The Semantic Web: A Short, Practical Introduction

Alun Preece
Department of Computing Science
University of Aberdeen, Scotland, UK
apreece@csd.abdn.ac.uk
http://www.csd.abdn.ac.uk/~apreece

Or...

<rss:item
 rdf:about="http://www.csd.abdn.ac.uk/~apreece/
talks/TheSemanticWebAShortPracticalIntroduction/"
 rdf:type rdf:resource=
 "http://xmlns.com/foaf/0.1/Document" />
 <rss:title>The Semantic Web: A Short, Practical Introduction</rss:title>
 <rss:description>Slides for plenary talk at Aberdeen University’s Conference for Computing Teachers, September 10 2003</rss:description>
 <rss:link>http://www.csd.abdn.ac.uk/~apreece/
talks/TheSemanticWebAShortPracticalIntroduction/
TheSemanticWebAShortPracticalIntroduction.pdf</rss:link>
 <dc:creator>Alun Preece</dc:creator>
</rss:item>
Scope of this talk

- What is the Semantic Web, and why do we need it now?
- How does the Semantic Web relate to the "traditional" Web?
- What are the main components of the Semantic Web information architecture?
- What does Semantic Web technology buy us in terms of applications...
 - ... that are "lightweight" and easy to build?
 - ... that are more "heavyweight" and more challenging to build?

What is the Semantic Web?

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

- Aim: to create a network of machine-processable resources
- Existing in parallel with the current World Wide Web
- Enables software to carry out tasks on users' behalf
- Moving from a Web of "finding things" to a Web of "doing things"
The problem with the HTML Web

A typical homepage, today:

A search for “Alun Preece’s fax no.” gets no help from the HTML markup.

A search for “Alun Preece’s fax no.” gets no help from the HTML markup.
Doesn’t XML solve this problem?

◆ With XML, custom sets of tags can be defined, which can be:
 ■ “styled” into conventional HTML
 ■ processed directly by software - so can be queried...

```xml
<Person ID="apreece">
  <name>Alun Preece</name>
  <mbox resource="mailto:apreece@csd.abdn.ac.uk"/>
  <phone resource="tel:+44-1224-272291"/>
  <phone resource="fax:+44-1224-273422"/>
</Person>
```

But this is just more syntax - the tags don’t mean anything!

The Semantic Web

◆ XML alone is not enough - the XML tags need a defined semantics, to make them meaningful
◆ Formally, to relate the tag symbols to the things they represent in the real world
◆ So the markup becomes a model of the real world

```xml
<foaf:Person ID="apreece">
  <foaf:name>Alun Preece</foaf:name>
  <mbox resource="mailto:apreece@csd.abdn.ac.uk"/>
  <phone resource="tel:+44-1224-272291"/>
  <phone resource="fax:+44-1224-273422"/>
</foaf:Person>
```
Two Webs in parallel

- The Semantic Web is **not** a replacement for the current Web
- **Semantic markup** is designed to exist alongside HTML markup - often in the form of **metadata** (data that describes other data)
 - Humans will continue to view the HTML
 - Software can process the Semantic markup
 - Hence the W3C’s aim: “better enabling computers and people to work in cooperation”
- (Because the Semantic markup is in XML, it is possible to generate HTML from it...)

Web/Semantic Web example

http://www.csd.abdn.ac.uk/~apreece/index.html

http://www.csd.abdn.ac.uk/~apreece/index.rdf
Like the “traditional Web” (in recent years), Semantic Web data is based on W3C-recommended standards:

- Unicode for strings (in all languages)
- URIs - Uniform Resource Identifiers - to name “things”
- XML as the standard extensible markup language
- XML Schema for a variety of primitive datatypes (integer, real number, string, date, URI, …)
- XML namespaces to give global scope for tag names

```xml
<rdf:RDF
  xmlns:vc="http://www.w3.org/2001/vcard-rdf/3.0#">
  <rdf:Description
    rdf:about="http://www.csd.abdn.ac.uk/~apreece">
    <vc:FN>Alun Preece</vc:FN>
    <vc:EMAIL>apreece@csd.abdn.ac.uk</vc:EMAIL>
  </rdf:Description>
</rdf:RDF>`
Information layer: RDF + RDFS

- RDF - Resource Description Framework - is the foundation of the Semantic Web standards
- RDF provides:
  - a simple semantic data model with classes (entities) & properties (relationships)
  - schema definition constructs (RDF Schema) to define simple vocabularies of terms
  - an XML syntax for marking-up RDF data
- RDF is the best-developed aspect of the Semantic Web:
  - many RDFS vocabularies are currently available
  - a suite of software tools exists to process RDF

Sample RDF Schema fragment

- An RDFS definition for a class called Person:
  
  `<rdfs:Class rdf:ID="http://xmlns.com/foaf/0.1/Person" />`

- RDFS definitions for three RDF properties - name, mbox (email address), and phone:

  `<rdf:Property rdf:ID="http://xmlns.com/foaf/0.1/name">
      <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />
  </rdf:Property>`

  `<rdf:Property rdf:ID="http://xmlns.com/foaf/0.1/mbox" />
  `<rdf:Property rdf:ID="http://xmlns.com/foaf/0.1/phone" />

- Note how all these terms are named globally with URIs
Sample RDF data fragment

