absence of benchmark data

is a related problem. The only data set used by several authors for the

UTNDP is Mandl’s 15 node network, which can be seen in the work of

Mandl [73–75], Baaj and Mahmassani [12], Shih and Mahmassani [90],

Kidwai [64], Chakroborty [20, 21] and Zhao and Ubaka [106, 108]. We

initially evaluate our model and metaheuristic approach using Mandl’s

data, and demonstrate its effectiveness. Furthermore, we create new

larger instances and make them available to other researchers (from the

OR-library), developing good lower bound solutions to help researchers

assess the quality of results they obtain on these new instances.

Finally, little practical work has been done on the potentially very

fruitful area of multi-objective optimization for the UTRP. As pre-

viously discussed, Ceder and Wilson [19] and Israeli and Ceder [56]

developed sophisticated models involving multiple objectives, however

their routines were not implemented. Chapter 5 of this thesis covers

our prototype multi-objective approach. This is a working model that

can form a basis for further work.
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2.6 Commercial Software Packages of the Transport Planning

In the last three decades, with the development of computer-aided tech-

niques, various commercial software packages have been marketed and

used in the transport planning industry for decision support. These

tools are aimed broadly at all aspects of transport: cars, roads, traffic

flows, traffic light positioning etc., and include such tools as VISUM,

Emme2/3, SATURN and Cube Voyager.

First of all, these software tools allow GIS to be integrated into them

in order to display the structure of the road network. GIS stands for

Geographical Information System (e.g. MapInfo, ArcInfo), which can

provide a user friendly environment and help the user manage, analyze

and display geographical information, by connecting database tables

with geographical objects [17]. In the field of transportation GIS, for

example is used to build and maintain road databases or determine the

accessibility of transit stops. Since standard GIS functionality does not

cover specific transport aspects, transport planners all over the world

are more or less successfully trying to adapt their GIS according to

their planning requirements [71].

VISUM is a comprehensive, flexible software system for transporta-

tion planning, travel demand modelling and network data management.

It is used on all continents for metropolitan, regional, statewide and na-

tional planning applications [76]. It also integrates all relevant modes of

transportation (i.e., car, truck, bus, train, pedestrians and cyclists) into

one consistent network model [76]. Generally, VISUM has a graphical

user interface (GUI) which makes it easy to learn and relatively sim-

ple to use. For example, the user can simply mark the two desired

terminals for a transit route by a mouse click. At the same time, VI-
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SUM is able to merge GIS-data and transportation data into a common

database. In addition, it also provides a COM interface based on MS

Windows technology and can be integrated with other COM-compliant

Windows products, such as MS Office and ArcGIS. Users can program

applications using Python, Visual Basic (VBA, VBS, VB) or other pro-

gramming languages (C, C++) [76].

In VISUM, methods to generate possible routes incorporate an ob-

jective function which minimizes the number of transfers. Using a set

of predefined terminals for each route it generates and evaluates a set

of possible routes for the planner. At the same time, the algorithm is

based on a transit demand matrix and a link network which gives po-

tential connections for a route [71]. On the other hand, it also provides

methods to optimize the timetable, and minimize the transfer waiting

time of passengers in a route network with a fixed headway. Based on

the results of a public transport assignment, a genetic algorithm de-

velops and evaluates “populations” of possible solutions by varying the

departure time [71].

Emme2/3 is the powerful industry-standard travel demand forecast-

ing software tool [93]. Emme2/3 is a versatile, professional toolkit with

which planners can build their own planning models. At the same time,

it provides an extensible, customizable, automated framework for de-

veloping transportation models, performing analysis, visualizing data

and generating reports [93].

SATURN is the Simulation and Assignment of Traffic to Urban

Road Networks, which is mainly used in designing highway transporta-

tion systems [8]. It has been continuously developed since 1976 by In-

stitute for Transport Studies, Leeds University. Its features include [8]:
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• Combined simulation and assignment for detailed representation

of traffic behavior.

• Interactive network building and editing.

• Comprehensive graphical display and analysis options.

• Advanced matrix manipulation facilities.

Cube Voyager is designed to forecast personal travel and provides

an open and user-friendly framework for modelling a wide variety of

planning policies and improvements at the urban, regional and long-

distance level, at the same time, it also provides a transit path-building

and assignment function for highway design [22].

In addition, some researchers have also developed some auxiliary

software packages to help them design transportation systems. For

example, Zhao and Gan [107] in 2003 implemented their methodology

of optimization of a transit network to minimize transfers in a prototype

GIS based program called OPTNet (OPTimization Package for transit

Network).

In general, the above commercial software tools used in real trans-

port planning are efficient and useful. However, they are all limited in

their capabilities, and are used primarily for visualization, simulation

and decision support. None is able to automate the complete route set

optimization procedure, which is the aim of our present research.

2.7 Summary

In this chapter, first vehicle routing problems have been simply intro-

duced. Then we have summarized the guidelines and rules for designing



Section 2.7. Summary 47

real route networks for the UTRP, noting that different counties or areas

have different requirements for route network design. This is followed

by a review of the literature covering the various techniques for solv-

ing the UTRP, including manual methods, mathematical approaches,

and heuristic and metaheuristic algorithms. Throughout our review we

have noticed a lack of generic models for the UTRP and an absence of

benchmark data, making it very difficult to make useful comparisons

between the different approaches published by researchers in the field.

Finally, we have presented a brief review on some current software tools

used for transport planning. According to our findings, current com-

mercial software, where applicable to urban transit routing, is used for

decision support, with only limited optimization functionality. For ex-

ample, it may be used to find a shortest path between a source and a

destination node, or given a set of terminals, it may be used to gen-

erate possible routes that minimize the number of transfers. On the

other hand, some tools provide sophisticated simulation capability and

are able to model complete transport systems with cars, buses, trucks,

bicycles, and pedestrians. Other tools provide modelling and analysis

capability, and some can be used to predict travel demand.



Chapter 3

RESEARCH FOUNDATIONS

FOR THE UTRP

This chapter introduces our simplified model of the UTRP (published

in [35]) and our data set generation method, which can produce random

transit networks based on user-supplied parameters and constraints.

We also define a lower bound for the urban transit routing problem,

which is useful for assessing the quality of the route sets produced by our

metaheuristic algorithms. Finally, we discuss setting some constraints,

such as the number of routes and the maximum and minimum numbers

of nodes in each route.

3.1 Our Simple Model of the UTRP

Given the practical importance of the UTRP, it is perhaps rather sur-

prising that so little work has been done on extracting generic features,

formulating simplified models and devising benchmark data sets, to fa-

cilitate comparative studies in order to identify which algorithms work

best. Perhaps the lack of fundamental research can be explained by the

enormous complexity of the UTRP. It may be difficult for researchers to

agree which aspects of the problem are most important, and thus decide

48
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which of these should extracted as “generic” to formulate a simplified

model. Nevertheless, we attempt to do exactly this for the UTRP as

part of our research.

First of all, different models of the UTRP have been characterized

by different optimization criteria and special constraints. A set of cri-

teria generally accepted by most researchers is outlined in [20]; these

were discussed in Chapter 1 of this thesis, along with some basic real

world constraints. On the other hand, the following evaluation param-

eters have been adopted to assess the quality of route sets by many

researchers (e.g. Mandl [74], Baaj and Mahmassani [12], Kidwai [64],

Chakroborty and Dwivedi [21], etc.):

d0 - The percentage of demand satisfied without any transfers.

d1 - The percentage of demand satisfied with one transfer.

d2 - The percentage of demand satisfied with two transfers.

dun - The percentage of demand unsatisfied.

ATT - Average travel time in minutes per transit user (mpu).

We also use these five parameters to assess the quality of the final

results produced by our methods, to make it possible to compare our

route sets with those produced by others. However, please note that

we do not use these five measures directly in our objective function.

Instead we use a weighted combination of travel times and transfers, as

explained below.

For any given route set we can create a corresponding route network,

simply by fusing together all routes in the route set. For example, in
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the Figure 3.1, the left-hand graph is a transit network, while the right-

hand graph represents a route network.

Figure 3.1. Transit Network and Route Network

A particular route network will differ from the original transit net-

work from which it is derived, provided some links present in the transit

network are absent from the route network. As a consequence, shortest

path distances for travellers between the various node pairs will need to

be recalculated for each new route set that is evaluated, using a distance

or time matrix specific to that route network. We will assume that each

traveller chooses the shortest path (in the route network) from source

to destination node, without regard to the number of transfers. Wait-

ing times are not included in our shortest path calculation. Instead

transfers are dealt with separately in our objective function.

Our objective function is a weighted sum of two components: the

total travel distance or time accumulated over all passengers, and the

total number of transfers for the entire demand. Below, we present the

key features of our simple model (introduced in [35]):

1. To represent the basic problem information we need:

• An undirected graph, G(V,A), consisting of N vertices (or

nodes), V = {v1, v2, . . . , vN}, and m arcs, A = {a1, a2, . . . , am}.
This will store the transit network.
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• A demand matrix, D, where dij = travel demand between

nodes i and j (with dii=0).

• Routes in the current route set, stored as lists.

• A cost matrix, C, where cij = the travel cost (i.e., distance

or time) between nodes i and j, where direct links exist in

the current route network. (Note: travel cost is recorded as

+∞ between nodes that are not directly connected.)

2. We define the simple objective function:

Minimize : Z = A

N∑
i,j=1

dijpij + B

N∑
i,j=1

dijtij (3.1.1)

where:

pij is length of the shortest path between i and j for the current

route network (calculated using Dijkstra’s algorithm and the cost

matrix, C);

tij is the minimum number of transfers required to traverse the

shortest path for the current route set (obtained from the current

routes and the cost matrix);

A and B are constants used to weight the two components of

the objective function. (Please note that A and B are chosen

to ensure the two parts of the objective function are of similar

magnitude. More details are given in Chapter 4)

3. The objective function is subject to the following constraints:

• each route in a given route set is free of cycles and backtracks.

This is easily checked when generating or modifying a route,



Section 3.2. Data Set Generation Method (DSGM) 52

by ensuring that there are no repeated nodes in the route.

• the route set is connected. The connectivity of the route set

is checked as part of the Feasibility Check Procedure (see

details in Section 4.1.3).

• there are exactly r routes in the route set to simplify the

problem (assume r is set by the planner or bus company).

• the number of nodes in every route must be greater than

one, and must not exceed a planner-defined maximum value,

MAX.

3.2 Data Set Generation Method (DSGM)

From the literature review on the urban transit routing problem (see

Chapter 2), we saw that much previous work concentrates on specific

real world problems, which are not in the public domain. Nevertheless,

research workers need suitable data sets on which to test their algo-

rithms and compare their results with those produced by competing

approaches, and Mandl’s 15 nodes network [73] would appear to be the

only transit network instance readily available to researchers.

To meet the needs of our research programme, we have designed

and implemented a data set generation method (DSGM) that will pro-

duce realistic transit networks, randomly positioning a given number

of nodes and links within a rectangular framework. Our software will

ensure that each transit network it produces is connected, and in addi-

tion it will produce demand values (within a given range) between each

pair of nodes. Finally, both demand and distance or time matrices will

be stored in a file for further use. In the next section, the principles of
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our data set generation method will be introduced.

3.2.1 Basic Principles of Data Set Generation

Our overall aim is to produce realistic transit networks, according to

user defined parameters. First of all, we constrain the transit network

within the boundaries of an enclosing rectangle, and give the user con-

trol of its size, through inputs specifying the lengths of its two sides.

At the same time, other information such as the total number of nodes

(bus stops) in the transit network and the total number of transit links

connecting the various nodes, also need to be defined by the user. The

number of nodes and links gives the user control over the size and the

complexity of the network, leaving the software to decide exactly where

the nodes and links will be placed within the enclosing rectangle. Sim-

ilarly, the general level of demand is determined by the user, but the

actual demand values between each pair of nodes is randomly generated

by our software. The user will supply an upper and a lower bound (i.e.,

a demand range), and this range will apply to every node pair in the

network. The user may choose this range according to the scale of the

transit network or the real situation in some areas.

We will assume that our transit networks needs to be connected;

i.e., that at least one path will exist between every pair of nodes in

the transit network, so that each part of the network is reachable from

any given starting point. However, in our method the nodes and links

are randomly generated, and it is not possible to ensure connectedness

without introducing a specific mechanism to make this happen. Our

method of choice is to construct a minimum spanning tree (MST),

according to the Euclidean distances between each pair of nodes. We
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construct our MST immediately following the generation of the nodes.

It is then an easy matter to add additional links in a random fashion, to

complete a transit network according to user determined parameters.

(Note that the weight between each vertex pair in a transit network

can represent either the distance or the travel time between each node

pair.)

There are two popular algorithms used to obtain an MST, namely,

Kruskal’s algorithm [65] and Prim’s algorithm [84]. In our DSGM, we

choose Prim’s algorithm [84] to generate the minimum spanning tree.

The reason is that the efficiency of Prim’s algorithm is not directly

dependent on the total number of links in the network, thus it should

be more efficient for the large networks of the type we need for testing

our algorithms.

According to the property of a minimum spanning tree, if there

are N nodes in the transit network, the total number of links is N − 1.

However, to simulate realistic transit networks, we need more links than

this. Furthermore, additional links should be added sympathetically,

so that the network retains a sensible appearance. In our method the

concrete steps of each adding process are shown as follows:

1. A node is selected at random from the network of the minimum

spanning tree;

2. The shortest of all the links between this node and any other

nodes, not including the links already in the minimum spanning

tree network, is selected;

3. Add this shortest link into the network.

Through repeating the above steps, the number of extra links re-
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quired can be added to form a simulated transit network. Therefore,

our DSGM can generate a range of realistic transit networks, with re-

lated demand, according to user-supplied parameters. In conclusion,

the data set generation method can be summarized in the pseudocode

presented in Algorithm 4:

Algorithm 4 Data Set Generation Method

Input Parameters: X, Y, Min-demand, Max-demand, N and
ELINKS
Initialize a rectangle based on the X and Y values
Generate and distribute N nodes in the rectangle at random
Decide the demand for each node pair randomly within the Min-
demand and Max-demand
Call Prim’s Algorithm to find a minimum spanning tree
Initialize the transit network with these links
repeat

Select a node randomly in the subgraph network
Find the shortest link from the selected node, not currently in-
cluded the network, if one exists (if not, choose another node)
Add this link into the network

until ELINKS is achieved
Output final transit network and the distance and demand matrix

X and Y are the values of the X and Y coordinates measured from

the origin, (0,0) defining the enclosing rectangle. Min-demand and

Max-demand are the lower and upper bound demand for each node

pair. N is the number of nodes and ELINKS is the number of extra

links required.

3.2.2 Implementation of the DSGM

Our data set generation method is implemented in the Java program-

ming language. The user is presented with two application interfaces:

1. the minimum spanning tree generation interface, and

2. an interface for adding extra links.
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In the minimum spanning tree generation interface, users can input

the required parameters needed for generating their transit network:

the total number of nodes, the enclosing rectangle dimensions, X and

Y , and the maximum and minimum travel demand required. After the

parameters are input, the minimum spanning tree can be generated

and displayed on the interface, e.g. see Figure 3.2.

Figure 3.2. Minimum Spanning Tree

After the minimum spanning tree is generated by the application,

users can add extra links through the “extra links” interface, to create a

final simulated transit network, e.g. see Figure 3.3. Finally, the transit

network is generated, and its demand and distance matrix are stored

in a file.

3.3 Lower Bound for the UTRP

In the practical design process of an urban transit routing problem

(UTRP), many criteria need to be optimized in order to efficiently
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Figure 3.3. Final Network

meet the needs of the passengers, while at the same time minimizing

the cost to the operators. In addition, there are other stake-holders

involved: typically national and local government as well as taxpayers

and local businesses. While all interested parties will benefit from an

efficient public transport service, each one will be observing from their

own perspective, and thus may have different notions of what efficiency

means.

Nevertheless, as mentioned before both a simple model for the UTRP

and benchmark data sets are currently missing from the literature. One

of the main goals of the present thesis is to provide a simple framework

for the UTRP, along similar lines to what has been provided for other

well-known combinatorial problems. We believe that it is only by doing

this that we can put the UTRP on a similar footing to, say, the Ca-

pacitated Vehicle Routing Problem, the Job-Shop Scheduling Problem,

the Examination Timetabling Problem and the Quadratic Assignment

Problem (to name but a few). We will present our solution methods in
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Chapter 4, and deal with the issue of generating benchmark data in the

present chapter using our DSGM. Firstly though, we will discuss the

issues that arise when we use benchmark data for the first time - how

can we use it to assess the quality of our route sets? We do not know

what the optimum solutions are, and neither do we have any previous

published results.

Recall the criteria for a good route set [20] (see Chapter 1):

• The entire transit demand is served, that is, the percentage of

unsatisfied demand is zero;

• A large percentage of transit demand is served through direct

connections, that is, the percentage of demand satisfied with zero

transfers is high;

• The average travel time per transit user is as low as possible.

In order to overcome the above mentioned difficulty of evaluating

route sets when using new benchmark data, we adopt the above criteria

and propose a lower bound on the passenger’s cost for the UTRP. Our

lower bound is based on an ideal situation for passengers travelling on

the transit network: namely, every passenger can travel to their desti-

nations by the fastest (or shortest) path without any transfers. If the

number of nodes, travel distance (or time) and travel demand between

each node pair are already known, the ideal travelling path, between

each pair of nodes can easily be found using Dijkstra’s algorithm [30]

(introduced in Section 2.4) on the entire transit network. Note that

the network obtained by superimposing all the routes from a particular

route set will consist of all the nodes but only a subset of the links from

the entire transit network. Thus, “ideal travel paths” between various
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pairs of nodes may or may not be attainable from a given route set.

In order to evaluate the lower bound, we calculate the Total-Demand,

Total-Person-(Distance or Time) and Average-Travel-(Distance or Time).

According to the mathematical formulation of our simple model of

UTRP (introduced in Section 3.1) these can be mathematically for-

mulated as follows:

1. Total-Demand:
N∑

i,j=1

dij (3.3.1)

2. Total-Person-(Distance or Time):

N∑
i,j=1

dijpij (3.3.2)

3. Average-Travel-(Distance or Time):

N∑
i,j=1

dijpij(
N∑

i,j=1

dij)
−1 (3.3.3)

Figure 3.4. 8 Nodes and 9 Links Network

We implemented a program in Java to calculate the lower bound,

and the following simple example is used to illustrate some of the re-
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Table 3.1. Demand Matrix
8 0 1 2 3 4 5 6 7
0 0 95 120 58 112 177 125 184
1 95 0 64 167 59 166 167 144
2 120 64 0 71 173 50 78 166
3 58 167 71 0 59 95 58 119
4 112 59 173 59 0 49 86 84
5 177 166 50 95 49 0 86 135
6 125 167 78 58 86 86 0 93
7 184 144 166 119 84 135 93 0

sults calculated by our program. Figure 3.4 shows an 8 nodes and 9

links network from [88], with the distance between each node pair as

shown. The travel demand matrix for this instance is presented in Ta-

ble 3.1. Finally, the results - every exact shortest distance path for each

node pair, Total-Demand, Total-Person-Distance and Average-Travel-

Distance are presented in Table 3.2. It is easy to see in the lower bound

situation the total number of shortest routes can be obtained by the

following formulation:

N(N − 1)/2 (3.3.4)

(N is the total number of nodes in the transit network), at the same

time, the Total-Transfer-Time is 0.

3.4 Constraints for the UTRP

For the urban transit routing problem, many criteria need to be opti-

mized, while at the same time, many constraints also need to be sat-

isfied. For example, in practical transit network design, the transport

planners may decide the number of bus routes, based on the practi-

cal requirements of passengers and operators in a local area, and con-

strained by a limited number of buses. In addition, it is usual to limit



Section 3.4. Constraints for the UTRP 61

Table 3.2. Lower Bound Results
Route Number Route Description
1 0-1
2 0-1-2
3 1-2
4 0-3
5 1-0-3
6 2-5-6-3
7 0-1-4
8 1-4
9 2-1-4
10 3-6-7-4
11 0-3-6-5
12 1-2-5
13 2-5
14 3-6-5
15 4-1-2-5
16 0-3-6
17 1-2-5-6
18 2-5-6
19 3-6
20 4-7-6
21 5-6
22 0-3-6-7
23 1-4-7
24 2-5-6-7
25 3-6-7
26 4-7
27 5-6-7
28 6-7
Total Demand 6080
Total-Person-Distance 14331200 m
Average-Travel-Distance 2357.11 m
Total-Transfer-Time 0

the maximum length of a route and restrict the number of bus stops on

a route: for example, to maintain reliability and limit operators’ costs.

On the other hand, as previously mentioned, a bus route set designed

by a planner should be a feasible route set, which means every node

presented in the original transit network must be included in the bus

route set, and every node needs to be connected either directly or in-
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directly to every other node. Only on such a bus route network can

passengers get to any destination point from any start point. In addi-

tion, in some areas a bus route is not allowed to backtrack or meander

excessively. However, it is likely that setting appropriate constraints

will significantly impact on the overall problem difficulty. For exam-

ple, it may prove difficult to find any feasible route set if the problem

is constrained by too few routes, or by having too few nodes on each

route. On the other hand, if very many routes are allocated the search

space increases, making it easy to find a feasible route sets but difficult

to find an optimal one.

Given the obvious importance of setting constraints for the UTRP,

it is perhaps strange to find that little attention has been paid to this

problem in the literature. In an attempt to redress this balance, we will

consider some of these issues in the remainder of this section, explor-

ing the boundaries of feasibility and examining the affects of various

constraint levels on problem difficulty. We will examine the following

constraints in turn:

1. number of nodes in a route

2. number of routes

3. requirement for a feasible route set

3.4.1 Number of Nodes in A Route Constraint

First of all, it is easy to decide the minimum number of nodes for each

bus route: a bus route should contain at least two nodes. To a large

extent the maximum number of nodes will depend upon how close the

nodes are together. For a long route, the operators’ costs may be high
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if demand is unevenly spread, and a large number of stops can make it

difficult to maintain schedule. On the other hand, if a bus route is too

short, passengers may need an increased number of transfers to reach

their destinations. Hence, it is very important to set this constraint at

the right level. We propose the following method for determining the

maximum number of nodes for a route:

• Calculate all the shortest paths between each pair of nodes in the

transit network for which the demand is greater than zero;

• Locate the “shortest path” with the most nodes, and record the

number of nodes, MAX ;

• Assign MAX as the maximum number of nodes for each route;

This number will ensure that the space of possible solutions will

allow for travel plans that avoid vehicle transfers. If all bus routes are

shorter than some passengers’ best travel routes, for example, vehi-

cle changes will be inevitable. It is appropriate to consider scenarios

that provide opportunities for passengers to get to their destinations as

quickly as possible and with as few transfers as possible.