```
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/
xml:base="http://www.csd.abdn.ac.uk/~apreece/foaf.rdf#">
<foaf:Person rdf:ID="apreece">
<foaf:name>Alun Preece</foaf:name>
<foaf:mbox rdf:resource="mailto:apreece@csd.abdn.ac.uk" />
<foaf:phone rdf:resource="tel:+44-1224-272291" />
<foaf:phone rdf:resource="fax:+44-1224-273422" />
...
</foaf:Person>
</rdf:RDF />
```

Querying RDF

- RDF statements can be parsed from the XML format into an RDF model, for example using Hewlett Packard’s Jena toolkit.
- Jena RDF models can be queried directly using the RDQL query language.
- Example, “retrieve the phone number(s) of the person whose name is ‘Alun Preece’”:

```
SELECT ?y
WHERE (?x, <foaf:name>, "Alun Preece")
AND (?x, <foaf:phone>, ?y)
USING foaf FOR <http://xmlns.com/foaf/0.1/>
```
- (RDF can also be queried in XML RDF syntax using University of Aberdeen’s RDF Query-By-Example)
More than just a smarter Google

◆ In addition to offering accurate searching, by querying, Semantic Web data enables many kinds of applications

◆ Examples
  ▪ charting communities of friends and colleagues
  ▪ building collaborative community-oriented apps
  ▪ information integration based on standard vocab
  ▪ Web “push”: publish & subscribe
  ▪ automated Web services

◆ A lot can often be done with small amounts of semantic markup!

Six degrees of separation: FOAF

◆ The Friend-Of-A-Friend (FOAF) vocabulary covers
  ▪ entities: people, organisations, projects, documents
  ▪ “identifying” details: mbox, homepage, phone, depiction
  ▪ relationships between people: who knows who

◆ We’ve already seen FOAF definitions for the Person class, and the name, mbox, & phone properties

◆ The FOAF knows property:

```xml
<rdf:Property
 rdf:about="http://xmlns.com/foaf/0.1/knows">
 <rdfs:domain
 rdf:resource="http://xmlns.com/foaf/0.1/Person" />
 <rdfs:range
 rdf:resource="http://xmlns.com/foaf/0.1/Person" />
</rdf:Property>
```
FOAFnaut

- FOAFnaut is a tool that browses knows links:

The need for ontologies

- RDF is designed to be simple
- To define more sophisticated vocabulary, we need to go one layer higher: to the ontology layer
- The Semantic Web ontology language, OWL, extends RDF with some additional functionality
- Concrete examples:
  - a Person must have at least one name
  - a Person must have exactly one age
  - the class Person is the disjoint union of the classes Man and Woman
  - an email address (mbox) belongs to only one Person
- This last example is crucial to FOAF...
A little ontology goes a long way

- FOAF uses OWL to define the mbox property:
  
  ```xml
 <rdf:Property
 rdf:about="http://xmlns.com/foaf/0.1/mbox">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty" />
 </rdf:Property>
  ```

  This definition means: “mbox is a personal mailbox, i.e. an Internet mailbox associated with exactly one owner”

  This means, in database terms, the value of mbox acts as a primary key for Persons in the FOAF world - a unique ID

Ontology mapping

- OWL can also be used to map one vocabulary to another
- Example: the vCard EMAIL property is the same as FOAF’s mbox:
  
  ```xml
 <rdf:Property
 rdf:about="http://www.w3.org/2001/vcard-rdf/3.0#EMAIL">
 <owl:equivalentProperty rdf:resource="http://xmlns.com/foaf/0.1/mbox" />
 </rdf:Property>
  ```

  An OWL reasoner could use this equivalence to derive a value for some resource’s vcard:EMAIL if it can find a value for foaf:mbox
Application snapshot: MusicFriends

◆ MP3 file sharing among a community of friends
◆ Uses FOAF RDF vocab for friend-to-friend links
◆ Uses MusicBrainz RDF vocab for MP3 collections

Application snapshot: AKT 3store

◆ Repository of over 7 million RDF statements
◆ Covers entire UK computing science community
Application snapshot: RSS

- RDF Site Summary (RSS) is an open framework for "publish and subscribe" applications, using RDF
- Many news sites (and other sites with frequent updates) now provide RSS channels
- By using a "newsfeed" tool, one can subscribe to RSS channels of one's choosing
- When new items are published in RSS/RDF format, subscribers are notified
- Items can be anything with a URI
  - news stories
  - published documents
  - slides of talks...

"Eating our own dogfood"

- Here's the RSS metadata for this talk:
  <rss:item
    rdf:about="http://www.csd.abdn.ac.uk/~apreece/talks/TheSemanticWebAShortPracticalIntroduction/">
    <rss:title>The Semantic Web: A Short, Practical Introduction</rss:title>
    <rss:description>Slides for plenary talk at Aberdeen University’s Conference for Computing Teachers, September 10 2003</rss:description>
    <dc:creator>Alun Preece</dc:creator>
  </rss:item>
Semantic Web services

- The key features of the Semantic Web...
  - machine-processable data
  - standard vocabularies
  - compatibility with the “Web family” of standards
- ... makes the technology very appealing for automated Web services in all sectors:
  - E-business
  - E-science
  - E-health
  - E-governance

Web services use Web standards to allow client software to call upon Web servers to carry out tasks - far more than just information retrieval...

Granite Nights service

- Semantic Web service: helps a user to schedule a night out in Aberdeen!
- Sources of information, all in RDF:
  - Restaurants (uses standard ontology)
  - Cinema shows (uses standard ontology)
  - Pubs (uses a home-grown ontology)
- Remembers and recalls user preferences - semantic profiling
- AI-based scheduler maps RDF data to constraints and produces valid schedules
- Part of EU-funded Agentcities.NET project (Worldwide network of intelligent Web services)
Static info source (restaurants)