3.4.2 Number of Routes Constraint

As mentioned above, transport planners will often decide the number of

bus routes in advance, depending on the practical requirements of both

passengers and operators in a local area. Operators may be constrained

by a limited number of buses, and will certainly have a limited budget.

More routes generally mean more buses and higher operating costs. Of

course, there is a close interrelationship between the number of routes
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and the number of nodes of those routes, and this has an impact on

route set feasibility. We will consider this next.

3.4.3 Constraints for Feasible Route Sets

In the design process, it generally makes sense for transport planners

to develop a feasible route set, which includes every node in the transit

network, with every node directly or indirectly connected. In order

to obtain a feasible route set, the relationship between the number of

nodes of each route and the number of routes in the route set must

satisfy some conditions.

Figure 3.5. 8 Nodes and 8 Links Network

For example, Figure 3.5 illustrates a simple network with 8 nodes.

If the maximum number of nodes for each route is set to 3, and the

total number of routes in the route set is set to 2, it is clear that the

maximum possible number of nodes that can be served by the network

is 6, which leaves out 2 nodes. In Figure 3.6, two routes, 1-2-4 and

3-5-7, make up the route set; nodes 8 and 6 can not be included. In

such situations it is plainly impossible to develop a feasible route set.

On the other hand, if the maximum number of nodes for each route
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Figure 3.6. 2 Routes and Maximum 3 Nodes Example

Figure 3.7. 3 Routes and Maximum 3 Nodes Example

is set to 3 and the number of routes in the route set is set to 3, then

this route set can at most contain 9 nodes. If the route set covers

all 8 nodes of the network, only one extra node position is available.

However, one available position is not enough to make the route set

connected (see Figure 3.7). The reason is that, for two routes to be

directly connected, the routes must have at least one node in common.

For routes to be indirectly connected, an additional intermediate route

is required to join them together. This intermediate route must have

at least one node in common with each of the routes it is connecting.

Therefore, in this situation at least two available positions left in the
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route set are needed to make the route set feasible, so that an extra

route is needed (see Figure 3.8).

Figure 3.8. A Feasible Route Set

From the above discussion, we summarize the two necessary condi-

tions for a feasible route set as follows:

1. all the nodes in the transit network must be represented in the

route set

2. the route network (obtained by overlaying all the routes) must be

connected

We will use the following terminology:

• The total number of nodes in the network is N ;

• The maximum number of nodes in each route is MAX;

• The minimum number of nodes in each route is min (here the

min is set to 2);

• The minimum number of bus routes needed to make a feasible

route set is Rmin ;
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To satisfy Condition 1, we require each of the N nodes to appear at

least once in the route set; to satisfy Condition 2, the route set needs to

be connected. Without loss of generality, we will assume that all routes

are connected end-to-end to form a directed path through all N nodes.

Given each route is of length MAX, we will start at the beginning

of the directed path. If N ≤ MAX, we will need only one route.

Otherwise, the first route will cover MAX previously uncovered nodes.

The next path will start with the final node in route one, and discover

MAX − 1 previously uncovered nodes (provided there are sufficient

nodes remaining). Subsequent routes will also discover MAX − 1 new

nodes, until we reach the final route, in which there may be less than

MAX − 1 remaining nodes to discover. Thus, except for the first and

last route, all other routes will contain MAX − 1 discovered nodes.

From this it follows that the minimum number of routes needed to

cover all the nodes is given by Equation 3.4.1.

Rmin =





1 if N ≤ MAX

d(N − 1)/(MAX − 1)e otherwise
(3.4.1)

3.5 Creating Our Data Sets

Due to a lack of published data sets, we generate our own data to

test our methods and see whether the efficiency of these methods are

suitable for different sizes of networks.

3.5.1 Research Into Some Properties of Real World Data Sets

First of all, we examined some real world bus route maps, in order to

extract typical properties such as the total number of nodes (bus stops)



Section 3.5. Creating Our Data Sets 68

and links, the number of bus routes and the maximum and minimum

numbers of nodes in bus routes. In total, four different maps of urban

areas in China and the UK have been studied, namely the city centre

of Yubei district [3], which is a major part of Chongqing in China,

the city centre of Beijing [2], which is the capital of China, the city

centre of Cardiff [4], which is the capital of Wales, and the city centre

of Brighton [1], which is a town on the south coast of England. The

details of the (approximate) properties are shown in Table 3.3.

Table 3.3. Properties of Real Data Sets
Location Number of Number of Route Link AFN

Nodes and Links Routes Nodes /Node
Yubei 70 & 210 15 10 - 30 3 4.29
Beijing 1280 & 3550 170 15 - 45 2.77 3.98
Cardiff 127 & 425 60 12 - 25 3.35 8.98

Brighton 110 & 385 56 10 - 22 3.5 8.15

The route nodes indicates the minimum number of nodes (min) and

the maximum number of nodes (MAX ) for route map. The AFN is an

estimate for the Average Frequency of bus routes visiting each Node. If

the number of nodes (N ) and the number of bus routes (B) are known,

the AFN can be estimated by the following formulation:

d(min + MAX)/2eB/N (3.5.1)

It is interesting to note the link/node ratio is fairly consistent (close

to 3) for each of the four data sets. The AFN varies between about 4

and 9.
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Table 3.4. Data Sets Description
Network Number of Number of Bounds of

Nodes Links Demand
I 8 9 0 - 184

II (Mandl’s) 15 21 0 - 880
III 70 175 0 - 500
IV 70 245 0 - 500
V 110 275 0 - 600
VI 110 385 0 - 600
VII 130 325 0 - 800
VIII 130 455 0 - 800

3.5.2 Our Data Sets

Table 3.4 lists features of the 8 different data sets we use for our re-

search. Network I is a small instance obtained from Pattnaik et al.’s

paper [88]; network II is Mandl’s Swiss transit network [73]. Network

III to network VIII are all new data sets generated by our DSGM ap-

plication, with parameters guided by the real route networks that we

examined in the previous section. The total number of nodes (70, 110

and 130) are related to the three places, Yubei, Brighton and Cardiff

and the total number of links are chosen by using the factors 2.5 and

3.5 respectively, to obtain 6 new instances. We also generated a large

network related to the Beijing system (see Chapter 6).

When generating the data sets, we apply the same range of coor-

dinate axes: X coordinate and Y coordinate, to produce sides of an

enclosing rectangle with lengths ranging between 0 and 500. At the

same time, the travel time (in minutes) is used to measure the dis-

tance between each node pair. For example, if the distance between

two nodes is “5”, this is considered as 5 minutes travel time in the

travel time matrix. The demand between every node pair is deter-
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mined at random between the lower and upper bounds input by the

user, as specified earlier. The details of these instances, including

networks, demand matrices and distance matrices, are listed on our

website (http://users.cs.cf.ac.uk/L.Fan/), and also published in OR-

Library [?].

3.6 Summary

In this chapter we have introduced our simplified model of the UTRP,

which evaluates routes according to the average travel time and the

number of transfers between vehicles, and a data set generation method,

which is able to produce random transit networks based on user-supplied

parameters. In addition, we have explored various constraints and de-

fined lower bounds for total transit times and also for the the minimum

number of routes required to ensure coverage of a transit network. We

have also explored the properties of four real world urban transit net-

works. Guided by our theoretical and practical studies, we have used

our data set generation method to produce data sets for subsequent

use.



Chapter 4

A METAHEURISTIC

APPROACH TO THE UTRP

In this chapter (based on the work published in [36]), we describe our

basic metaheuristic framework for solving the UTRP. This consists of

a representation scheme, an initialization procedure, a feasibility check

procedure and a set of simple neighbourhood moves. Furthermore,

two simple search algorithms, hill-climbing and simulated annealing,

are embedded into our metaheuristic framework. In addition, the as-

sessment parameters for the bus route set are also discussed in this

chapter. Finally we present some experimental results which improve

upon published results for Mandl’s benchmark problem [73], and also

some further results for larger problem instances.

4.1 Methods of Representing and Improving the Route Set

Success in finding good route sets depends on devising the following: (1)

a suitable representation scheme, (2) an effective initialization mecha-

nism and (3) intelligent route improvement heuristics. In our method

we use simple arrays to store the routes, and utilize three basic proce-

dures, namely Initialization, Feasibility Check and Make-Small-Change.

71
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Figure 4.1. A Connected and An Unconnected 8 Nodes Network

4.1.1 Representation

Figure 4.2. Two Dimensional Array

The representation we use to store the route set is a two dimensional

array. The first location of each row stores the route number, which is

useful for identification purposes. For example, consider the first graph

in the Figure 4.1, if we set the maximum number of nodes in each route

to 4 and the number of routes in the route set to 3 routes, the routes

(i) 0-1-4-7 ; (ii) 0-3-6 ; (iii) 1-2-5 can be stored as shown in Figure 4.2

(where the * represents an empty array element).

We use a two dimensional array structure to represent the route set

because it seems a very simple and natural way to represent a set of

linear structures (the routes). While distance (or time) and demand

matrices are used to represent the underlying graph structures, it is
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convenient to use simple structures such as arrays, so that the routes are

easily identifiable for route manipulation and feasibility checks, when

applying a metaheuristic algorithm.

4.1.2 Initialization

Algorithm 5 Initialization Procedure I

Parameters: number of routes, minimum and maximum number of
nodes for routes
Begin
Main loop
repeat

Route length selection:
Choose a length for the route between minimum and maximum
number of nodes at random
Inner Loop
repeat

Start node selection:
Choose any node as the start node at random
label this node as the “previous node”
Next node selection:
Construct a node set consisting of all nodes directly connected
to “previous node” that have not been selected for the current
route, if this node set is not empty, choose a node from this set
at random
Else invert the order of the route (see Section 4.1.4) and repeat
the Next node selection
If such route can not reach the route length, then delete this
route and repeat Start node selection

until route length is reached
until number of routes is reached
Output an initialization route set

The purpose of our Initialization Procedure is to construct an ini-

tial route set at random, according to the constraints listed in Section

3.1 and some user-defined parameters. In the initial route set, each

route is a connected path containing no cycles or backtracks. However,

the feasibility of the route set is not ensured at this stage. The main
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structure of the initialization procedure is shown in Algorithm 5.

Unlike many researchers, we do not rely on shortest path algorithms

to produce our initial routes. As we explained in Chapter 2, we do not

believe that building route sets from pre-computed shortest paths nec-

essarily produces the best route sets. The quality of the route set as a

whole is the important factor, rather than that of the individual routes.

Longer travel paths may be appropriate between some sources and des-

tinations where travel demand is low, for example, in the interests of

efficiency. In addition, the success of metaheuristic approaches is not

generally very tightly related to the quality of the initial solution.

4.1.3 Feasibility Check

Algorithm 6 Feasibility Check Procedure

Input the route set, S
Input N, the number of nodes in the transit network
Initialize found-node[1...N] = 0 {records nodes that have been
found}
Initialize explored-node[1...N] = 0 {records nodes that have been
explored}
Select an arbitrary node, i, present in at least one route
Set feasibility = False
while {feasibility == False} AND {there are unexplored nodes in
found-node} do

Set explored-node[i] = found-node[i] = 1
Find all routes containing node i
Set flags in found-node to record all the nodes found in those
routes
Select any node from found-node that is absent from explored-
node
That node becomes node i
if all N nodes have been found and entered in found-node then

feasibility = True
return feasibility

The Feasibility Check Procedure is necessary because finding feasible
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route sets (that obey all constraints) using randomized methods is a

huge challenge. The main purpose of the Feasibility Check routine is

to ascertain whether candidate route sets are connected and include

every node present in the original transit network. A connected route

set means that the passengers can get to any destination point from

any start point in the route set network. An unconnected route set

means that some places or nodes in the network are not directly or

indirectly linked, therefore passengers are not able to reach all points.

For example, the first graph in Figure 4.1 is connected, but the route

consisting of nodes 2 and 5 in the second graph is not linked to the rest

of the route network. In a similar way, demand to and from nodes that

do not appear in at least one route in the route set, cannot be met. The

structure of our Feasibility Check Procedure is shown in Algorithm 6.

4.1.4 Make-Small-Change

Successful application of metaheuristic methods to the UTRP depends

on whether suitable neighbourhood moves can be devised for the prob-

lem. It is clear that infeasible route sets may be too easily produced by

random procedures on the UTRP. Careful reference needs to be made

to the underlying transit network when adding or deleting nodes from

a previously constructed route, or when moving a node from one route

to another. Large random changes are clearly not desirable, as they are

likely to destroy connectivity or produce solutions in which the routes

meander excessively. Even a very small change can prove highly dis-

ruptive. Our “make small change” strategies cautiously adds or deletes

nodes from individual routes, one at a time, checking and ensuring fea-

sibility as an integral part of the process. Nevertheless, over a period of
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time, we have observed that our approach is able to explore the search

space thoroughly, accumulating “large changes” in small steps.

Recall that we store the individual routes as ordered lists in an array

(see Figure 4.2). The Make-Small-Change procedure is responsible for

making local neighbourhood changes to a route set. There are three

possibilities:

1. Adding a node to the last position in a route;

ensuring that there is a direct link in the transit network to con-

nect the new node, and that no cycles or backtracks are produced.

2. Deleting the first node in a route;

3. Inverting the order of nodes in a route;

i.e., the first node becomes last node and the last node becomes

the first node. This method is used in place of the “adding a

node” when no suitable nodes can be added (see below).

The structure of Make-Small-Change procedure is shown in Algo-

rithm 7:

The above mentioned “add” and “delete” node operators are key in

the Make-Small-Change procedure, with “inversion” used occasionally

in place of “add”, when it is not possible to add a node to the last

position.

First of all, the procedure randomly selects one of the routes in the

route set to act as a candidate route for change. Next, this route will

be checked for its potential, with respect to possible application of the

Make-Small-Change operators. In general, there are three situations.

(I) the length of a route is between the maximum number of nodes and

the minimum number of nodes defined by user. (II) the length of a
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Algorithm 7 Make-Small-Change Procedure

Operators: “add”, “delete” and “inversion”
Input a route set
repeat

Randomly select one of routes from the route set, label this route
as “selected route”
Check the “selected route”
If its length is between the maximum and minimum number of
nodes
then “add” or “delete” operator is selected at random
in case “add” operator is selected, but no available node that can
be added
then “inversion” is selected
If its length is equal to maximum number of nodes
then “delete” operator is selected
If its length is equal to minimum number of nodes
then only “add” operator is selected
in case no available node that can be added
then “inversion” is selected

until Termination condition is satisfied

route is equal to the maximum number of nodes. (III) the length of a

route is equal to the minimum number of nodes.

If a chosen route is in the (I) situation, the adding or deleting oper-

ator is randomly selected as the “small change” to be made. Unfortu-

nately, a problem can occasionally arise, when the “add node” operator

is selected and there is no available node that can be added to the end

of the route, avoiding cycles and backtracks. For example, in the first

graph in Figure 4.1, if a route 0-3-6 has been selected to add a node to

the end, obviously no available node can be added to the route. Hence

in this situation, the “inversion” operator will be applied instead to

this route. In our example, the original route becomes 6-3-0 following

inversion. Next, an alternative route will be selected at random from

the remaining routes in the route set. This newly selected route will

be identified as situation (I), (II) or (III), as before, and a Make-Small-
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Change operator applied appropriately. This process will be repeated,

as necessary, until a “small change” has been effected.

If a chosen route is in the (II) situation, the route cannot be made

any longer so the deleting method will be applied to the route. In a

similar way, if a chosen route is in the (III) situation, the route cannot

be made any shorter so the adding method will be applied. Once again,

in some circumstances there will be no available node to add, just as we

saw in situation (I). Like before, this route will be inverted and another

route selected.

4.2 Framework of Implementing HC and SA Algorithms

Algorithm 8 Route-Hillclimber or Route-SimulatedAnnealing

Parameters: D, C, r, MAX, {plus T0 and L for SA}
Initialization:
Generate an initial route set of r routes, S
Outer loop - repeat until the stopping condition is satisfied
Inner loop - repeat L times {L=1 for HC}
Modification:
Call Make-Small-Change {to generate a near neighbourhood route
set, S ′}
Feasibility check:
repeat

if the new route set is not connected then
Call Make-Small-Change

until successful
Evaluation:
Calculate

∑N
i,j=1 dijpij,

∑N
i,j=1 dijtij, and the objective function, Z

Selection:
Select either S or S ′ as new focus of search following rules of Hill-
Climbing or Simulated Annealing
Output Best route set and Z for the best route set

In order to validate the above framework, optimization algorithms

need to be implemented. Two algorithms are chosen in our research,

namely, hill-climbing and simulated annealing (introduced in Chapter
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2). Due to their similar structure, the framework for the two algorithms

is summarized in Algorithm 8.

Recall that D is the demand matrix, C the cost (distance or time)

matrix for the current route network, r the number of routes in the

route set and MAX is the maximum number of nodes per route. T0

and L are parameters for the SA, to be discussed later.

Initialization: generates an initial route set based on the con-

straints and user-defined parameters.

Modification: calls the Make-Small-Change routine to generate a

new neighbourhood route set.

Feasibility Check: is to check whether the new neighbourhood

route set is connected, and contains all the demand nodes. If not, the

Make-Small-Change routine is used iteratively until a feasible route set

is produced.

Evaluation: Once a feasible route set has been obtained, it needs

to be evaluated by calculating the objective function in Equation 3.1.1.

We consider the route network obtained by fusing all the routes from

a given route set, as explained in Section 3.1. (Recall that a route

network is a subset of the specified transit network.) We assume that

all demand is satisfied along the shortest path available (in the route

network) between a given pair or nodes, regardless of whether or not

this involves making transfers (no time penalty is added to the objective

function when a transfer is made). All required shortest paths are

calculated from the route network using Dijkstra’s algorithm, and the

first component of Equation 3.1.1,
∑N

i,j=1 dijpij, is calculated. This

gives the total travel distance (or time), for the route network, summed

over all passengers. Note that if there is more than one contender for
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the shortest path between two nodes, the path with the highest demand

is selected.

The total number of transfers, summed over the entire demand must

also be calculated. This is done by checking every part of each shortest

travel path, to identify the routes to which it belongs. In this way,

the minimum number of transfers required along each shortest path

is recorded, and this information is used to calculate the second term

in the Equation 3.1.1,
∑N

i,j=1 dijtij. The basic idea can be seen in

Algorithm 9.

Algorithm 9 Finding Minimum Number of Transfers Procedure

Input a travel path and the current route set
Parameters: the number of nodes in the travel path n, an index for
nodes in the travel path i and minimum number of transfer j
Initialize i = 1 and j = 0
For the i node of the travel path, label j for these routes that contain
this node in current route set
Main loop
repeat

i = i + 1
If the node i of the travel path does not exist in any marked routes
in current route set
then clean the label j for these marked routes, and label j = j +1
to new routes contain node i
else keep the label j for these routes still contain node i, and clean
the label j for those routes do not contain node i

until i is equal to n
Output Minimum number of transfers j

(Note: in our research, we consider the minimum number of trans-

fers needed to travel on the shortest path in current route set as an

individual part in the objective function in order to evaluate the qual-

ity of the route set. While some researchers, e.g., Mandl [73] and

Chakroborty [21], consider the transfer as the waiting time and insert

it into the calculation of the total travel time for passengers.)
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Selection: The selection rules are different for the HC and SA

search methods. In the hill-climbing algorithm, a route set which has

the smaller value of the objective function is kept as a current best

result at each time-step. On termination, the best route set found dur-

ing the entire run of the algorithm will be returned. In the simulated

annealing algorithm a new neighbourhood route set will replace the

“current” route set at a given time-step if it is better than the exist-

ing route set, similar to hill-climbing. However, if the neighbourhood

route set is “worse” than the current route set, it is still possible that

it may replace it as the new focus of the search. Acceptance will be de-

termined using an “acceptance probability”, and the value of this will

depend on the current “temperature”, and also on exactly how poor

the new contender is, in relation to the route set currently occupying

the focal position. Early in the execution of an SA algorithm the tem-

perature is high and most neighbourhood moves will be accepted. As

the search progresses, the temperature cools and poor solutions are ac-

cepted less frequently. As is the case with hill-climbing, the best route

set found during the entire run of the algorithm will be returned when

the algorithm terminates.

Values for the acceptance probability (prob) for a minimization

problem, are evaluated using Equation (4.2.1) and (4.2.2). ∆ repre-

sents the difference between the objective functions (or costs) of the

new solution C(S ′), and the focus solutions C(S). Note that the value

of prob depends on the value of ∆ and also on T , the current tempera-
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ture, which is determined by the cooling schedule.

∆ = C(S ′)− C(S) (4.2.1)

prob = min(1, e−∆/T ) (4.2.2)

The new solution is accepted with probability 1 if ∆ ≤ 0 (in other

words, if the neighbourhood solution is better than S) and with prob-

ability e−∆/T if ∆ > 0 (that is, if the neighbourhood solution is worse

than S). Throughout the execution of an SA algorithm, the tempera-

ture T is progressively lowered.

In the present study we determine the precise annealing schedule

from user-specified values for the number of cooling steps and the initial

and final solution acceptance probabilities. We use F cooling steps

to correspond to the number of iterations, so that the temperature

is decreased slightly between each iteration. Thus, knowing F and

setting initial and final acceptance probabilities, P0 and Pf , as well as

an additional parameter M , that signifies an initial number of random

trials, the starting temperature T0, the final temperature Tf , and the

cooling factor α can be calculated, as indicated below.

∆i = C(S ′)− C(S) (4.2.3)

∆ave =

∑M
i=1 | ∆i |

M
(4.2.4)

T0 = − ∆ave

log P0

(4.2.5)
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Tf = − ∆ave

log Pf

(4.2.6)

α = exp(
log Tf−log T0

F ) (4.2.7)

Note that ∆ave (Equation (4.2.4)) is obtained by applying the Make-

Small-Change procedure to construct M new neighbours (S ′) to the

initial route set (S). In this way M values for C(S ′)−C(S) are obtained,

and their magnitude can be averaged to obtain an estimate for ∆ave.

We use this estimate to help determine the starting temperature, the

final temperature and the cooling schedule. The neighbouring solutions

generated during this parameter initialization phase are subsequently

discarded.

In this study we use an “inner loop”, with L iterations per temper-

ature, in addition to the “outer loop”. The outer loop implements the

cooling schedule, while the inner loop gives the SA a chance to search

the solutions space at each temperature.