```xml
<res:Restaurant rdf:about="#lalombarda">
 <res:name>La Lombarda</res:name>
 <res:averageMealDuration>2</res:averageMealDuration>
 <res:address>
 <add:Address rdf:about="rest#lombardaaddr"/>
 </res:address>
 <res:atmospheres rdf:resource="res#CasualAtmosphere"/>
 <res:atmospheres rdf:resource="res#RelaxedAtmosphere"/>
 <res:caterings rdf:resource="res#ALaCarte"/>
 <res:caterings rdf:resource="res#HomeDelivery"/>
 <res:facilities rdf:resource="res#SmokingFacility"/>
 <res:typeOfCuisine rdf:resource="res#ItalianCuisine"/>
</res:Restaurant>
```

Dynamic info source (cinemas)

```xml
<s:Shows rdf:ID="ugc_PianistThe">
 <s:time>
 <s:ShowScheduleCollection>
 <s:consistsOf>
 <s:ShowSchedule>
 <s:startTime>
 <c:Calendar>
 <c:calendarDate>
 <c:Date>
 <c:calendarDayOfWeek rdf:resource="cal#Thursday"/>
 <c:year>2003</c:year>
 <c:month>1</c:month>
 </c:Date>
 </c:calendarDate>
 <c:calendarTime>
 <c:Time>
 <c:format rdf:resource="cal#24h"/>
 <c:timeHour>20</c:timeHour>
 <c:timeMinute>20</c:timeMinute>
 </c:Time>
 </c:calendarTime>
 </c:Calendar>
 </s:startTime>
 <s:location rdf:resource="cinemas#ugc"/>
 <s:description>Certificate: 15</s:description>
 </s:ShowSchedule>
 </s:consistsOf>
 </s:ShowScheduleCollection>
 </s:time>
 <s:CinemaPerformance rdf:ID="PianistThe">
 <s:title>Pianist, The</s:title>
 </s:CinemaPerformance>
</s:Shows>
```
Summary

The Semantic Web is exciting from several perspectives:

- as a piece of computing science technology
- as a “new generation” for the Web
- as a platform for diverse kinds of applications

It’s still the Web we know and love:

- it co-exists with all our messy HTML, etc data
- it’s a global system: URIs are universal!
- it’s extremely open
- it’s not too hard to get started...

IT’S WORTH GETTING INVOLVED!

Credits & Links

Work done at Aberdeen in collaboration with
- Agentcities & Granite Nights: Gunnar Grimnes, Pete Edwards, Stuart Chalmers
- MusicFriends: Robin Campbell

URIs:
- W3C Semantic Web: http://www.w3.org/2001/sw/
- RDF & apps: http://www.w3.org/RDF/
- FOAF: http://www.foaf-project.org/
- FOAFnaut: http://jibbering.com/foaf/
- MusicBrainz: http://www.musicbrainz.org/MM/
- Granite Nights: http://www.csd.abdn.ac.uk/research/AgentCities/compo/
- AKT 3store: http://triplestore.aktors.org/demo/AKTiveSpace/