4.3 Experimental Results

To the best of our knowledge, Mandl’s network [73] is the only generally

available benchmark problem instance (see Figure 4.3). In our first set

of experiments we use Mandl’s network to compare our results against

those of other researchers. Although our objective function is different

from those used by other researchers, we are nevertheless able to make

direct comparisons on the basis of common criteria, discussed below.
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Figure 4.3. Mandl’s Swiss Transit Network

4.3.1 Assessment Parameters

As mentioned before, the following parameters are used to compare the

quality of our route sets with those obtained by Mandl [74], Baaj and

Mahmassani [12], Kidwai [64], Chakroborty and Dwivedi [21].

d0 - The percentage of demand satisfied without any transfers.

d1 - The percentage of demand satisfied with one transfer.

d2 - The percentage of demand satisfied with two transfers.

dun - The percentage of demand unsatisfied.

ATT - Average travel time in minutes per transit user (mpu). This

incorporates transfer waiting times, at 5 minutes per transfer.

The above parameters are quite easily calculated from the best route

set generated at the end of an optimization run of our HC or SA algo-

rithms. Recall that our objective function is composed of two compo-

nents: 1) a component concerned with total travel time, accumulated
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over all passengers, and 2) a similar accumulated term for the total

number of transfers made between vehicles by passengers. An average

travel time can be obtained simply by dividing the accumulated travel

time by the total demand. However, unlike other researchers, the travel

times we use in our optimization process do not make any allowance

for transfer waiting times.

To obtain values for average travel times (ATT), comparable with

other researchers, it is necessary to add 5 minutes for each person-

transfer to our accumulated travel times before dividing by the total

demand. However, this is not as straightforward as it seems. We have

discovered that different values for ATT can be obtained, depending

on whether or not transfer times are included in the shortest path

calculations when determining the travel paths for passengers on the

final route network. We tried two different ways of calculating ATT

from a given route set:

1. Assume passengers ignore transfer waiting times when choosing

their travel paths.

2. Assume passengers take account of transfer waiting times when

choosing their travel paths.

Method 1 defines the mode of travel path selection used in our ob-

jective function. Evaluating ATT for our best route set at the end of a

run (to make it comparable with values quoted by other researchers),

involves adding five minutes for each person-transfer to the total travel

time, before dividing by the total demand. Method 2, on the other

hand, effectively gives the passengers fuller information. In these cir-

cumstances individuals will surely choose to avoid transfers, where this
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will delay arrival at the final destination. As an added bonus, method

2 can reduce the total number of transfers. Thus ATT is calculated

by accumulating all shortest travel paths, with transfer time included

explicitly in the shortest path calculations.

In any case, our assessment routine will retrace the shortest paths

from each source to destination node pair, using the distance (time) ma-

trix computed for that particular route network, incorporating waiting

times, or not, depending on the calculation model chosen. As each

route is retraced, we can record which part of the shortest travel path

belongs to which route in the best route set. Hence we can discover the

number of transfers which passengers need to make to travel on their

shortest path. Finally, with the demand of each path, we can respec-

tively calculate the number of passengers who need 0, 1, 2 transfers.

To validate our calculations for the route set quality parameters, we

examined Mandl’s best route set (4 routes) from [73]. The routes (from

the network shown in Figure 4.3) are listed below:

0-1-2-5-7-9-10-12

4-3-5-7-14-6

11-3-5-14-8

12-13-9

That we were able to replicate his values for d0, d1, d2, dun and ATT

using method 2, is illustrated in Table 4.1. Thus, method 2 will be used

to evaluate our final route sets in all our experiments. Interestingly (but

not surprisingly) method 2 gives results that are at least as good (and

probably better) than method 1, as can been seen in Table 4.1. Method
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Table 4.1. Performance Measures for Mandl’s Best Route Set
Parameters Method 1 Method 2 Mandl’s Results
d0 66.67 69.94 69.94
d1 26.33 29.93 29.93
d2 7.00 0.13 0.13
dun 0.00 0.00 0.00
ATT 13.29 12.90 12.90

2 produces a smaller value for ATT and a larger percentage of travellers

reach their destinations with zero transfers.

4.3.2 Weighting Parameters for the Objective Function

As mention in Section 3.1, in our research the A and B (constants used

to weight the two components of the objective function) are chosen to

ensure the two parts of the objective function are of similar magnitude.

In order to show the effect on the quality of the route sets by changing

the A and B, we use different value of the A and B to test Mandl’s

network by considering the 4 routes and maximum 8 nodes for each

route situation. At the same time, we evaluate the parameters d0, d1,

d2, dun and ATT on the final results, as previously. calculated (see

Table 4.2).

Table 4.2. Results of Different Weighting in Objective Function for
Mandl’s Network

Travel time:Transfers contribution ratio
Parameters A = 0 1 : 3 1 : 1 3 : 1 B = 0

d0 92.96 91.43 93.26 88.51 79.44
d1 7.04 7.99 6.74 11.07 20.23
d2 0.00 0.58 0.00 0.42 0.33
dun 0.00 0.00 0.00 0.00 0.00

ATT 12.66 11.99 11.37 11.79 12.10

From the above experiments, it is clear that the two factors, better
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results are obtained when A and B have equal importance. So we

adopted this ratio for our remaining experiments.

4.3.3 Results for Mandl’s Swiss Transit Network

In order to establish the viability of our approach we first compare

the results (published in [36]) obtained by running our algorithms with

those previously published by Mandl [74], Baaj and Mahmassani [12],

Kidwai [64] and Chakroborty [20]. For consistency with the existing

work, the route sets were developed for Mandl’s network (see Figure

4.3) in four situations: 4 routes, 6 routes, 7 routes and 8 routes in

each route set. In line with the previous authors, a transfer penalty

of 5 minutes is added to the travel time of every passenger (on the

final route set) for each time a transfer is made, as discussed in Section

4.3.1. We also set a maximum of eight nodes in each route. We carried

out 10 replicate runs for each algorithm in each situation (i.e., 4, 6, 7,

and 8 routes). For hill-climbing (HC) we used 100,000 iterations, and

we performed 1,000 cooling steps, with 100 iterations within the inner

loop, and P0 = 0.999, Pf = 0.001, M = F = 1, 000, and L = 100

for the simulated annealing (SA). In addition, we also compare our

results with the lower bound result of the average travel time (ATT)

on Mandl’s network (introduced in Section 3.3). The difference between

the ATT of our best route sets obtained and the “ideal” ATT (i.e., lower

bound) is quoted as a percentage of the “ideal” quantity in our results

called “ATT-error”.

The results in Table 4.3 clearly show that competitive results have

been found by our algorithms. Our results have better values for d0, d1

in 3 out of 4 cases. For the average travel time (ATT) our results beat
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previous researchers’ results for the 4 route and 8 route cases, and they

are only marginally inferior to those published by Chakroborty [21] for

the 6 and 7 route cases. Generally average solutions for the SA are

slightly better than those obtained using the HC. This is perhaps to be

expected, given the SA is the more sophisticated algorithm. The actual

routes produced for our best solutions for each situation are presented

in Table 4.4.

Table 4.5 gives the average run times for our hill-climbing and sim-

ulated annealing algorithm. Note: our computer platform is Windows

XP with Intel(R) Pentium(R) D CPU 3.00GHz and 1GB of RAM.

Clearly, the HC is slightly faster than the SA .
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Table 4.4. Routes Obtained Using Our Methods
Situation Number of Routes Route Description
1 4 9-13-12-10-11-3-1-0

11-10-9-7-5-2-1-0
10-9-7-5-3-4-1-2
1-2-5-7-9-6-14-8

2 6 12-13-9-10-11-3-5-7
10-12-9-6-14-5-2-1
8-14-5-2-1-3-11
0-1-2-5-7-9-10-11
4-3-11-10-9-6-14-8
10-9-7-5-3-4-1

3 7 12-13-9-7-5-3-4-1
11-10-12-13-9-6-14-8
8-14-5-2-1-4
3-1-2-5-14-6-9-12
4-3-11-10-9-7-14-6
9-10-11-3-5
12-13-9-7-5-2-1-0

4 8 9-13-12-10-11-3-4
6-9-7-5-3-4-1-0
9-10-11-3-5-14-8
8-14-6-9-10-11-3
11-3-1-2-5-7-14
9-6-14-5-2-1-3
9-13-12-10-11-3-1-0
0-1-2-5-7-9-12-13

Table 4.5. Average Run Times for the HC and SA Algorithms.
Number of Routes HC Time (secs) SA Time (secs)

4 254 315
6 244 302
7 232 289
8 221 267

4.3.4 Scalability Experiments

Because of a lack of published benchmarks, it is necessary to create our

own data to establish whether the techniques would scale to larger in-

stances. For these tests we used the data sets that have been generated
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by the DSGM in Table 4.6 (introduced in Section 3.5).

Table 4.6. Test Data Sets
Network Number of Nodes Number of Links
I 70 175
II 70 245
III 110 275
IV 110 385
V 130 325
VI 130 455

Firstly, the lower bound and other parameters that we introduced in

Chapter 3 are very useful in the present context because we are dealing

with new data. We need to determine various constraints, such as the

maximum number of nodes for each route in the route set, and also

provide values against with we can evaluate the quality of the route

sets generated by our algorithms. The details of the parameters and

lower bounds for these data sets are shown in Table 4.7 (where “Max

Nodes” represents the maximum number of nodes in any of the shortest

paths).

Table 4.7. Lower Bound Parameters
Network Total Total Person Average Max Nodes

Demand Travel Time Travel Time
Mandl’s 15570 155790 10.01 8

I 1212620 36042456 29.72 17
II 1204596 34911176 28.98 13
III 3603360 121935974 33.84 29
IV 3613416 111143216 30.76 19
V 6695550 190533810 28.46 21
VI 6664344 175991432 26.41 20

Furthermore, it is also necessary to decide the constraints for these

data sets before undertaking the experiments, such as the number of

routes, and the minimum and maximum number of nodes for each
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route. We considered these constraints from two separate viewpoints:

1) an analytical point of view and 2) a practical viewpoint based on the

examination of the four real situations described in Chapter 3. From

an analytical point of view, the minimum number of nodes for each

route was set to 2 and the maximum number was determined by the

number of nodes of the longest “shortest path” route (introduced in

Section 3.4). Once the route length constraints had been decided, we

used the real networks from Chapter 3 to help guide us regarding the

number of routes to include in a route set. This was done by evaluating

the average numbers of routes meeting/crossing at each node and using

Equation 3.5.1 (introduced in Section 3.5). Problems 1, 3, 5, 7, 9 and

11 in Table 4.8 are guided from an analytical point of view. From a

practical viewpoint, we simply identified the individual bus routes on

our four route maps, counted these routes and then counted the nodes

on each of the routes, registering the maximum and minimum node

counts (problems 2, 4, 6, 8, 10 and 12 in Table 4.8).

Table 4.8. Experimental Conditions

Problem Network Number of Number of AFN
Routes Nodes in Route

1 70 nodes and 175 links 35 2 - 17 5.00
2 70 nodes and 175 links 15 10 - 30 4.29
3 70 nodes and 245 links 44 2 - 13 5.00
4 70 nodes and 245 links 15 10 - 30 4.29
5 110 nodes and 275 links 55 2 - 29 8.00
6 110 nodes and 275 links 56 10 - 22 8.15
7 110 nodes and 385 links 80 2 - 19 8.00
8 110 nodes and 385 links 56 10 - 22 8.15
9 130 nodes and 325 links 98 2 - 21 9.00
10 130 nodes and 325 links 60 12 - 25 8.77
11 130 nodes and 455 links 106 2 - 20 9.00
12 130 nodes and 455 links 60 12 - 25 8.77
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Hill-climbing and Simulated Annealing algorithms were both used

to test the above problems. Before these experiments were carried out,

parameters for implementing the two algorithms were determined (see

Table 4.9). (Please note that the cooling schedule has been chosen to

ensure an acceptable run time. It may be possible that if the different

cooling schedule is used, different solutions may be obtained.)

Table 4.9. Experimental Parameters I
Problem Objective HC SA

Parameters Parameters Parameters
1,2 A = 20000000 100000 P0 = 0.999

B = 1800000 Iterations Pf = 0.001
M = F = 1, 000

L = 100
3,4 A = 19000000 100000 P0 = 0.999

B = 1500000 Iterations Pf = 0.001
M = F = 1, 000

L = 100
5,6 A = 80000000 10000 P0 = 0.99

B = 8000000 Iterations Pf = 0.01
M = F = 100

L = 100
7,8 A = 70000000 10000 P0 = 0.99

B = 7000000 Iterations Pf = 0.01
M = F = 100

L = 100
9,10 A = 90000000 10000 P0 = 0.99

B = 10000000 Iterations Pf = 0.01
M = F = 100

L = 100
11,12 A = 90000000 10000 P0 = 0.99

B = 12000000 Iterations Pf = 0.01
M = F = 100

L = 100

As in previous experiments, parameters such as d0, d1, d2 and ATT

were used to assess best route sets found by the hill-climbing or sim-

ulated annealing algorithm. At the same time, the average values and
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the standard deviations (SD) of these parameters (10 runs), as well as

the run time using the HC and SA, were also recorded. In addition,

a simple method to assess the quality of the best route set found for

each test problem is to compare the average travel time (ATT) per pas-

senger with the lower bound results. The difference between the ATT

of the best route set obtained and the “ideal” ATT (i.e., lower bound)

for each problem is quoted as a percentage of the “ideal” quantity in

our results called “best ATT-error”. Hence the best ATT-error can be

calculated thus:

(ATTbest − ATTideal)× 100/ATTideal (4.3.1)

Finally all the best route sets for these test problems can be seen

on our website (http://users.cs.cf.ac.uk/L.Fan/) and their assessment

results are shown in Table 4.10, 4.11, 4.12. It is clear that the “best

ATT-errors” of the best route sets found for test problems have very

similar values. The percentage errors are between 2.25% and 12.35%.

On the other hand, comparing hill-climbing with our simulated anneal-

ing algorithm, the SA algorithm runs slower but finds better solutions

for all the instances. In addition, the standard deviations of these pa-

rameters for 10 experiments are small, hence it demonstrates that our

algorithms are robust.

In the final set of experiments we examined the efficiency of the

Make-Small-Change procedure. Throughout the execution of our algo-

rithms, each time a neighbourhood route set is generated, there is a

chance that it will be infeasible (i.e., not connected). Hence the Make-

Small-Change procedure will be called iteratively, until a connected
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route set is produced. Clearly, the efficiency of the Make-Small-Change

procedure can be assessed by counting the number of iterations required

before connectivity is achieved. Here we examine the average number

of iterations needed in order for each new feasible route set to be gen-

erated. To do this we examine single runs of the HC algorithm on our

problem instances. The results are presented in Table 4.13. Column

seven of the table records the average run time required, per solution,

for the Make-Small-Change routine to produce a feasible solution.

From the experimental results, we can observe some interesting pat-

terns: the efficiency of the Make-Small-Change routine appears to im-

prove with increasing numbers of routes in a route set and also when

the maximum and minimum number of nodes allowed per route is in-

creased. This is perhaps not a surprising result. More routes and longer

routes introduce more scope for redundancy.

Table 4.14. Experimental Parameters II
Situation Test Problem HC SA

Parameters Parameters
I 1 1000 P0 = 0.9

Iterations Pf = 0.1
M = F = 10

L = 100
II 1 10000 P0 = 0.99

Iterations Pf = 0.01
M = F = 100

L = 100
III 2 1000 P0 = 0.9

Iterations Pf = 0.1
M = F = 10

L = 100
IV 2 10000 P0 = 0.99

Iterations Pf = 0.01
M = F = 100

L = 100
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As mentioned before, the number of iterations for each HC and SA

experiments and the cooling schedule for the SA was chosen to ensure

good solutions in reasonable run times. However, it is clear that chang-

ing these parameters may effect the quality of the results obtained. In

particular longer run times and slower cooling schedules are likely to

produce better results. In order to show the effect, we use different

parameter choices to test Problems 1 and 2 in Table 4.8. Similar to

the above experiments, we also use 10 runs and record the values of

the assessment parameters for the best solutions, average value for HC

and SA and average run time for each algorithm. The experimental

parameters and the results can be seen in Table 4.14 and 4.15.

From the the above results obtained by different numbers of itera-

tions, cooling schedules and temperature choices, it is clear that longer

run times and slower cooling schedules produce better results. This

shows that there is a trade-off between run time and solution quality.

4.4 Summary

In this chapter, we have presented a framework for solving the UTRP,

consisting of the following components: a representation for the prob-

lem, an initialization procedure to construct initial route sets, and

a Make-Small-Change routine to generate neighbourhood moves. To

test our techniques, we have implemented two simple algorithms: hill-

climbing and simulated annealing, and embedded their simple search

mechanisms into our metaheuristic framework. Furthermore, we have

demonstrated the effectiveness of our scheme, by beating previously

published results for the only benchmark problem we have been able to

locate. In addition, the potential for solving larger problem instances
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has been explored. We have also demonstrated the effectiveness of

our Make-Small-Change procedure to generate feasible solutions to the

UTRP. Finally, we have demonstrated the inevitable trade-off that oc-

curs between run time and solution quality.



Chapter 5

A SIMPLE

MULTI-OBJECTIVE

OPTIMIZATION

ALGORITHM FOR THE UTRP

The urban transit routing problem is an NP-Hard, highly constrained,

multi-objective problem. In this chapter (based on the work published

in [66]), we propose a simple evolutionary multi-objective optimization

technique to solve the UTRP. Firstly we investigate an improved route

set initialization procedure, which can be used in our simple multi-

objective optimization algorithm instead of the previous one. Sec-

ondly we briefly introduce the idea of multi-objective optimization, then

present our two key objectives, which are to minimize both passenger

costs and operator costs. Following this, we describe a simple multi-

objective optimization algorithm for the UTRP, then present experi-

mental results obtained using the Mandl’s benchmark data and some

larger networks generated by ourselves.

104
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5.1 Improving the Route Set Initialization Procedure

Our metaheuristic approach (introduced in Chapter 4), requires only a

single initial route set to seed both hill-climbing and simulated anneal-

ing. For this reason even if an efficient initialization procedure is used,

we would not expect the performance of our metaheuristic approach to

be improved remarkably. However, in our simple multi-objective opti-

mization algorithm (introduced later on), the initialization procedure

is required to generate many initial feasible route sets. Hence it is clear

that our multi-objective approach may benefit from a more efficient

route set initialization procedure. Before considering the improvement

of the route set initialization procedure, however, we will discuss some

important issues relating to route set quality. We are particularly in-

terested in assessing route sets for their level of infeasibility, i.e., how

“close” a route set is to being “feasible”. Following this discussion,

we present a modified initialization routine, and finally we will com-

pare it with the previous procedure used. Our comparisons include

an assessment of the quality of the route sets, in terms of the propor-

tion of feasible and “almost feasible” route sets generated by the two

initialization procedures.

5.1.1 Assessing the Extent of Infeasibility of A Route Set

Recall that a feasible route set must contain every node present in the

original transit network and provide passengers with travel routes from

every source to every destination. Infeasible route sets will have one

or more nodes missing, or some of the routes will not be connected to

the rest of the framework. For our purposes though, infeasible route

sets may still be useful, if they are easily made feasible by our Make-
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Small-Change routine (introduced in Section 4.1.4). For this reason we

are interested in assessing the level of infeasibility, and we consider this

issue next.

We use a simple measure to assess the level of infeasibility - we

count the number of disconnected components in the graph obtained

by superimposing all the routes in a route set. A feasible route set will

consist of just one component, containing every node. Infeasible route

sets will be made up of two or more components, where each component

consists either of one or more routes, or of an individual node which

does not occur in any route. The procedure for checking begins by first

identifying all the individual connected components, then every node

of in the transit network is checked to see whether it is missing from

the route set. Finally, the total number of individual components and

missing nodes is accumulated to give us the number of components for

the infeasible route set.

For example, Figure 5.1 illustrates a simple 5 nodes and 7 links tran-

sit network, and Figures 5.2 and 5.3 show two networks constructed by

overlaying infeasible route sets based on the transit network. Both net-

works are in two components, but Figure 5.2 contains all nodes included

in the transit network, while Figure 5.3 has a connected component and

an isolated node, absent from the route network.

Figure 5.1. 5 Nodes and 7 Links Transit Network
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Figure 5.2. 2-component Infeasible Route Set Network I

Figure 5.3. 2-component Infeasible Route Set Network II

Through the above description, it is clear that the number of com-

ponents for a infeasible route set can be used to evaluate the degree

of the infeasibility of that route set: assuming that the more compo-

nents it has, the more difficult it will be to make it feasible. Thus, a

2-component infeasible route set should be relatively easy to convert.

We will a call 2-component infeasible route set a “potentially feasible

route set”.

5.1.2 An Improved Route Set Initialization Procedure

As explained before, once our metaheuristic approach has generated a

(random) route set, the Feasibility Check procedure is used to check

the feasibility of the route set. If a route set is not feasible, then the

Make-Small-Change procedure is utilized repeatedly until a feasible

route set is obtained. It would appear that the successful generation
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of a feasible route set relies heavily on the two procedures: Feasibil-

ity Check and the Make-Small-Change. On the other hand, the initial

route set construction procedure guarantees that the individual routes

are connected paths with no cycles or backtracks. Nevertheless, the

collective feasibility of the route set as a whole is not considered at this

stage. It is our conjecture that if we use an initial route set construc-

tion procedure capable of generating a high proportion of feasible and

“potentially feasible” route sets, the initialization procedure as a whole

should be more efficient, with fewer applications of the Feasibility Check

and Make-Small-Change procedures needed. We will now consider an

alternative route set construction procedure: Initialization Procedure

II, based on the original version called Initialization Procedure I (see

details in Section 4.1.2.)

In order to consider connectivity explicitly during the construction

phase, and for the purpose of adding all nodes into the initial route

set, a new initialization procedure is presented in Algorithm 10. Here,

routes are constructed one at a time as before. However, this time we

ensure the connectivity of the route set. Once the first route has been

constructed, we will choose the start node of subsequent routes from

the set of nodes present in previously constructed routes. Given that for

two routes to be connected they must have at least one node in common,

we can ensure the connectivity of the entire route set in this way. In

addition, when selecting the next node for a route under construction,

the new procedure favours nodes that do not already appear in the

route set.
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Algorithm 10 Initialization Procedure II

Parameters: number of routes, minimum and maximum number of
nodes for routes
Begin
Main loop
repeat

Route length selection:
Choose a length for the route between minimum and maximum
number of nodes at random
Inner Loop
repeat

Start node selection:
If this is the first iteration of the loop, then randomly choose
any node as the start node,
Else Randomly choose a node from the previous route as a start
node
label this node as the “previous node”
Next node selection:
Construct a node set consisting of all nodes directly connected
to “previous node” that have not been selected so far for any
route.
If this node set is not empty, choose a node from this set at
random
Else construct a node set consisting of all nodes directly con-
nected to “previous node” that have not been selected for the
current route.
If this node set is not empty, choose a node from this set at
random
Else invert the order of the route and repeat the Next node
selection
If such route can not reach the route length, then delete this
route and repeat Start node selection

until route length is reached
until number of routes is reached
Output an initialization route set

5.1.3 Comparison Experiments

It is clear that Initialization Procedure I is a very basic method, likely

to produce unconnected route sets with missing nodes. We attempt

to address these issues in Initialization Procedure II, by providing en-

hancements to improve the chances of route set connectivity, and reduce
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the likelihood of missing nodes. Nevertheless it is important to estab-

lish the relative success of these routines empirically using comparison

experiments.

For these experiments, seven data sets were used, and for each net-

work, the two initialization procedures were each set up to produce

10,000 route sets under various user-selected constraints. The number

of feasible route sets (1-component route sets) and “potentially feasible

route sets” (2-component route sets) were then recorded for compar-

ison. The constraints applied when generating the route sets include

the number of routes and the maximum and minimum number of nodes

for each route. The experimental conditions are summarized in Table

5.1. The results of the runs are shown in Figures 5.4, 5.5, 5.6, 5.7, 5.8,

5.9, 5.10 (IP-I, IP-II represents the Initialization Procedure I, II.)

Table 5.1. Experimental Conditions
Problem Network Number of Number of

Routes Nodes in Route
I Mandl’s network 8 2-8
II 70 nodes and 175 links 35 2-17
III 70 nodes and 245 links 15 10-30
IV 110 nodes and 275 links 55 2-29
V 110 nodes and 385 links 56 10-22
VI 130 nodes and 325 links 98 2-21
VII 130 nodes and 455 links 60 12-25

For each experimental result, it is clear that Initialization Proce-

dure II can produce more good route sets (feasible route sets plus

2-component route sets) and feasible route sets than Initialization Pro-

cedure I. At the same time, for Initialization Procedure I, the overall

percentage of good route sets over all 7 problem instances is 71.80%

while the the overall percentage of feasible route sets over all 7 problem

instances is 49.77%. For Initialization Procedure II, the overall percent-
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Figure 5.4. Mandl’s Network Problem

Figure 5.5. 70 Nodes and 175 Links Network Problem

Figure 5.6. 70 Nodes and 245 Links Network Problem



Section 5.1. Improving the Route Set Initialization Procedure 112

Figure 5.7. 110 Nodes and 275 Links Network Problem

Figure 5.8. 110 Nodes and 385 Links Network Problem

Figure 5.9. 130 Nodes and 325 Links Network Problem
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Figure 5.10. 130 Nodes and 455 Links Network Problem

age of good route sets over all 7 problem instances is 92.48% while the

the overall percentage of feasible route sets over all 7 problem instances

is 65.93%. The running time for generating 10000 route sets for each

initialization procedure in different situations is also recoded (see Table

5.2). From Table 5.2 it would appear that the running time for Ini-

tialization Procedure II is slightly shorter than Initialization Procedure

I. To sum up, Initialization Procedure II performs best of all: it can

produce more feasible route sets with a shorter running time.

Table 5.2. Running Time Results
Problem IP-I (millisecs) IP-II (millisecs)
I 5412 5125
II 358844 274735
III 92782 87125
IV 2700943 2371100
V 1331257 1260163
VI 5065789 4181244
VII 2796938 2568843

In conclusion, we have shown that the improved route set initializa-

tion procedure can make a significant difference. Thus we will use the

improved version for our multi-objective work in this chapter.
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5.2 Introduction to Multi-Objective Optimization

Real-world problems often have multiple conflicting objectives. For

example, for the UTNDP, the operators would ideally like to satisfy

every passenger’s requirements, but they also need to scrutinize the cost

of providing the service. For the UTRP there is no single solution that

is the best when measured on all objectives. Problems such as these

are examples of a special class of optimization problem called multi-

objective optimization problems. The question is, what is an optimal

solution for a multi-objective problem? In general, it is called a Pareto

optimal solution if there exists no other feasible solution which would

decrease some objectives (assuming a minimization problem) without

causing a simultaneous increase in at least one other objective [24].

With this definition of optimality, we usually find several trade-

off solutions. These solutions are called the Pareto optimal set (after

Vilfredo Pareto [83]), or the Pareto optimal front for the plot of the

vectors corresponding to these solutions. Pareto-optimal solutions are

non-dominated solutions in the sense that it is not possible to improve

the value of any one of the objectives in such a solution, without simul-

taneously degrading the quality of one or more of the other objectives

in the vector [28]. In that sense, the search for an optimal solution has

fundamentally changed from what we see in the case of single-objective

problems. The task of solving multi-objective optimization problems

is called multi-objective optimization. Since users generally need only

one solution from the set of optimal trade-off solutions, solving multi-

objective optimization problems can be seen as a combination of both

searching and decision-making [55].

Through the literature review, we have discovered very few research
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papers on the use of multi-objective optimization techniques for the

UTRP. Among those that exist, Ceder and Israeli [56] introduced a

complex seven-stage approach, which includes several steps to create

routes, identify transfers and calculate vehicle frequencies. A number

of objectives such as travel time, waiting time, empty space and fleet

size were then identified, and a set of multi-objective tradeoff solutions

is presented to a human decision maker. Fan and Machemehl [37] also

proposed a multi-objective decision-making approach to the UTNDP.

Their basic idea is to experiment with different values for the weights of

three objective functions, in order to obtain a range of non-dominated

results from which a human decision maker can select a suitable com-

promise solution. Although this multi-objective optimization method

is able to find some good solutions to the UTNDP, determining suitable

values for the weights requires a large number of experiments, which can

be very time consuming. Thus a generic and computationally efficient

multi-objective optimization method to solve the UTNDP is desirable.

5.3 Our Two Key Objectives

The urban transit routing problem (UTRP) is a multi-objective prob-

lem which usually involves several objectives, for example the total

travel time and the total transfer time from the passenger’s point of

view, and the number of routes and the total sum of all the bus route

lengths from the operator’s point of view. In reality, transport plan-

ners have to develop transit routes based on the practical requirements

specified by the various stakeholders, for example bus companies and

local government. This can involve the simultaneous consideration of

multiple objectives as well as multiple constraints.
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In this chapter we extend our simple model from Chapter 3, to cover

operator costs and passenger costs simultaneously. As we have already

established, passengers normally prefer to travel to their destination

in the shortest possible time or along the shortest path. At the same

time, passengers want the number of vehicle transfers kept to a mini-

mum, since changing busses or trains involves extra waiting time and

inconvenience.

From the operators’ perspective, running costs will be an important

consideration, which include the number of buses and drivers required

and the total number of miles covered. In the real world, a certain level

of service frequency will be required on each transit route to guarantee

a reasonable quality of service for passengers (e.g., to ensure that pas-

sengers are not waiting excessive times for transfers). In order to satisfy

the basic requirements, the operators should have sufficient vehicles and

drivers to serve passengers on different transit routes. For example, if

there are two transit routes, on which the required frequencies are the

same but where one route is longer than the other, the operator will

need to provide more buses and drivers on the longer route than the

short route if the same level of service is to be maintained. At the

same time, the fuel costs for the longer route will be higher than for

the short route. Furthermore, it is clear that an important aspect of

the operator’s costs is related to the accumulated lengths of all the

routes they operate. We will call this accumulated route length the

“total-route-length”, and use it as the operators’ objective in our sim-

ple multi-objective model; passenger costs and operator costs will be

traded off as dual objectives by our multi-objective evolutionary algo-

rithm. At the same time, our problem constraints will ensure that all



Section 5.4. A Simple Multi-Objective Optimization Algorithm for the UTRP 117

the demand is met and a reasonable quality of service is maintained,

so that only feasible solutions will be generated (avoiding the solution

having zero passenger and operator costs for a service with no routes

in the route set). The objective function for passenger costs, CP in

our multi-objective model is the same as that used in our single objec-

tive approach (see Section 3.1). The formulation for operators’ costs is

shown as follows:

• Let r denote the total number of routes in the route set.

• Let Ll denote the length of route l

Operators′costs : CO =
r∑

l=1

Ll (5.3.1)

5.4 A Simple Multi-Objective Optimization Algorithm for the

UTRP

We present the Simple Multi-Objective Optimization (SMO) algorithm

to solve our UTRP, shown as Algorithm 11. This scheme is based on

the SEAMO algorithm [78,97], but without the crossover operator.

Our SMO relies on the Route Set Initialization Procedure II to gen-

erate the initial population of route sets (introduced in Section 5.1.2),

the Make-Small-Change procedure to modify an existing route set and

the Feasibility-Check procedure to ensure that a feasible route set is

obtained (introduced in Section 4.1).

In our algorithm, firstly the number of initial feasible route sets de-

fined by the user is generated by the Route Set Initialization Procedure

II. At the same time, best route sets for passenger and operator costs
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Algorithm 11 Simple Multi-Objective Optimization (SMO)

Generate initial population of feasible route sets.
Calculate passenger and operator costs for each route set.
Record the best-route-set-so-far for both objectives.
repeat

for each route set in the population
Apply the Make-Small-Change procedure and Feasibility-Check
procedure to produce a feasible offspring
if offspring is a duplicate
then delete offspring
elseif offspring improves on either best-so-far
then offspring replaces parent and best-so-far updated
elseif offspring dominates parent
then offspring replaces parent
elseif offspring and parent are mutually non-dominated
then find an individual in the population that is dominated by the
offspring and replace it with the offspring.
endif
endfor

until the stopping condition is satisfied
print all non-dominated solutions in the final population.

are recorded. Secondly at each iteration of the loop, the Make-Small-

Change and Feasibility-Check procedures are used to produce a feasible

offspring. Next, the offspring is checked to see whether it is a duplicate

(it has the same values for the two objective functions as an existing

solution), and if so, then it is deleted. Next, if the offspring survives

the duplicate test, its objective values are tested to see whether either

improve on the “best-so-far” recorded for either passenger or operator

costs. If a better value is found for either objective than has previously

been discovered by the algorithm, the offspring will replace its parent

regardless of the second objective. In this circumstance, the “best-

so-far” is updated for the appropriate objective. Next, provided the

offspring has not been deleted or replaced its parent, it will be tested

to see whether it dominates its parent. If it does, it will replace the
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parent. Finally, if the offspring has survived but has not passed any of

the previous tests, the algorithm will check to see whether it and its

parent are mutually non-dominated. If this is the case, an individual in

the population dominated by the offspring will be found and replaced

by the offspring. Offspring will be generated and tested in this way

until the number of iterations defined by the user is achieved, then all

non-dominated solutions will be returned as output.

5.5 Experimental Results

First we test the SMO algorithm on Mandl’s Swiss transit network [73],

then compare the results with those previously published in [36] (intro-

duced in Section 4.3.3). Following this, we use the SMO algorithm and

the metaheuristic approach published in [36] (introduced in Chapter 4)

on these larger artificial instance of the UTRP (introduced in Section

4.3.4), where we rely on lower bound costs (see Table 4.7) to evaluate

the performance of the SMO algorithm.

5.5.1 Experiments on Mandl’s Network

In our experiments, similar to Chapter 4, we considered four separate

scenarios for Mandl’s network, namely route sets consisting of 4 routes,

6 routes, 7 routes and 8 routes, with a maximum of 8 nodes in each

route. For each scenario, we recorded the results from 10 replicate runs

(each seeded with different random numbers) using a population size

of 200. The number of iterations of the multi-objective algorithm used

in each experimental run for 4, 6, 7, 8 routes, was 1000, 3000, 4000,

5000 respectively. For each set of experimental runs, we accumulated

the results and isolated the non-dominated solutions, trading off pas-
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senger cost CP against the operator cost CO. Finally, we validated our

solutions against our recently published results [36].

Table 5.3 shows the best route sets obtained for passengers and op-

erators respectively, and compromise route sets (both objective values

are “in the middle”, which are not best for passengers or operators) for

each of the 4 scenario on Mandl’s network.

Note that many routes listed in for operators in Table 5.3 consist

simply of source and destination nodes. Clearly, such short routes

would probably prove uneconomic, in practice. Nevertheless, these 2

node routes are efficient in the context of our problem formulation,

which uses a simplified objective function for the operators cost (the

sum of the route lengths), and imposes a fixed number of routes in the

route set (to comply with constraints used by other researchers). The

present work can be viewed as a simple proof-of-concept study, and a

more sophisticated formulation from the operators’ viewpoint, would be

needed to generate routes that comply with the practical requirements

of bus operators.

As before, the following parameters [20] are used to evaluate our

best route sets found by the multi-objective optimization algorithm

from passengers’ perspective:

• d0 - Percentage demand satisfied without any transfers.

• d1 - Percentage demand satisfied with one transfer.

• d2 - Percentage demand satisfied with two transfers.

• ATT - Average travel time (minutes per passenger), including a

penalty of 5 minutes per transfer.
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In addition, we also use the following parameter to evaluate our best

route sets from operators’ perspective:

• CO - Operator cost function value (sum of the lengths of all the

routes in the route set)

The values of these parameters for the route sets from Table 5.3

are presented in Table 5.4. To validate these results, we compare them

against our previously published results [36] for the single objective

situation (minimizing passenger costs). In addition, we also compare

our results with the lower bound result of the average travel time (ATT)

on Mandl’s network (introduced in Section 3.3). The difference between

the ATT of best route sets for passengers obtained and the “ideal” ATT

(i.e., lower bound) is quoted as a percentage of the “ideal” quantity in

our results called “ATT-error of best routes for passenger”.

From Table 5.4, it is clear that a number of good route sets has

been found from the passengers’ point of view. The parameter values

are very close to our previously published results for the single objec-

tive problem. However, the operator’s costs in the “best for passenger”

column, are consistently better than the corresponding costs obtained

using our previous single objective approach. For the best route sets

from the operator’s perspective, it is reasonable that the lowest opera-

tor cost will correspond with the highest passenger’s cost. In general,

our multi-objective optimization algorithm can find good solutions to

Mandl’s network problem. In particular, assessment parameter val-

ues for the best route sets relative to the passenger’s costs (such as d0

and ATT), obtained by the SMO are close to our previously published

results. We calculated the percentage difference of the SMO results

relative to the previously published results, and found these values to
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lie between 0.83% and 3.40% for d0, and between 0.19% and 6.33% for

ATT. On the other hand, for the best route sets relative to the op-

erator’s costs, the total length of these best route sets are the same,

namely 63 minutes (evaluated by bus travel time). Non-dominated

trade-off solutions from 10 runs for the 4-route scenario can be seen in

Figure 5.11.
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Figure 5.11. Non-dominated Solutions from 10 Runs for 4-route Sce-
nario for Mandl’s Network (route length and travel time both measured
in minutes)

.

5.5.2 Scalability Experiments

In our scalability experiments, 6 larger networks (see Table 4.6) were

tested by 12 experimental conditions (see Table 4.8). For each ex-

periment, we recorded the results from 10 replicate runs (each seeded

with different random numbers) using a population size of 100. The

number of iterations of the multi-objective algorithm used in each ex-

perimental run was set to 100 and 200 respectively. We chose a smaller
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number of iterations than Mandl’s network, because of the long run

times. The problem of run time for larger networks will be discussed

in Chapter 6. Furthermore, we compare the results obtained using our

multi-objective algorithm with those obtained using the single objec-

tive approach introduced in Chapter 4. We also assess the quality of

our results obtained using our multi-objective algorithm by comparing

the average travel time (ATT) per passenger with the lower bound on

the ATT (see Table 4.7). The difference between the ATT and the

lower bound is expressed as a percentage of the lower bound. These

comparison results can be seen in Table 5.5, 5.6, 5.7 (SMO denotes the

simple multi-objective optimization algorithm).

From these results, it is clear that our multi-objective optimization

algorithm can also find good solutions for these larger network prob-

lems. For example, considering assessment parameter values (such as

d0 and ATT) for the best route sets relative to the passenger’s costs

for the 12 scenarios, the percentage difference between d0 obtained by

our SMO and d0 obtained by the single objective method are between

0.88% and 2.93%. At the same time, the percentage difference between

ATT obtained by the SMO and ATT obtained by the single objective

method are between 0.59% and 5.62%. Note - percentage difference:

‖(parameterSMO−parametersingleobjective)‖×100/parametersingleobjective
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5.6 Summary

In this chapter, we have presented an improved initialization procedure

that produces a much higher proportion of feasible and “potentially

feasible” route sets than the procedure used previously. Furthermore,

an evolutionary multi-objective optimization algorithm has been pre-

sented to solve the UTRP, with the two key objectives, of minimizing

both passenger costs and operator costs. Through the experiments on

Mandl’s benchmark data set, and some artificially generated larger data

sets, we have demonstrated that our method is able to obtain efficient

route sets which balance the requirements of passengers with those of

the operator.



Chapter 6

CONCLUSION AND FUTURE

RESEARCH

In this chapter, the main contributions of our research to the urban

transit routing problem are summarized, and some ideas for future

research are presented.

6.1 Conclusion

Through our research on the UTRP, we have learned much about the

problem itself, particularly the difficulties involved when attempting

to model the many constraints and practical difficulties that can arise

in real-world situations. Nevertheless, we believe that we have made

considerable progress towards establishing a generic model that incor-

porates key features of the problem, yet does not overcomplicate mat-

ters. In addition, we have created some basic techniques for solving

the problem, and improved on previously published results. Finally, we

have produced a problem generator that will create realistic data sets,

and established some useful parameters and lower bounds on problem

instances based on common-sense observations.

In more detail, the major contributions of our research on the UTRP

130
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can be summarized as follows:

• We have devised a simple model of the UTRP, based on the

generic model presented by some previous researchers but extend-

ing it with a highly effective objective function for the passenger

cost. We believe that our objective function is a key factor in the

success of our metaheuristic techniques.

• We have constructed a new and simple metaheuristic framework

for solving the UTRP, consisting of the following:

– a representation of candidate route sets,

– an effective feasibility check procedure, to ensure route sets

comply with given constraints,

– our Make-Small-Change procedure - for (intelligent) neigh-

bourhood moves and efficient repair of infeasible solutions,

– simple hill-climbing and simulated annealing techniques to

fit into the metaheuristic framework.

• We have written software to generate realistic artificial data sets

to enable researchers to create test data which reflect their own

requirements, such as the scale of the transit network, the range

of the travel demand and the level of connectivity.

• We have established a lower bound on the passenger cost, to

help assess the quality of route sets obtained for new (previously

untested) data sets.

• We have established various constraints and other properties of

transit networks and route sets.
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• We have proposed and tested a prototype multi-objective opti-

mization algorithm, which trades off operator’s cost against pas-

senger’s cost.

6.2 Future Research

As mentioned previously (see Section 3.5), a larger network having 1200

nodes and 3600 links based on the Beijing bus network has also been

investigated using our algorithms. Unfortunately, the run time required

to obtain a suitable solution is much longer than that we had expected.

Hence, besides considering the computer’s configuration, the efficiency

of our algorithm also needs to be reviewed.

In our algorithm, we find that the computational bottle-neck is the

time required to find the number of transfers for each travel path to

satisfy the demand at each node pair in the network. To do this the

algorithm needs to determine which parts of each passenger travel path

belongs to each transit route, which requires that every node in each

path is checked, giving a run time complexity of O(n3) (where n is

the number of nodes in the network) for each route set. In order to

overcome the problem, we propose some improvements. We can either:

1. develop a new and more efficient method for counting the number

of transfers using the existing model, or

2. we can use a more sophisticated model for the transit network

and eliminate the need to compute the number of transfers from

the objective function.

Method 2) would appear to be the easiest option, and for this we

favour Mandl’s model [73]. On the other hand, Method 1) would allow
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us to maintain our current objective function (with components for

travel time and number of transfers). For Method 2) the basic idea is

to add extra nodes and links to the route network so that transfer times

are included explicitly in the model, and the shortest path algorithm

can take account of these, along with the travel times along the various

transit links. For example, in Figure 6.1, two routes ra and rb make up

the route network. There are two common nodes for each route in the

route network. Therefore, if we add the transfer times, a new transit

network can be established (see Figure 6.2). Let tij denote the time

required to traverse the transport link between node i and node j, and

τ denote the time required to transfer from route ra to route rb.

3 4

51

62

r
b

r
a

Figure 6.1. Route Network

Based on this model, we assume that passengers will always choose

to travel on the shortest-time paths in the transit network. Therefore,

our objective function can be revised with just the travel time (the

number of transfers is not needed) as follows:

Minimize : Z =
N∑

i,j=1

dijαij (6.2.1)

Where dij denotes the transit demand from node i to node j (defined



Section 6.2. Future Research 134

51

62

3a 4a

3b 4b

t
34

t
34

t
23

t
46

t
45

t
34

ττ

Figure 6.2. New Transit Network

in terms of the number of passengers wishing to travel between i and

j) and αij is the shortest journey time from i to j (including transfer

times). This is clearly more elegant than our current objective function,

as it does not require (arbitrary) weighting of travel times versus the

number of transfers. On the other hand, our current objective function

has produced excellent results, beating some previously best published.

Other possibilities for future work to extend the present contribu-

tions include:

• Improve and enhance our metaheuristic framework. As well as

making the software run faster, as discussed above, we could ex-

periment with new types of neighbourhood move which provide a

mechanism for creating or destroying routes, so that the number

of routes will not need to be chosen prior to optimization.

• We could also try alternative metaheuristic optimization algo-

rithms such as genetic algorithms [54], tabu search [48] or ant

colony optimization [32]. Some parts of our current metaheuristic

framework can be readily used in other metaheuristic algorithms,
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for example, the Feasibility Check procedure can be used as an

external procedure in genetic algorithms or the tabu search to en-

sure the feasibility of the route set. At the same time, the Make-

Small-Change procedure can be regarded as a good “mutation”

operator for genetic algorithms, as well as suitable neighbourhood

moves for tabu search and other local search algorithms. However

designing an efficient “crossover” operator for a genetic algorithm

provides rather more of a challenge.

• Improve our prototype multi-objective optimization algorithm and

experiment with the simultaneous optimization of more sophisti-

cated objectives such as the number of buses on the routes or the

utilization percentage (how full the busses are).

• Refine our simple model, in consultation with transport planners,

and assess the applicability of our techniques to real-world prob-

lems. We could also explore how our problem-solving techniques

could be integrated into commercial software toolkits such as VI-

SUM.

A further direction of new research would be to build a simulator

(to model a public transport system) for testing the route networks

generated by our techniques. The simulator would allow the user (or

our program) to input a route network and bus frequencies and mimic

a given level of service. The simulator could be used to evaluate route

sets generated by our route design program (or by any other means).

We could then use these results to assess the validity of the static

evaluation process employed by our route design program, which could

help us improve the static evaluation process.
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